首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Benzoate 1,2-dioxygenase system which catalyzed double hydroxylation of benzoate was obtained from Pseudomonas arvilla and was shown to consist of two protein components (component A and B). Component A which was purified and was shown to be homogeneous upon sodium dodecyl sulfate disc gel electrophoresis retained high activity of NADH-cytochrome c reductase. Both of benzoate 1,2-dioxygenase activity and NADH-cytochrome c reductase activity were simultaneously induced by benzoate. Dichlorophenolindophenol which could serve as an electron acceptor of the NADH-cytochrome c reductase inhibited the activity of benzoate 1,2-dioxygenase. These results suggest the possibility that NADH-cytochrome c reductase activity is required for benzoate 1,2-dioxygenase.  相似文献   

2.
The effect of pretreatment with phenobarbitone, rifampicin, β-naphthoflavone, antipyrine and spironolactone on the irreversible binding of ethynyloestradiol to guinea pig liver microsomes has been examined and the corresponding changes in microsomal P-450 content and cytochrome c reductase activity measured. Rifampicin produced the greatest increase (220%) in irreversible binding while phenobarbitone produced the greatest increase in both microsomal P-450 content (172%) and cytochrome c reductase activity (210%). There was no correlation of irreversible binding with either microsomal P-450 content or with cytochrome c reductase activity.  相似文献   

3.
A highly purified reconstituted system isolated from the microsomes of 3-methylcholanthrene-treated rats consisting of cytochrome P-448, NADPH-cytochrome c reductase and synthetic dilauroyl phosphatidylcholine had no DT diaphorase activity, but hydroxylated benzo[a]pyrene at a faster rate than microsomes from 3-methylcholanthrene-treated rats. DT diaphorase purified from liver microsomes of 3-methylcholanthrene-treated rats when added to this reconstituted system did not stimulate or inhibit benzo[a]pyrene hydroxylation, nor could it replace or NADPH-cytochrome c reductase in supporting the reaction. We therefore conclude that microsomal DT diaphorase is not involved in microsomal hydroxylation of benzo[a]pyrene to its phenolic products despite the observation that both DT diaphorase activity and the hydroxylation of benzo[a]pyrene are induced by 3-methylcholanthrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin  相似文献   

4.
An improved synthesis for cobalt-cytochrome c has been developed; its half reduction potential is ?140 ± 20mV. Reduced Cocyt-c3 is oxidized by bovine heart cytochrome c oxidase at a rate ~45% that of the native cytochrome c. It is not reduced by mitochondrial NADH or succinate cytochrome c reductase nor by microsomal NADH or NADPH cytochrome c reductase.  相似文献   

5.
J Baron  J A Redick  P Greenspan  Y Taira 《Life sciences》1978,22(12):1097-1102
NADPH-cytochrome c reductase (NADPH-cytochrome reductase, EC 1.6.2.4), the flavoprotein which is responsible for the NADPH-dependent reduction of cytochromes P-450 in hepatic microsomes, has been localized immunohistochemically at the light microscopic level in rat liver. Localization was achieved through the use of sheep antiserum to rat hepatic microsomal NADPH-cytochrome c reductase in an unlabeled antibody peroxidase-antiperoxidase technique. Parenchymal cells throughout the liver lobule were found to be stained positively for NADPH-cytochrome c reductase, although the intensity of immunostaining was slightly greater in the centrilobular regions. Immunostaining for NADPH-cytochrome c reductase was not detected in Kupffer cells, connective tissue cells, or in cells of the hepatic vasculature.  相似文献   

6.
Potato microsomal membranes were solubilized by 0.5% sodium cholate solutions. Separation of lipids from proteins was realized by two successive gel filtrations on two different Sephadex columns. Lipid-free microsomal proteins maintained a high NADH-ferricyanide reductase activity but had a lowered (20%) NADH-cytochrome c reductase activity. The latter activity was strongly stimulated when lipid-free proteins were integrated, by sonication, into phosphatidylserine or phosphatidylinositol liposomes. Some stimulation was obtained also with phosphatidylcholine-lysophosphatidylcholine (7:3) mixtures. Other phospholipids were far less active or even inhibitory. Acidic phospholipids stimulate NADH-cytochrome c reductase activity by increasing noticeably the apparent affinities of enzymatic proteins for NADH or cytochrome c.  相似文献   

7.
A rat liver nuclear envelope fraction isolated essentially by the technique of Monneron et al. (J. Cell Biol. 55, 104–125 (1972)) is characterized by high levels of glucose-6-phosphatase and 5′-nucleotidase. A broadly specific nucleoside triphosphatase activity is present. Cytochromes b5 and P-450 as well as NADPH- and NADH-cytochrome c reductase activities are present but at lower levels than found in microsomes. Cytochrome c oxidase activity is low. RNA polymerase activity is absent from the nuclear envelope fraction. Cytochemistry shows that glucose-6-phosphatase activity is strong and restricted to the nuclear envelope of nuclei. 5′-Nucleotidase shows weak reaction deposit in whole nuclei but in contrast gives clear reaction deposit in isolated nuclear envelopes. Cytochemical reaction deposit due to nucleoside trisphosphatase activity is not restricted to the nuclear envelope but is found to a larger extent within the nucleus.  相似文献   

8.
Preparations of rat-liver mitochondria catalyze the oxidation of exogenous NADH by added cytochrome c or ferricyanide by a reaction that is insensitive to the respiratory chain inhibitors, antimycin A, amytal, and rotenone, and is not coupled to phosphorylation. Experiments with tritiated NADH are described which demonstrate that this "external" pathway of NADH oxidation resembles stereochemically the NADH-cytochrome c reductase system of liver microsomes, and differs from the respiratory chain-linked NADH dehydrogenase. Enzyme distributation data are presented which substantiate the conclusion that microsomal contamination cannot account for the rotenone-insensitive NADH-cytochrome c reductase activity observed with the mitochondria. A procedure is developed, based on swelling and shrinking of the mitochondria followed by sonication and density gradient centrifugation, which permits the separation of two particulate subfractions, one containing the bulk of the respiratory chain components, and the other the bulk of the rotenone-insensitive NADH-cytochrome c reductase system. Morphological evidence supports the conclusion that the former subfraction consists of mitochondria devoid of outer membrane, and that the latter represents derivatives of the outer membrane. The data indicate that the electron-transport system associated with the mitochondrial outer membrane involves catalytic components similar to, or identical with, the microsomal NADH-cytochrome b5 reductase and cytochrome b5.  相似文献   

9.
Microsomes isolated from whole rat brain were found to contain cytochreme P-450 (0.025 to 0.051 nmoles/mg) and NADPH cytochrome c reductase activity (26.0 to 55.0 nmoles/mg/min). The oxidation of estradiol to a reactive metabolite that became covalently bound to rat brain microsomal protein was inhibited 63% by an atmosphere of CO:O2 (9:1), indicating the involvement of a cytochrome P-450 oxygenase. In contrast, this atmosphere had no effect on the binding of either the catechol estrogen, 2-hydroxyestradiol, or several catecholamines to rat brain microsomes. An antibody prepared against NADPH cytochrome c reductase was found to decrease significantly both the formation of 2-hydroxyestradiol from estradiol by rat brain microsomes and the covalent binding of the catechol estrogen and catecholamines to rat brain microsomal protein.  相似文献   

10.
S.W. Golf  V. Graef 《Steroids》1982,40(1):1-9
A time dependent irreversible loss of rat liver microsomal NADH-5 α-reductase activity is caused by incubation of microsomes with the nucleoside 5'-p-fluorosulfonylbenzoyladenosine (FSA). The decrease of activity is dependent on FSA concentration and shows first order kinetics. Presence of NADH partially stabilizes the NADH-5α-reductase. Thioglycerol present before incubation prevents loss of activity, and stops decrease of activity when added during incubation. NADPH-5α-reductase (E.C. 1.3.1.4) and NADPH-cytochrome c reductase (E.C. 1.6.2.4) are not influenced while NADH-cytochrome c reductase (E.C. 1.6.99.3) is inhibited by FSA. Evidently FSA causes inactivation of the enzymes by binding to the NADH-binding site. Affinity labeling by FSA thus clearly distinguishes between NADH- and NADPH-dependent 5 α-reductases from rat liver microsomes.  相似文献   

11.
Cytochrome P-450 from rat lung microsomes has been solubilized and purified 8-fold by using affinity chromatography on an ω-amino-n-octyl derivative of Sepharose 4B. The purified fraction was free of cytochrome b5 and NADPH-cytochrome c reductase and showed spectral characteristics similar to those of lung microsomal cytochrome P-450. When combined with NADPH-cytochrome c reductase partially purified from liver microsomes, the cytochrome P-450 fraction supported the hydroxylation of benzo (α)pyrene and the activity was proportional to the content of the hemoprotein. No absolute requirement for phosphatidylcholine was found.  相似文献   

12.
Cytochrome P-450 was purified from liver microsomes of phenobarbital-pretreated rabbits to a specific content of 16 to 17 nmoles per mg of protein with a yield of about 10 %. The purified cytochrome yielded only a single protein band on sodium dodecylsulfate-urea-polyacrylamide gel electrophoresis, and an apparent molecular weight of about 45,000 was estimated for the protein. The preparation was free of cytochrome b5, NADH-cytochrome b5 reductase, and NADPH-cytochrome c reductase activities. Aniline hydroxylase and ethylmorphine N-demethylase activities could be reconstituted upon mixing the purified cytochrome with an NADPH-cytochrome c reductase preparation (purified by a detergent method) and phosphatidyl choline.  相似文献   

13.
An antibody prepared against purified rat liver NADPH-cytochrome c reductase inhibited both the pulmonary and hepatic microsomal covalent binding of 4-ipomeanol as well as the respective NADPH-cytochrome c reductase activities, findings which are consistent with previous studies which indicated the participation of cytochrome P450 in the metabolic activation of the toxin. An antibody prepared against purified rat liver cytochrome b5, which strongly inhibited both the rat hepatic and pulmonary NADH-dependent cytochrome c reductases, and was inactive against the respective NADPH-dependent cytochrome c reductases, had little effect on metabolic activation of 4-ipomeanol by hepatic microsomes, but strongly inhibited both the NADH-supported and the NADPH-supported pulmonary microsomal metabolism and covalent binding of the compound. These results suggest that metabolic activation of 4-ipomeanol involves a two-electron transfer in which transfer of the second electron via cytochrome b5 is rate-limiting in lung microsomes.  相似文献   

14.
Antimycin, when added to resolved succinate-cytochrome c reductase complex in amounts sufficient to partially inhibit succinate-cytochrome c reductase activity, causes a decrease in inhibition of the residual succinate-cytochrome c reductase activity by 2-thenoyltrifluoroacetone. Antimycin has no effect on the inhibition of succinate-ubiquinone reductase activity by 2-thenoyltrifluoroacetone. We propose that antimycin increases the steady state concentration of ubisemiquinone in the reductase complex, and that 2-thenoyltrifluoracetone is competitive with ubisemiquinone.  相似文献   

15.
Microsomal NADH-cytochrome b5 reductase has been purified from bovine liver by an improved procedure which employs affinity chromatography on ADP-agarose in combination with anion exchange chromatography. The reductase was extracted from a 105,000 × g microsomal pellet with Triton X-100. The overall purification from isolated microsomes was 98-fold and the yield was 10%. The preparation was nearly homogeneous on SDS-PAGE. This procedure requires less time and effort than previously described procedures. Partially purified cytochrome b5 is also obtained.  相似文献   

16.
The temperature dependence of drug monooxygenation in phenobarbital-induced rat liver microsomes has been investigated. With 7-ethoxycoumarin as a substrate the activity of the microsomes could be measured down to 0°C by the increase in fluorescence of the dealkylated reaction product 7-hydroxycoumarin (umbelliferone).Arrhenius plots of the activities at various temperatures between 0°C and 45°C showed a break in the activation energy around 20°C.Addition of deoxycholate or high concentrations of glycerol, known to solubilize membrane-bound enzymes, abolished the break of the activation energy. Cholesterol, incorporated into the microsomal membrane in amounts equimolar to the microsomal phospholipid content led to a decrease of the activation energy at low temperatures and to an increase at higher temperatures, resulting in a loss of the break.The activity of microsomal NADPH-cytochrome c reductase with the water-soluble electron acceptor dichlorophenolindophenol showed no discontinuity in the Arrhenius plot. In addition the cumene hydroperoxide-mediated and cytochrome P-450-dependent O-dealkylation of 7-ethoxycoumarin proceeded without a break in the activation energy.It is concluded that phospholipid phase transitions affect the electron transfer from the reductase to cytochrome P-450.  相似文献   

17.
ATP promotes 45Ca uptake by the microsomal fraction from the longitudinal smooth muscle of guinea-pig ileum and this uptake is stimulated by oxalate. As the microsomal fraction is made up of various subcellular entities, we examined the localization of the Ca2+-transport activity by density gradient centrifugation, taking advantage of the selective effect of digitonin (at low concentration) on the density of plasmalemmal elements. When the 45Ca-uptake activity was measured in the absence of oxalate, its behavior in subfractionation experiments closely paralleled that of the plasmalemmal marker 5′-nucleotidase. In contrast, the additional Ca2+-transport activity elicited by oxalate behaved like NADH-cytochrome c reductase, a putative endoplasmic reticulum marker. The endoplasmic reticulum vesicles constituted only a small part of the membranes in the microsomal fraction, which explains that their Ca2+-storage capacity was not detectable in the absence of Ca2+-trapping agent. Low digitonin concentrations selectively increased the Ca2+ permeability of the plasmalemmal vesicles. The two Ca2+-transport activities were further differentiated by their distinct sensitivities to K+, vanadate and calmodulin. In this respect, the oxalte-insensitive and oxalate-stimulated Ca2+-transport systems resembled, respectively, the sarcolemmal and sarcoplasmic reticulum Ca2+ pumps in cardiac and skeletal muscle, in accordance with the subcellular locations established by density gradient centrifugation.  相似文献   

18.
Antibody against NADPH-cytochrome c reductase inhibited the NADPH-dependent omega and penultimate hydroxylation of lauric acid by microsomes from kidney cortex and liver of rats, but did not inhibit the NADH-dependent hydroxylation of lauric acid. By contrast, an antibody against cytochrome b5 inhibited both the NADH and the NADPH-dependent hydroxylation of lauric acid by these microsomal preparations. Although the antibody against cytochrome b5 did not inhibit NADPH-oxidation, this lack of inhibition could not be attributed to the presence of an endogenous substrate or an uncoupling inhibitor in the antibody preparation. These findings suggest that NADPH-cytochrome c reductase mediates the NADPH-dependent hydroxylation of lauric acid but not its NADH-dependent hydroxylation, whereas cytochrome b5 plays a role in both the NADPH and the NADH-dependent hydroxylation of the fatty acid.  相似文献   

19.
Binding of increasing amounts of detergent-purified cytochrome b5 to rabbit liver microsomes produces a progressive inhibition of NADPH-cytochrome P-450 reductase activity which is accompanied by a similar inhibition of NADPH-supported benzphetamine demethylation. In contrast, NADH-cytochrome P-450 reductase activity in the enriched microsomes is markedly enhanced and this stimulation is accompanied by a similar increase in NADH-peroxidase activity, suggesting that cytochrome b5 in these two reactions functions as an intermediate electron carrier to cytochrome P-450.  相似文献   

20.
In the presence of hepatic microsomes, vinyl chloride produces a ‘type I’ difference spectrum and stimulates carbon monoxide inhibitable NADPH consumption. A comparison of the binding and Michaelis parameters for the interaction of vinyl chloride with uninduced, phenobarbital and 3-methylcholanthrene induced microsomes indicates that the binding and metabolism of vinyl chloride is catalyzed by more than one type P-450 cytochrome, but predominantly by cytochrome P-450. Metabolites of vinyl chloride from this enzyme system decrease the levels of cytochrome P-450 and microsomal heme, but not cytochrome b5 or NADPH-cytochrome c reductase in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号