首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gliding motility of Mycoplasma sp. nov. strain 163K.   总被引:2,自引:1,他引:1       下载免费PDF全文
The gliding movements of Mycoplasma sp. nov. strain 163K cells were characterized by photomicrographic and microcinematographic studies. The capability of gliding proved to be a very stable property of strain 163K. Cells were continuously moving, without interruption by resting periods, on glass as well as on plastic surfaces covered with liquid medium. Gliding cells always moved in the direction of their headlike structure; their course did not indicate any preference for a certain direction. Under appropriate growth conditions, cells showed linear and circular movements. Under inadequate conditions, cells glided in narrow circles or entered into zigzag trembling and tumbling movements. Organisms glided as single cells, in pairs, and in multicellular configurations. Movement patterns and gliding velocity were significantly affected by the cultivation and preparation time, the medium viscosity, and the storage and observation temperature. The number of passages on artificial media and the composition of the media used did not have a striking influence on gliding motility, but movements were effectively inhibited by homologous antiserum. The data obtained suggest that at least some of the structures associated with gliding are heat sensitive and located on the cell surface, that the gliding mechanism requires an intact energy metabolism, and, finally, that gliding motility is an extremely stable genetic property of Mycoplasma sp. nov. strain 163K.  相似文献   

2.
Mycoplasma mobile glides on surfaces at up to 7 microm/s by an unknown mechanism. We studied the energetics that power gliding by using a novel, growth medium-free system. We found that cells could glide in defined media if the glass substrate is preconditioned by exposure to horse serum. The active component that potentiates gliding is sensitive to proteinase K treatment. We used the defined medium system to test the effect of various inhibitors, ionophores, and poisons on motility of M. mobile. Valinomycin, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), N,N'-dicyclohexylcarbodiimide, phenamil, amiloride, rifampin, and puromycin had no short-term effects on gliding. We also confirmed that we were able to modulate the membrane potential with valinomycin and FCCP by using a potential-sensitive dye. Shifting the pH likewise had no effect on motility. These results rule out the use of conventional ion motive forces to power gliding. Arsenate had a dramatic inhibitory effect on gliding, and both the speed and the fraction of cells moving tracked ATP levels. Sodium orthovanadate had a slight but significant inhibitory effect on gliding. Taken together, these results suggest that the motor system of M. mobile is likely an ATPase or is directly coupled to an ATPase.  相似文献   

3.
Myxococcus xanthus cells move on a solid surface by gliding motility. Several genes required for gliding motility have been identified, including those of the A- and S-motility systems as well as the mgl and frz genes. However, the cellular defects in gliding movement in many of these mutants were unknown. We conducted quantitative, high-resolution single-cell motility assays and found that mutants defective in mglAB or in cglB, an A-motility gene, reversed the direction of gliding at frequencies which were more than 1 order of magnitude higher than that of wild type cells (2.9 min-1 for DeltamglAB mutants and 2.7 min-1 for cglB mutants, compared to 0.17 min-1 for wild-type cells). The average gliding speed of DeltamglAB mutant cells was 40% of that of wild-type cells (on average 1.9 micrometers/min for DeltamglAB mutants, compared to 4.4 micrometers/min for wild-type cells). The mglA-dependent reversals and gliding speeds were dependent on the level of intracellular MglA protein: mglB mutant cells, which contain only 15 to 20% of the wild-type level of MglA protein, glided with an average reversal frequency of about 1.8 min-1 and an average speed of 2.6 micrometers/min. These values range between those exhibited by wild-type cells and by DeltamglAB mutant cells. Epistasis analysis of frz mutants, which are defective in aggregation and in single-cell reversals, showed that a frzD mutation, but not a frzE mutation, partially suppressed the mglA phenotype. In contrast to mgl mutants, cglB mutant cells were able to move with wild-type speeds only when in close proximity to each other. However, under those conditions, these mutant cells were found to glide less often with those speeds. By analyzing double mutants, the high reversing movements and gliding speeds of cglB cells were found to be strictly dependent on type IV pili, encoded by S-motility genes, whereas the high-reversal pattern of mglAB cells was only partially reduced by a pilR mutation. These results suggest that the MglA protein is required for both control of reversal frequency and gliding speed and that in the absence of A motility, type IV pilus-dependent cell movement includes reversals at high frequency. Furthermore, mglAB mutants behave as if they were severely defective in A motility but only partially defective in S motility.  相似文献   

4.
As an alternative to swimming through liquid medium by the coordinated bending activity of its two flagella, Chlamydomonas can exhibit whole cell gliding motility through the interaction of its flagellar surfaces with a solid substrate. The force transduction occurring at the flagellar surface can be visualized as the saltatory movements of polystyrene microspheres. Collectively, gliding motility and polystyrene microsphere movements are referred to as flagellar surface motility. The principal concanavalin A binding, surface-exposed glycoproteins of the Chlamydomonas reinhardtii flagellar surface are a pair of glycoproteins migrating with apparent molecular weight of 350 kDa. It has been hypothesized that these glycoproteins move within the plane of the flagellar membrane during the expression of flagellar surface motility. A novel mutant cell line of Chlamydomonas (designated L-23) that exhibits increased binding of concanavalin A to the flagellar surface has been utilized in order to restrict the mobility of the concanavalin A-binding flagellar glycoproteins. Under all conditions where the lateral mobility of the flagellar concanavalin A binding glycoproteins is restricted, the cells are unable to express whole cell gliding motility or polystyrene microsphere movements. Conversely, whenever cells can redistribute their concanavalin A binding glycoproteins in the plane of the flagellar membrane, they express flagellar surface motility. Since the 350 kDa glycoproteins are the major surface-exposed flagellar proteins, it is likely that most of the signal being followed using fluorescein isothiocyanate (FITC)-concanavalin A is attributable to these high molecular weight glycoproteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Gliding movements in Myxococcus xanthus.   总被引:2,自引:1,他引:1       下载免费PDF全文
Prokaryotic gliding motility is described as the movement of a cell on a solid surface in the direction of the cell's long axis, but its mechanics are unknown. To investigate the basis of gliding, movements of individual Myxococcus xanthus cells were monitored by employing a video microscopy method by which displacements as small as 0.03 micron could be detected and speeds as low as 1 micron/min could be resolved. Single cells were observed to glide with speeds varying between 1 and 20 microns/min. We found that speed variation was due to differences in distance between the moving cell and the nearest cell. Cells separated by less than one cell diameter (0.5 micron) moved with an average speed of 5.0 micron/min, whereas cells separated by more than 0.5 micron glided with an average speed of 3.8 microns/min. The power to glide was found to be carried separately at both ends of a cell.  相似文献   

6.
The twelve Mycoplasma species known to glide on solid surfaces all lack surface flagella or pili, and no genes homologous to known motility systems have been found in the five genomes sequenced to date. Recent studies on the fastest of these species, M. mobile, examined novel proteins involved in the gliding mechanism, binding targets on the solid surfaces, energy sources and mechanical characteristics of the movements. Accordingly, I propose a working model for the gliding mechanism, called the centipede (power stroke) model, in which the 'leg' proteins repeat a cycle of binding to and release from the solid surface, using energy from ATP. Another 'inchworm model' suggested from the structural studies of a human pathogen, M. pneumoniae, is also discussed.  相似文献   

7.
Cells of the gliding bacterium Flavobacterium johnsoniae move rapidly over surfaces. Transposon mutagenesis was used to identify sprE, which is involved in gliding. Mutations in sprE resulted in the formation of nonspreading colonies on agar. sprE mutant cells in wet mounts were almost completely deficient in attachment to and movement on glass, but a small percentage of cells exhibited slight movements, indicating that the motility machinery was not completely disrupted. SprE is a predicted lipoprotein with a tetratricopeptide repeat domain. SprE is similar in sequence to Porphyromonas gingivalis PorW, which is required for secretion of gingipain protease virulence factors. Disruption of F. johnsoniae sprE resulted in decreased extracellular chitinase activity and decreased secretion of the cell surface motility protein SprB. Reduced secretion of cell surface components of the gliding machinery, such as SprB, may account for the defects in gliding. Orthologs of sprE are found in many gliding and nongliding members of the phylum Bacteroidetes, suggesting that similar protein secretion systems are common among members of this large and diverse group of bacteria.  相似文献   

8.
In Myxococcus xanthus morphogenetic cell movements constitute the basis for the formation of spreading vegetative colonies and fruiting bodies in starving cells. M. xanthus cells move by gliding and gliding motility depends on two polarly localized engines, type IV pili pull cells forward, and slime extruding nozzle-like structures appear to push cells forward. The motility behaviour of cells provides evidence that the two engines are localized to opposite poles and that they undergo polarity switching. Several proteins involved in regulating polarity switching have been identified. The cell surface-associated C-signal induces the directed movement of cells into nascent fruiting bodies. Recently, the molecular nature of the C-signal molecule was elucidated and the motility parameters regulated by the C-signal were identified. From the effect of the C-signal on cell behaviour it appears that the C-signal inhibits polarity switching of the two motility engines. This establishes a connection between cell polarity, signalling by an intercellular signal and morphogenetic cell movements during fruiting body formation.  相似文献   

9.
The cyanobacterium Mastigocladus laminosus produces motile hormogonia which move by gliding motility. These hormogonia were characterized in terms of their morphology, state of differentiation of the cells, optimal temperature for production and motility, minimal nutritional requirements to sustain motility, liberation of the hormogonium from its parental trichome, average surface velocity, and maximal concentration of agar through which the hormogonium may move. We found that an average hormogonium consisted of 13.6 cells of only the narrow-cell-type morphology. Gliding motility and the production of hormogonia were maximal at 45 degrees C. Agarose plus 0.20 mM Ca2+ was sufficient to sustain gliding motility. Hormogonia were liberated from the parental trichome by formation and lysis of a necridium. The average surface velocity of a hormogonium was 1.7 micron/s with a maximal velocity of 3 micron/s. Hormogonia were motile through 7% agar. Motile hormogonia leave a record of their passage in the form of easily visible tracks on the surface of solid media. Three types of tracks were observed: straight, sinusoidal, and circular. Normal, forward-directed motion involves screwlike rotation that describes a right-handed helix. However, observations are presented which suggest that rotational motion is not a prerequisite for gliding motility in this cyanobacterium.  相似文献   

10.
In this study, we report differences in the observed gliding speed of microtubules dependent on the choice of bovine casein used as a surface passivator. We observed differences in both speed and support of microtubules in each of the assays. Whole casein, comprised of α(s1), α(s2), β, and κ casein, supported motility and averaged speeds of 966±7 nm/s. Alpha casein can be purchased as a combination of α(s1) and α(s2) and supported gliding motility and average speeds of 949±4 nm/s. Beta casein did not support motility very well and averaged speeds of 870±30 nm/s. Kappa casein supported motility very poorly and we were unable to obtain an average speed. Finally, we observed that mixing alpha, beta, and kappa casein with the proportions found in bovine whole casein supported motility and averaged speeds of 966±6 nm/s.  相似文献   

11.
Non-toxic concentrations of various substances were tested for their influence on the gliding motility of Mycoplasma mobile 163K. A significant inhibitory effect on motility was observed with agents acting on nucleic acid synthesis (mitomycin), protein synthesis (puromycin, chloramphenicol), energy metabolism (p-chloromercuribenzoate, iodoacetate) and with compounds reacting with the cytoplasmic membrane or contractile elements (albumin, cholesterol, EDTA, 2-propanol, procain, CaCl2, MgCl2, colchicin and KI). The surface-active compounds Triton X-100, Tego and SDS increased the gliding velocity significantly in some concentrations and incubation periods. The results suggest that the motility of M. mobile depends on a functional cytoplasmic membrane and that cytoskeletal elements are involved in the gliding mechanism.  相似文献   

12.
Characterization of gliding motility in Flexibacter polymorphus   总被引:3,自引:0,他引:3  
Motility of the marine gliding bacterium Flexibacter polymorphus was studied by using microcinematographic techniques. Following adhesion to a glass surface, multicellular filaments and individual cells usually began to glide within a few seconds at a speed of approximately 12 micron per second (at 23 degrees C). Adhesion to the glass surface was evidently mediated by multitudes of extremely fine extracellular fibrils. Gliding velocity was independent of filament length but directly related to electron-transport activity and substratum temperature in the range 3-35 degrees C. The rate of gliding was inversely related to medium viscosity, suggesting that the locomotor apparatus functions at constant torque. Forward motion was occasionally interrupted by direction reversals, somersaults (observed primarily in single cells of short filaments), or spinning of filaments tethered by one pole. The frequency of direction reversal was found to be an inverse function of filament length. Translational motility was invariably accompanied by sinistral revolution about the longitudinal axis of a filament. The sense and pitch of revolution were constant among filaments of different length. Polystyrene microspheres or India ink particles adsorbed to gliding cells were actively displaced in either direction, their movement tracing either a regular zigzag or helical path along the filament surface. Because microspheres were also observed to move on nonmotile filaments, particle translocation was evidently not obligatorily linked to gliding locomotion. Multiple particles adsorbed to a single filament often moved independently. The data are consistent with a motility mechanism involving limited motion in numerous mechanically independent (yet functionally coordinated) domains on the cell surface.  相似文献   

13.
The gliding movements of freshly isolated Mycoplasma pulmonis cells were observed and measured. The motile cells had a characteristic appearance, an average speed of 0.4 to 0.7 micron/s, and a maximum speed of 1 micron/s.  相似文献   

14.
To examine the participation of P1 adhesin in gliding of Mycoplasma pneumoniae, we examined the effects of an anti-P1 monoclonal antibody on individual gliding mycoplasmas. The antibody reduced the gliding speed and removed the gliding cells from the glass over time in a concentration-dependent manner but had only a slight effect on nongliding cells, suggesting that the conformational changes of P1 adhesin and its displacement are involved in the gliding mechanism.  相似文献   

15.
The cell-wall-less prokaryote Mycoplasma pneumoniae, long considered among the smallest and simplest cells capable of self-replication, has a distinct cellular polarity characterized by the presence of a differentiated terminal organelle which functions in adherence to human respiratory epithelium, gliding motility, and cell division. Characterization of hemadsorption (HA)-negative mutants has resulted in identification of several terminal organelle proteins, including P30, the loss of which results in developmental defects and decreased adherence to host cells, but their impact on M. pneumoniae gliding has not been investigated. Here we examined the contribution of P30 to gliding motility on the basis of satellite growth and cell gliding velocity and frequency. M. pneumoniae HA mutant II-3 lacking P30 was nonmotile, but HA mutant II-7 producing a truncated P30 was motile, albeit at a velocity 50-fold less than that of the wild type. HA-positive revertant II-3R producing an altered P30 was unexpectedly not fully wild type with respect to gliding. Complementation of mutant II-3 with recombinant wild-type and mutant alleles confirmed the correlation between gliding defect and loss or alteration in P30. Surprisingly, fusion of yellow fluorescent protein to the C terminus of P30 had little impact on cell gliding velocity and significantly enhanced HA. Finally, while quantitative examination of HA revealed clear distinctions among these mutant strains, gliding defects did not correlate strictly with the HA phenotype, and all strains attached to glass at wild-type levels. Taken together, these findings suggest a role for P30 in gliding motility that is distinct from its requirement in adherence.  相似文献   

16.
A marine bacterium, Saprospira sp. SS98-5, which was isolated from Kagoshima Bay, Japan, was able to kill and lyse the cells of the diatom Chaetoceros ceratosporum. The multicellular filamentous cells of this bacterium captured the diatom cells, formed cell aggregates, and lysed them in an enriched sea water (ESS) liquid medium. Strain SS98-5 also formed plaques on double layer agar plates incorporating diatom cells. The diatom cell walls were partially degraded at the contact sites with the bacteria, the bacteria invaded from there into the diatom cells, and then the diatom cells were completely lysed. The strain possessed gliding motility and grew as spreading colonies on ESS agar plates containing lower concentrations of polypeptone (below 0.1%) while forming nonspreading colonies on ESS agar plates containing 0.5% polypeptone. Electron micrographs of ultrathin sections demonstrated that microtubule-like structures were observable only in gliding motile cells. Both the gliding motility and the microtubule-like structures were diminished by the addition of podophyllotoxin, an inhibitor of microtubule assembly, suggesting that the microtubule-like structures observed in these bacterial cells are related to their gliding motility.  相似文献   

17.
The wall-less prokaryote Mycoplasma pneumoniae, a common cause of chronic respiratory tract infections in humans, is considered to be among the smallest and simplest known cells capable of self-replication, yet it has a complex architecture with a novel cytoskeleton and a differentiated terminal organelle that function in adherence, cell division, and gliding motility. Recent findings have begun to elucidate the hierarchy of protein interactions required for terminal organelle assembly, but the engineering of its gliding machinery is largely unknown. In the current study, we assessed gliding in cytadherence mutants lacking terminal organelle proteins B, C, P1, and HMW1. Furthermore, we screened over 3,500 M. pneumoniae transposon mutants individually to identify genes associated with gliding but dispensable for cytadherence. Forty-seven transformants having motility defects were characterized further, with transposon insertions mapping to 32 different open reading frames widely distributed throughout the M. pneumoniae genome; 30 of these were dispensable for cytadherence. We confirmed the clonality of selected transformants by Southern blot hybridization and PCR analysis and characterized satellite growth and gliding by microcinematography. For some mutants, satellite growth was absent or developed more slowly than that of the wild type. Others produced lawn-like growth largely devoid of typical microcolonies, while still others had a dull, asymmetrical leading edge or a filamentous appearance of colony spreading. All mutants exhibited substantially reduced gliding velocities and/or frequencies. These findings significantly expand our understanding of the complexity of M. pneumoniae gliding and the identity of possible elements of the gliding machinery, providing a foundation for a detailed analysis of the engineering and regulation of motility in this unusual prokaryote.  相似文献   

18.
Isolation and characterization of transposon-generated Mycoplasma genitalium gliding-deficient mutants has implicated mg200 and mg386 genes in gliding motility. The proposed role of these genes was confirmed by restoration of the gliding phenotype in deficient mutants through gene complementation with their respective mg386 or mg200 wild-type copies. mg200 and mg386 are the first reported gliding-associated mycoplasma genes not directly involved in cytadherence. Orthologues of MG200 and MG386 proteins are also found in the slow gliding mycoplasmas, Mycoplasma pneumoniae and Mycoplasma gallisepticum, suggesting the existence of a unique set of proteins involved in slow gliding motility. MG200 and MG386 proteins share common features, such as the presence of enriched in aromatic and glycine residues boxes and an acidic and proline-rich domain, suggesting that these motifs could play a significant role in gliding motility.  相似文献   

19.
Use of a dialysis microchamber has allowed continuous observations on the same set of gliding bacteria during changes in the composition of the perfused medium. This procedure has revealed the presence of an adaptive, cyanide-insensitive metabolic pathway, which allows cyanide-treated Flexibacter BH3 to begin gliding again at a reduced rate when glucose is the substrate. In addition, it has revealed that individual flexibacter cells can maintain their gliding motility for up to 20 h in the absence of exogenous substrate.Gliding in Flexibacter BH3 was prevented by those inhibitors blocking the electron transport process. Inhibitors of glucose metabolism did not prevent motility, since the flexibacters obviously metabolize endogenous substrate under such circumstances. Proton ionophores, which induce membrane depolarization, rapidly inhibited gliding in Flexibacter BH3. This inhibition was irreversible in the case of gramicidin S. Gliding was not inhibited by cytochalasin B or antiactin antibody. High concentrations of Ca2+ were particularly inhibitory to the gliding process. The significance of these results is discussed in relation to a possible mechanism of gliding involving the generation of rhythmical contractions in the outer cell membrane of Flexibacter BH3.Abbreviations used CCCP carbonyl cyanide m-chlorophenyl hydrazone - DNP p-dinitrophenol - GMCS gramicidin S - HQNO 2-heptyl-4-hydroxyquinoline N-oxide - PCMB p-chloromercuribenzoate - CM complete Lewin's medium - BS Lewin's basal salts  相似文献   

20.
Gliding motility is observed in a large variety of phylogenetically unrelated bacteria. Gliding provides a means for microbes to travel in environments with a low water content, such as might be found in biofilms, microbial mats, and soil. Gliding is defined as the movement of a cell on a surface in the direction of the long axis of the cell. Because this definition is operational and not mechanistic, the underlying molecular motor(s) may be quite different in diverse microbes. In fact, studies on the gliding bacterium Myxococcus xanthus suggest that two independent gliding machineries, encoded by two multigene systems, operate in this microorganism. One machinery, which allows individual cells to glide on a surface, independent of whether the cells are moving alone or in groups, requires the function of the genes of the A-motility system. More than 37 A-motility genes are known to be required for this form of movement. Depending on an additional phenotype, these genes are divided into two subclasses, the agl and cgl genes. Videomicroscopic studies on gliding movement, as well as ultrastructural observations of two myxobacteria, suggest that the A-system motor may consist of multiple single motor elements that are arrayed along the entire cell body. Each motor element is proposed to be localized to the periplasmic space and to be anchored to the peptidoglycan layer. The force to glide which may be generated here is coupled to adhesion sites that move freely in the outer membrane. These adhesion sites provide a specific contact with the substratum. Based on single-cell observations, similar models have been proposed to operate in the unrelated gliding bacteria Flavobacterium johnsoniae (formerly Cytophaga johnsonae), Cytophaga strain U67, and Flexibacter polymorphus (a filamentous glider). Although this model has not been verified experimentally, M. xanthus seems to be the ideal organism with which to test it, given the genetic tools available. The second gliding motor in M. xanthus controls cell movement in groups (S-motility system). It is dependent on functional type IV pili and is operative only when cells are in close proximity to each other. Type IV pili are known to be involved in another mode of bacterial surface translocation, called twitching motility. S-motility may well represent a variation of twitching motility in M. xanthus. However, twitching differs from gliding since it involves cell movements that are jerky and abrupt and that lack the organization and smoothness observed in gliding. Components of this motor are encoded by genes of the S-system, which appear to be homologs of genes involved in the biosynthesis, assembly, and function of type IV pili in Pseudomonas aeruginosa and Neisseria gonorrhoeae. How type IV pili generate force in S-motility is currently unknown, but it is to be expected that ongoing physiological, genetic, and biochemical studies in M. xanthus, in conjunction with studies on twitching in P. aeruginosa and N. gonorrhoeae, will provide important insights into this microbial motor. The two motility systems of M. xanthus are affected to different degrees by the MglA protein, which shows similarity to a small GTPase. Bacterial chemotaxis-like sensory transduction systems control gliding motility in M. xanthus. The frz genes appear to regulate gliding movement of individual cells and movement by the S-motility system, suggesting that the two motors found in this bacterium can be regulated to result in coordinated multicellular movements. In contrast, the dif genes affect only S-system-dependent swarming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号