首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Antibodies against the subunits of the dihydropyridine-sensitive L-type calcium channel of skeletal muscle were tested for their ability to immunoprecipitate the high affinity (Kd = 0.13 nM) 125I-omega-conotoxin GVIA receptor from rabbit brain membranes. Monoclonal antibody VD2(1) against the beta subunit of the dihydropyridine receptor from skeletal muscle specifically immunoprecipitated up to 86% of the 125I-omega-conotoxin receptor solubilized from brain membranes whereas specific antibodies against the alpha 1, alpha 2, and gamma subunits did not precipitate the brain receptor. Purified skeletal muscle dihydropyridine receptor inhibited the immunoprecipitation of the brain omega-conotoxin receptor by monoclonal antibody VD2(1). The dihydropyridine receptor from rabbit brain membranes was also precipitated by monoclonal antibody VD2(1). However, neither the neuronal ryanodine receptor nor the sodium channel was precipitated by monoclonal antibody VD2(1). The omega-conotoxin receptor immunoprecipitated by monoclonal antibody VD2(1) showed high affinity 125I-omega-conotoxin binding, which was inhibited by unlabeled omega-contoxin and by CaCl2 but not by nitrendipine or by diltiazem. An antibody against the beta subunit of the skeletal muscle dihydropyridine receptor stained 58- and 78-kDa proteins on immunoblot of the omega-conotoxin receptor, partially purified through heparin-agarose chromatography and VD2(1)-Sepharose chromatography. These results suggest that the brain omega-conotoxin-sensitive calcium channel contains a component homologous to the beta subunit of the dihydropyridine-sensitive calcium channel of skeletal muscle and brain.  相似文献   

2.
Up to 80% of the dihydropyridine receptor is solubilized from transverse tubules of rabbit skeletal muscle by 3-[(3-cholamidopropyl)-dimethylammonium]-2-oxy-1-propane sulfonate (CHAPSO). The DHP receptor is an oligomeric complex made up of two subunits with molecular masses of 160 and 53 kD as shown by DHP-Sepharose affinity chromatography and SDS gel electrophoresis of specifically eluted proteins. The reduction of disulfide bridges of the 160 kD subunit is accompanied by a decrease in its apparent molecular mass up to 125 kD. A method is proposed for preparative isolation of the DHP receptor which is based on ion-exchange chromatography and WGA-Sepharose chromatography. Individual subunits of DHP receptor were isolated by Sepharose 4B gel filtration in SDS; their amino acid composition was determined. Both the 160 and 53 kD subunits are N-glycosylated, and the oligosaccharide portions make up to 7.5% and 6.6%, respectively.  相似文献   

3.
We have purified putative L-type Ca2+ channels from chick heart by virtue of their associated high affinity receptors for the Ca2+ channel effectors, dihydropyridines (DHPs), and phenylalkylamines (PAAs). A peptide of 185,000-190,000 daltons was found to comigrate with the peak of DHP binding activity during purification through two successive cycles of lectin affinity chromatography and sucrose density gradient centrifugation. A previously described peptide of 140,000 daltons, whose Mr was increased to approximately 180,000 under nonreducing conditions, also copurified with the 185-kDa peptide and dihydropyridine binding activity. When cardiac membranes were photolabeled with either the dihydropyridine [3H]azidopine or the PAA [3H]azidopamil prior to purification, a single, specifically labeled component of 185,000-190,000 daltons was present in the purified fractions. The properties of this 185-kDa cardiac DHP/PAA receptor were compared to the smaller 165-kDa DHP/PAA receptor previously purified from skeletal muscle. Antibodies raised against the 165-kDa skeletal muscle DHP/PAA receptor reacted with both rabbit and chick skeletal muscle receptors, but only poorly recognized, if at all, the cardiac 185-190 kDa component. The 185-kDa peptide present in the purified fractions obtained from cardiac muscle did not undergo substantial phosphorylation by cAMP-dependent protein kinase, while the purified 165-kDa peptide from rabbit and chick skeletal muscle was a good substrate for this kinase. The results show that the DHP and PAA receptors in cardiac muscle are contained in a 185-190-kDa peptide that is significantly larger than, and structurally and immunologically different from, it skeletal muscle counterpart.  相似文献   

4.
Z Elazar  G Siegel    S Fuchs 《The EMBO journal》1989,8(8):2353-2357
The solubilized D2-dopamine receptor from bovine striatum exhibits high and low affinity states for dopaminergic agonists. Guanine nucleotides and pertussis toxin convert the solubilized receptor from a high affinity state to a low one. A D2-receptor preparation partially purified by affinity chromatography on a haloperidol adsorbent, exhibited agonist-stimulated GTPase activity. [32P]ADP-ribosylation by pertussis toxin of this receptor preparation resulted in the specific labeling of two protein bands corresponding to mol. wts of 39 and 41 kd, in SDS-PAGE. Association of these G-proteins with the receptor was specifically inhibited by Gpp(NH)p. Immunoblot analysis of these G-proteins indicated that the 41- and 39-kd protein bands are analogous to brain Gi and Go respectively. These experiments demonstrate that two distinct pertussis toxin-sensitive G-proteins are functionally associated with bovine striatum D2-dopamine receptor.  相似文献   

5.
Lectin affinity chromatography was used to demonstrate that digitonin-solubilized opiate receptors contain a carbohydrate moiety. Receptors solubilized from toad, rat, chicken, bovine and human brains were retained on columns of wheat germ agglutinin (WGA)-agarose and eluted specifically with N-acetylglucosamine. The fraction retained and subsequently eluted ranged from 40–60% of the applied receptors. The eluted receptor was enriched approx. 30-fold. Evidence is presented which shows that the site of lectin interaction is functionally independent of the opiate binding site.  相似文献   

6.
The omega-conotoxin receptor in brain membranes contains components of Mr approximately equal to 310,000, approximately equal to 230,000, and 37,000 as identified by photoaffinity labeling. The toxin specifically bound to two sites with apparent dissociation constants (Kd) of approximately 3 pM and 3.5 nM under the conditions employed. There was about 8 times more of the low affinity site than the high affinity site. Binding was not affected by dihydropyridines or verapamil. However, diltiazem stereospecifically inhibited the binding to the high affinity site. Dissociation of the toxin from the membranes was very slow and only partial. Among the detergents tested, digitonin solubilized the highest toxin-binding activity. The digitonin extract contained only a single class of binding sites with an apparent Kd of about 0.46 nM. Probably only the high affinity binding site was recovered in active form in digitonin extract. The properties of the toxin binding to digitonin extract were in good agreement with those of the binding to the high affinity site in the original membranes. Photoaffinity labeling of the digitonin extract indicated that the solubilized toxin receptor contained the two large components (Mr congruent 310,000 and approximately equal to 230,000) observed in the membranes.  相似文献   

7.
A microsomal fraction of rabbit skeletal muscle was sed for the isolation of a dihydropyridine (DHP) receptor, a putative potential-dependent calcium channel. The receptor purification was followed by the binding of 3H-labeled riodipine derivative which possesses a high affinity for digitonin-solubilized DHP receptor. The DHP-Sepharose affinity chromatography of an enriched receptor fraction allowed to isolate a receptor, 60-70% homogeneous on the basis of DHP-binding activity. SDS gel electrophoresis showed that the purified receptor is composed of two subunits with molecular masses of 160 and 53 kD. The large subunit changes its electrophoretic mobility after the reduction of disulfide bonds.  相似文献   

8.
A convenient means was devised for the purification of milligram quantities of a soluble form of the mannose 6-phosphate/insulin-like growth factor II receptor (Man-6-P/IGF II receptor). The receptor was purified to near homogeneity from bovine serum by affinity chromatography on agarose-pentamannosephosphate in the absence of detergent. Approximately 2.5 mg of receptor were obtained from 500 ml of fetal calf serum. The concentration of receptor in serum decreased sharply with development. Fetal calf serum Man-6-P/IGF II receptor was immunologically similar to detergent-solubilized, membrane-bound Man-6-P/IGF II receptor from bovine liver. N-Terminal sequence analysis revealed that the purified serum receptor, but not the solubilized, membrane-associated receptor, contains stoichiometric amounts of bound IGF II. The results of sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and gel chromatography studies suggest that the fetal calf serum receptor (in contrast to the solubilized, membrane-bound bovine testis receptor) does not aggregate. The affinity of the fetal calf serum receptor for bovine testis beta-galactosidase approximated one-half that observed for solubilized, membrane-bound bovine testis receptor.  相似文献   

9.
D B Gray  J L Brusés  G R Pilar 《Neuron》1992,8(4):715-724
The pharmacological specificity of Ca2+ channel-secretion coupling in acetylcholine (ACh) and somatostatin (SOM) release was studied in the chick eye choroid neuromuscular junctions and in dissociated ciliary ganglion (CG) neurons. ACh secretion changes in development from stage (St) 40, when release is dihydropyridine (DHP) and partially omega-conotoxin (omega-CgTX) sensitive, to posthatch, when release is insensitive to DHPs but sensitive to omega-CgTX. St 40 CG neurons cultured with striated muscle have release properties similar to those of St 40 iris and choroid but different from those of St 34 neurons, which are neither DHP nor omega-CgTX sensitive. SOM (also coreleased from posthatch choroid terminals) can inhibit ACh release in both posthatch and St 40 choroids, suggesting that the SOM receptor interacts with both DHP-sensitive and -insensitive channels.  相似文献   

10.
Monoiodotyrosine ([125I]ChTX) binds with high affinity to a single class of receptors present in bovine aortic smooth muscle sarcolemmal membranes that are functionally associated with the high-conductance Ca(2+)-activated K+ channel [maxi-K channel; Vázquez, J., et al. (1989) J. Biol. Chem. 265, 20902-20909]. Cross-linking experiments carried out with this preparation in the presence of [125I]ChTX and disuccinimidyl suberate indicate specific incorporation of radioactivity into a protein of Mr 35,000. The smooth muscle ChTX receptor can be solubilized in active form in the presence of selected detergents. Treatment of membranes with digitonin releases about 50% of the ChTX binding sites. The solubilized receptor retains the same biochemical and pharmacological properties that are characteristic of toxin interaction with membrane-bound receptors. The solubilized receptor binds specifically to wheat germ agglutinin-Sepharose resin, suggesting that it is a glycoprotein. Functional ChTX binding sites can also be solubilized in 3-[(3-cholamidopropyl)dimethylamino]-1-propanesulfonate (CHAPS). Sucrose density gradient centrifugation of either digitonin or CHAPS extracts indicates that the ChTX receptor has a high apparent sedimentation coefficient (s20,w = 23 and 18 S, respectively). Cross-linking experiments indicate that the appearance of the 35-kDa membrane protein correlates with ChTX binding activity after both wheat germ agglutinin-Sepharose and sucrose density gradient centrifugation steps. Given the high apparent sedimentation coefficient of the ChTX receptor, the 35-kDa membrane protein may be a subunit of a higher molecular weight complex which forms the maxi-K channel in smooth muscle sarcolemma.  相似文献   

11.
The muscarinic acetylcholine receptor was solubilized, in a sensitive form for GTP and Na+, from bovine cerebral cortex using a zwitterionic detergent 3-[(3-cholamidopropyl)-dimethylammonio]-1-propane sulfonate. The solubilized muscarinic receptor displayed characteristics as follows: (1) high affinity to nanomolar concentration of Z-[3H]quinuclidinyl benzilate; (2) muscarinic agonists and antagonists had similar inhibitory potencies as on the membrane-bound receptor; (3) without Na+, GTP did not significantly alter the binding affinity of muscarinic agonists and antagonists; (4) GTP in the presence of Na+, selectively decreased the affinity of muscarinic agonists, carbamylcholine and oxotremoline, but not the antagonist binding affinity; (5) Na+ in the absence or presence of GTP, reduced both muscarinic agonist and antagonist affinities.  相似文献   

12.
The solubilization of vasopressin receptors from plasma membranes of bovine kidney and rat liver by different detergents was investigated. A prerequisite for the extraction of vasopressin receptors retaining binding affinity for their ligand was the stabilization of the receptors by the prior formation of the membrane-bound hormone-receptor complexes. The vasopressin-receptor complexes from both kidney and liver membranes were solubilized in a high yield with dodecyl-beta-D-maltoside and 3-laurylamido-N,N'-dimethylpropylaminoxide. Several other nonionic detergents including octyl-beta-D-glucopyranoside effectively extracted the hepatic vasopressin receptor. For the hormone-receptor complex solubilized from bovine kidney with dodecyl-beta-D-maltoside, a Stokes' radius of 5.8 nm was determined.  相似文献   

13.
The dihydropyridine (DHP) receptor from rabbit skeletal muscle has been characterized by affinity labeling and purification. Two procedures were used for purification: one that was a procedure modified from that of Curtis and Catterall (1984) and one that employed an anti alpha 1 monoclonal antibody (Mab) affinity column. In addition, both digitonin and CHAPS solubilizations were utilized with each purification technique. The major findings are as follows: (1) In contrast to the behavior in digitonin, neither the 52K (beta) nor the 140K (alpha 2) polypeptide quantitatively copurifies with the 170K (alpha 1) polypeptide when the purification is carried out in CHAPS. This has been shown by use of both wheat germ and monoclonal antibody columns. The digitonin-extracted receptor complex bound to the Mab affinity column loses alpha 2 and beta when the digitonin is replaced by CHAPS, and when the complex is bound to a WGA column, a CHAPS wash causes dissociation of alpha 1, beta, and gamma from alpha 2. Loss of binding of dihydropyridines occurs with the CHAPS wash but can be partially restored by the addition of the CHAPS wash to the material eluted from the column with N-acetylglucosamine. (2) Although both detergents solubilized greater than 80% of the polypeptides associated with the DHP binding site, the ability of these proteins to bind dihydropyridines is reduced more by CHAPS treatment than by digitonin treatment, raising the possibility that subunit interactions contribute to high-affinity binding. Alternatively, CHAPS may remove tightly bound lipids necessary for binding or cause irreversible denaturation of the binding site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
A ligand affinity matrix has been developed and utilized to purify the dopamine D2 receptor approx. 2100 fold from bovine striatal membranes. 3-[2-Aminoethyl]-8-[3-(4-fluorobenzoyl)propyl]-4-oxo-1-phenyl-1,3,8- triazaspiro[4.5]decan-4-one (AES) was synthesized and used to prepare the affinity matrix by coupling to epoxy-activated Sepharose 6B (AES-Sepharose). AES (Ki approximately 1.7 nM) is similar in potency to the parent compound, spiperone (Ki approximately 0.8 nM), in competing for [3H]spiperone-binding activity. AES has no significant potency in competing for the dopamine D1 receptor as assessed by competition for [3H]SCH23390 binding (Ki greater than 1 microM). Covalent photoaffinity labeling of the dopamine D2 receptor in bovine striatal membranes with N-(p-azido-m-[125I]iodophenethyl)spiperone [( 125I]N3-NAPS) was prevented by AES at nanomolar concentrations. The dopamine D2 receptor was solubilized from bovine striatal membranes using 0.25% cholate in the presence of high ionic strength, followed by precipitation and subsequent treatment with 0.5% digitonin. Nearly 100% of the [3H]spiperone-binding activity in the cholate-digitonin solubilized preparation was absorbed at a receptor-to-resin ratio of 2:1 (v/v). Dopamine D2 receptor was eluted from the affinity resin using a competing dopaminergic antagonist molecule, haloperidol. Recovery of dopamine D2 receptor activity from the affinity matrix was approx. 9% of the activity adsorbed to the resin. The [3H]spiperone-binding activity in AES-Sepharose affinity purified preparations is saturable and of high affinity (0.2 nM). Affinity-purified preparations maintain the ligand-binding characteristics of a dopamine D2 receptor as assessed by agonist and antagonist competition for [3H]spiperone binding.  相似文献   

15.
A high affinity [3H]ryanodine receptor has been solubilized from rabbit brain membranes and biochemically characterized. [3H]Ryanodine binding to rabbit brain membranes is specific and saturable, with a Kd of 1.3 nM. [3H]Ryanodine binding is enriched in membranes from the hippocampus but is significantly lower in membranes from the brain stem and spinal cord. Approximately 60% of [3H]ryanodine-labeled receptor is solubilized from brain membranes using 2.5% CHAPS and 10 mg/ml phosphatidylcholine containing 1 M NaCl. The solubilized brain [3H]ryanodine receptor sediments through sucrose gradients like the skeletal receptor as a large (approximately 30 S) complex. Solubilized receptor is specifically immunoprecipitated by sheep polyclonal antibodies against purified skeletal muscle ryanodine receptor coupled to protein A-Sepharose. [3H]Ryanodine-labeled receptor binds to heparin-agarose, and a protein of approximately 400,000 Da, which is cross-reactive with two polyclonal antibodies raised against the skeletal muscle ryanodine receptor, elutes from the column and is enriched in peak [3H]ryanodine binding fractions. These results suggest that the approximately 400,000-Da protein is the brain form of the high affinity ryanodine receptor and that it shares several properties with the skeletal ryanodine receptor including a large oligomeric structure composed of approximately 400,000-Da subunits.  相似文献   

16.
Affinity chromatography of the anterior pituitary D2-dopamine receptor   总被引:1,自引:0,他引:1  
The D2-dopamine receptor from bovine anterior pituitary has been solubilized with digitonin and purified approximately 1000-fold by affinity chromatography on a new affinity support. This support consists of a (carboxymethylene)oximino derivative of the D2-selective antagonist spiperone (CMOS) covalently attached to Sepharose 4B through a long side chain. The interaction of the solubilized receptor activity with the affinity gel was biospecific. Dopaminergic drugs blocked adsorption of solubilized receptor activity to the CMOS-Sepharose with the appropriate D2-dopaminergic potency and stereoselectivity. For agonists, (-)-N-n-propylnorapomorphine greater than 2-amino-6,7-dihydroxytetrahydronaphthalene approximately equal to apomorphine greater than dopamine, whereas for antagonists (+)-butaclamol much greater than (-)-butaclamol. The same D2-dopaminergic specificity was observed for elution of receptor activity from the gel. To observe eluted receptor binding activity, reconstitution of the eluted material into phospholipid vesicles was necessary. Typically, 70-80% of the solubilized receptor was adsorbed by CMOS-Sepharose, and 40-50% of the adsorbed activity could be recovered after reconstitution of the eluted material. The overall recovery of D2-receptor activity from bovine anterior pituitary membranes was 12-15% with specific binding activity of approximately 150 pmol/mg. The reconstituted affinity-purified receptor bound ligands with the expected D2-dopaminergic specificity, stereoselectivity, and rank order of potency.  相似文献   

17.
An approximate 140-fold purification of the A1 adenosine receptor of bovine cerebral cortex has been obtained via affinity chromatography. The affinity column consists of Affi-Gel 10 coupled through an amide linkage to XAC, a high-affinity A1 adenosine receptor antagonist. As assessed by [3H]XAC binding, bovine brain membranes solubilized with the detergent CHAPS had a specific binding activity of 1.1 pmol/mg protein. Interaction of solubilized A1 adenosine receptors with the XAC-Affi-Gel was biospecific and 30% of the receptor activity was bound by the gel. Demonstration of [3H]XAC binding in the material eluted from the column with R-PIA required insertion of receptor into phospholipid vesicles. The specific activity of the affinity column purified receptor was 146 +/- 22 pmol/mg protein with typically 5-15% of the bound receptor recovered. The purified receptor displayed high-affinity antagonist binding and bound agonists with the potency order expected of the bovine brain A1 adenosine receptor: R-PIA greater than S-PIA greater than NECA. In purified preparations, the photoaffinity probe [125I]PAPAXAC-SANPAH specifically labelled a protein of molecular mass 38,000 which has previously been shown to be the A1 adenosine receptor binding subunit.  相似文献   

18.
We have investigated a) the effects of the dihydropyridines (DHPs) nifedipine and nimodipine on depolarization-induced (T-tubule-mediated) Ca2+ release in the vesicles consisting of the complex of the T-tubule and SR, and b) the binding of [3H]nimodipine to these vesicles. These DHPs inhibited the slow but not the fast phase of depolarization-induced release, both of which are mediated via the T-tubule. The DHPs have no effect on caffeine-induced release in which T-tubules are not involved. There are two classes of DHP binding sites: one, with high affinity and small capacity, and another, exhibiting low affinity and a much larger capacity. The inhibition paralleled the low affinity binding of DHP with no correlation with the high affinity binding. These results suggest that the low affinity DHP binding sites located probably in the DHP receptor, rather than the high affinity DHP binding site, are responsible for the inhibition of e-c coupling.  相似文献   

19.
牛肾上腺皮质LDL受体经Triton X-100增溶,DEAE_(32)离子交换柱和LpB Sepharose亲和柱层析,在SDS-PAGE中有三条区带,分别在原点;Mr 160kD;Mr125kD处。进一步用8%SDS-PAGE纯化三个区带的蛋白质分别免疫新西兰大白兔所得的抗体,应用免疫印迹和ECL非同位素标记法可对牛肾上腺皮质和人皮肤纤维细胞膜上的LDL受体进行测定。  相似文献   

20.
Biomechanical unloading of the rat soleus by hindlimb unweighting is known to induce atrophy and a slow- to fast-twitch transition of skeletal muscle contractile properties, particularly in slow-twitch muscles such as the soleus. The purpose of this study was to determine whether the expression of the dihydropyridine (DHP) receptor gene is upregulated in unloaded slow-twitch soleus muscles. A rat DHP receptor cDNA was isolated by screening a random-primed cDNA lambda gt10 library from denervated rat skeletal muscle with oligonucleotide probes complementary to the coding region of the rabbit DHP receptor cDNA. Muscle mass and DHP receptor mRNA expression were assessed 1, 4, 7, 14, and 28 days after hindlimb unweighting in rats by tail suspension. Isometric twitch contraction times of soleus muscles were measured at 28 days of unweighting. Northern blot analysis showed that tissue distribution of DHP receptor mRNA was specific for skeletal muscle and expression was 200% greater in control fast-twitch extensor digitorum longus (EDL) than in control soleus muscles. A significant stimulation (80%) in receptor message of the soleus was induced as early as 24 h of unloading without changes in muscle mass. Unloading for 28 days induced marked atrophy (control = 133 +/- 3 vs. unweighted = 62.4 +/- 1.8 mg), and expression of the DHP receptor mRNA in the soleus was indistinguishable from levels normally expressed in EDL muscles. These changes in mRNA expression are in the same direction as the 37% reduction in time to peak tension and 28% decrease in half-relaxation time 28 days after unweighting. Our results suggest that muscle loading necessary for weight support modulates the expression of the DHP receptor gene in the soleus muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号