首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calmodulin (CaM)-regulated plasma membrane Ca(2+)-ATPase (PMCA) is critical for the regulation of free intracellular Ca(2+) levels. PMCA activity and levels in neuronal membranes are decreased with aging, possibly due to oxidation-induced inactivation. In the present studies, inhibition of PMCA by H(2)O(2) was characterized in enzyme purified from human erythrocyte membranes. Basal and CaM-stimulated PMCA activities were inhibited by exposure to H(2)O(2) (25-100 microM). However, neither the concentration-dependent enhancement of PMCA activity by CaM nor the binding of CaM to H(2)O(2)-exposed PMCA was disrupted by treatment with H(2)O(2). Rates of inactivation by H(2)O(2) of basal and CaM-stimulated PMCA were nearly identical. The addition of CaM after exposure to H(2)O(2) did not protect enzyme activity, although the binding of CaM to PMCA before exposure to H(2)O(2) protected the enzyme completely, indicating a CaM-induced conformational state resistant to oxidation. H(2)O(2) quenched Trp fluorescence in PMCA, an index of conformational changes, with a rate similar to that observed for enzyme inactivation. H(2)O(2) enhanced the solvent accessibility of Trp residues in PMCA, whereas accessibility of the only Trp residue in the CaM-binding domain peptide was unaltered. Exposure of PMCA to H(2)O(2) led to aggregate formation partially reversible by dithiothreitol (DTT) but not to recovery of activity. Amino acid analysis indicated Cys modification following H(2)O(2) exposure but no Cys oxyacids. Because DTT did not reverse inactivation by H(2)O(2), it appears that the disulfide bond formation led to conformational changes that were not fully reversed when the bonds were reduced. Preincubation of PMCA with CaM protected the enzyme from undergoing this conformational change.  相似文献   

2.
H S Ahn  M Foster  C Foster  E Sybertz  J N Wells 《Biochemistry》1991,30(27):6754-6760
Ca/calmodulin-sensitive cyclic nucleotide phosphodiesterase (CaM-PDE) is an important enzyme regulating cGMP levels and relaxation of vascular smooth muscle. This modification study was conducted mostly with bovine brain CaM-PDE to identify essential functional groups involved in catalysis. The effect of pH on Vmax/Km indicates two essential residues with pKa values of 6.4 and 8.2. Diethyl pyrocarbonate (DEP), a histidine-modifying agent, inhibits CaM-PDE with a second-order rate constant of 130 M-1 min-1 at pH 7.0 and 30 degrees C. Activity is restored by NH2OH. The pH dependence of inactivation reveals that the essential residue modified by DEP has an apparent pKa of 6.5. The difference spectrum of the intact and DEP-treated enzyme shows a maximum between 230 and 240 nm, suggesting formation of carbethoxy derivatives of histidine. The enzyme is also inactivated by N-ethylmaleimide (NEM) and 5,5'-dithiobis-(2-nitrobenzoic acid), both sulfhydryl-modifying agents, with the latter effect reversed by dithiothreitol, which suggests inactivation resulting from modification of cysteine residue(s). Partial inactivation of the enzyme by DEP or NEM results in an apparent decrease in the Vmax without a change in the Km or the extent of CaM stimulation. The rate of inactivation by DEP is greater in the presence than in the absence of Ca/CaM. A substrate analogue, Br-cGMP, and the competitive inhibitor 3-isobutyl-1-methylxanthine partially protect the enzyme against inactivation by DEP or NEM, suggesting that the modification of histidine and cysteine residues occurs at or near the active site. DEP also inactivated porcine brain CaM-PDE.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
T Tanaka  E Yamada  T Sone  H Hidaka 《Biochemistry》1983,22(5):1030-1034
Quinazolinesulfonamides are synthetic compounds which calcium-independently stimulate Ca2+-dependent cyclic nucleotide phosphodiesterase. As this activation was observed with 2,4-dipiperidino-6-quinazolinesulfonamides but not with 4-piperidino-6-quinazolinesulfonamides, the activation seems to be dependent on the piperidine residue at the 2 and 4 position of the quinazoline ring, and the extent of hydrophobicity of each compound was thus enhanced. 2,4-Dipiperidino-6-quinazolinesulfonamide activates Ca2+-dependent phosphodiesterase in the absence of Ca2+-calmodulin (CaM). These quinazolinesulfonamides did not further enhance the activity of Ca2+-dependent phosphodiesterase activated by the Ca2+-CaM complex. These compounds are also potent inhibitors of cyclic AMP and GMP phosphodiesterases. CaM antagonists such as N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), its derivatives, and chlorpromazine and prenylamine inhibited selectively the quinazolinesulfonamide-induced activations of the phosphodiesterase. These quinazolinesulfonamides, in a high concentration, had only a slight stimulatory effect on myosin light chain kinase activity. All these findings suggest that the quinazolinesulfonamides are calcium-independent activators of Ca2+-dependent phosphodiesterase and they are proving to be useful tools for the study of CaM and phosphodiesterase, in vitro.  相似文献   

4.
Mammalian carbonic anhydrase III has previously been shown to catalyze the hydrolysis of p-nitrophenyl phosphate in addition to possessing the conventional CO2 hydratase and p-nitrophenylacetate esterase activities. Modification of pig muscle carbonic anhydrase III with the arginine reagent phenylglyoxal yielded two clearly distinctive results. Reaction of the enzyme with phenylglyoxal at concentrations equivalent to those of the enzyme yielded stoichiometric inactivation titration of the enzyme's phosphatase activity, approaching 100% loss of activity with the simultaneous modification of one arginine residue, the latter based on a 1:1 reaction of phenylglyoxal with arginine. At this low ratio of phenylglyoxal to enzyme, neither the CO2 hydratase activity nor the acetate esterase activity was affected. When the modification was performed with a significant excess of phenylglyoxal, CO2 hydratase and acetate esterase activities were diminished as well. That loss of activity was accompanied by the incorporation of an additional half dozen phenylglyoxals and, presumably, the modification of an equal number of arginine residues. The data in their entirety are interpreted to show that the p-nitrophenylphosphatase activity is a unique property of carbonic anhydrase III and that excessive amounts of the arginine-modifying reagent lead to unspecific structural changes of the enzyme as a result of which all of its enzymatic activities are inactivated.  相似文献   

5.
C A Carlson  J Preiss 《Biochemistry》1982,21(8):1929-1934
Inactivation of Escherichia coli ADP-glucose synthetase (EC 2.7.2.27) by the arginine-specific reagents cyclohexanedione and phenylglyoxal resulted primarily from interference with normal allosteric activation. Partial modification by phenylglyoxal resulted in a lessened ability of fructose 1,6-bisphosphate (fructose-P2) to stimulate and of 5'-AMP (5'-adenylate) to inhibit enzymic activity. The apparent affinity for fructose-P2 and the Vmax at saturating fructose-P2 concentrations were decreased by the arginine modification. Fructose-P2, 5'-adenylate, and several other allosteric effectors were able to partially protect the enzyme from inactivation. However, catalytic activity was not decreased by arginine modification under conditions where the enzyme was assayed in the absence of fructose-P2. The two arginine-modifying reagents differed markedly in their reactivity with the enzyme. Cyclohexanedione inactivated the enzyme quite slowly and eventually reacted with at least 14 of the 32 arginines present per subunit. Phenylglyoxal was some 50-fold more effective in inactivation, but it modified only one arginine residue per subunit.  相似文献   

6.
[3-(2-Pyridylthio)propionyl]calmodulin (PDP-CaM), an activated thiol derivative of calmodulin (CaM), was synthesized. Preparations of this derivative containing an average of 2.8 mol of substituent/mol of protein activated purified cyclic nucleotide phosphodiesterase in a manner indistinguishable from that of native CaM. PDP-CaM was covalently coupled to free thiol-Sepharose 4B through formation of a stable mixed disulfide bond for use in affinity chromatography. The binding capacity of the disulfide-linked CaM-Sepharose for phosphodiesterase activity was proportional to substituent level up to 4 mg of CaM/mL of gel; the total capacity of the gel for binding phosphodiesterase was 4 times that of CNBr-coupled CaM-Sepharose. Quantitative recovery was achieved by desorption of both ligand and bound proteins with a reducing agent. The thiolated CaM derivative was then separated from phosphodiesterase by rapid gel filtration; the overall recovery of phosphodiesterase activity was greater than 70%. Preparations of homogeneous enzyme in good yield were obtained after a second chromatography step on CaM-Sepharose. Binding and recovery of phosphodiesterase activity were entirely reproducible, since each preparation of affinity gel was used only once. As it permits separation of interacting species in free solution, this general method may be useful with other ligands for increasing yields from affinity chromatography, particularly when dissociation of molecules in their matrix-bound conformation may be difficult to achieve.  相似文献   

7.
Bovine brain contains two major calmodulin (CaM) dependent phosphodiesterase isozymes which are homodimeric proteins with subunit molecular masses of 60 and 63 kilodaltons (kDa), respectively. The 60-kDa subunit isozyme can be phosphorylated by cAMP-dependent protein kinase, resulting in a decrease in the enzyme affinity towards CaM. The phosphorylation is blocked by Ca2+ and CaM and reversed by the CaM-stimulated phosphatase (calcineurin). The 63-kDa subunit isozymes can also be phosphorylated, but in this case by a CaM-dependent protein kinase(s). This phosphorylation is also accompanied by a decrease in the isozyme affinity towards CaM and can be reversed by the CaM-dependent phosphatase. Analysis of the complex regulatory properties of the phosphodiesterase isozymes has led to the suggestion that fluxes of cAMP and Ca2+ during cell activations are closely coupled and that the CaM-dependent phosphodiesterase isozymes play key roles in this signal coupling phenomenon.  相似文献   

8.
T Tanaka  M Ito  T Ohmura  H Hidaka 《Biochemistry》1985,24(19):5281-5284
Ca2+-dependent cyclic nucleotide phosphodiesterase (Ca2+-PDE) activity was stimulated by poly(L-aspartic acid) but not by poly(L-glutamic acid), poly(L-arginine), poly(L-lysine), and poly(L-proline). This activation was Ca2+ independent and did not further enhance the activation of Ca2+-PDE by Ca2+-calmodulin (CaM). Poly(L-aspartic acid) produced an increase in the Vmax of the phosphodiesterase, associated with a decrease in the apparent Km for the substrate, such being similar to results obtained with Ca2+-CaM. Poly(L-aspartic acid) did not significantly stimulate myosin light chain kinase and other types of cyclic nucleotide phosphodiesterase. CaM antagonists such as N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), trifluoperazine, and chlorpromazine selectively antagonized activation of the enzyme by poly(L-aspartic acid). Kinetic analysis of W-7-induced inhibition of activation of phosphodiesterase by poly(L-aspartic acid) was in a competitive fashion, and the Ki value was 0.19 mM. On the other hand, prenylamine, another type of calmodulin antagonist that binds to CaM at sites different from the W-7 binding sites, did not inhibit the poly(L-aspartic acid)-induced activation of Ca2+-dependent cyclic nucleotide phosphodiesterase. These results imply that poly(L-aspartic acid) is a calcium-independent activator of Ca2+-dependent phosphodiesterase and that aspartic acids in the CaM molecule may play an important role in the activation of Ca2+-PDE.  相似文献   

9.
The ability of nine phospholipids to alter the activity of low-Km cyclic AMP phosphodiesterase was examined in microsomal fractions of rat adipocytes. The enzyme was activated by phosphatidylserine (21% at 300 microM) and phosphatidylglycerol (36% at 300 microM). The activation was concentration dependent over the range 1-1000 microM. Six other phospholipids were without effect. Phosphatidylinositol 4-phosphate inhibited the activity of the enzyme over the same range of concentrations (26% at 300 microM). Phosphatidylserine also activated a partially purified preparation of the enzyme, whereas phosphatidylinositol 4-phosphate was ineffective. The mechanism of the activation of the enzyme by phosphatidylserine and phosphatidylglycerol involved an increase in the apparent Vmax of the enzyme, while the inhibition by phosphatidylinositol 4-phosphate was associated with an increase in the Km of the enzyme for substrate. The phospholipid modulators of low-Km cyclic AMP phosphodiesterase activity did not alter the activity of high-Km cyclic AMP phosphodiesterase. The ability of phospholipids to alter the activity of low-Km cyclic AMP phosphodiesterase in native membranes suggests a possible role for phospholipids in metabolic regulation.  相似文献   

10.
Both adipocyte plasma membranes and microsomes possess insulin-sensitive low Km cyclic AMP phosphodiesterase activity. The activity of the enzyme from both sources was susceptible to activation by several anionic phospholipids. Activators of the plasma membrane enzyme were lysophosphatidylglycerol greater than lysophosphatidylcholine greater than lysophosphatidylserine greater than phosphatidylserine greater than phosphatidylglycerol. These same phospholipids activated the microsomal enzyme but the extent of activation by each phospholipid was reversed. Neutral phospholipids and other anionic phospholipids were without effect. The phospholipids had no effect on high Km cAMP phosphodiesterase in either membrane. The results suggest that the phospholipid headgroup was an important determinant for enzyme activation by phospholipid. The increased susceptibility of the plasma membrane enzyme to lysophospholipid may be attributed to a difference in the plasma membrane enzyme compared to the microsomal membrane enzyme or to differences in plasma membrane and microsomal membrane phospholipid composition and their ability to regulate low Km cAMP phosphodiesterase activity.  相似文献   

11.
12.
Tetrahymena calmodulin (CaM) differs from mammalian CaM in its ability to activate Tetrahymena guanylate cyclase. Of 12 differences in amino acid sequence, two occur near the carboxyl terminus (Gln-143----Arg and Thr-146----deletion). To investigate the functional significance of the carboxyl-terminal region in activation of the guanylate cyclase, three mutated CaMs were engineered by using cassette mutagenesis of rat CaM cDNA: Gln-143----Arg (CaM.A), Thr-146----deletion (CaM.D), and Gln-143----Arg/Thr-146 deletion (CaM.AD). Recombinant wild type CaM (wCaM), CaM.A, CaM.D, and CaM.AD were indistinguishable in their ability to activate cyclic AMP phosphodiesterase. The two mutated CaMs (CaM.A and CaM.AD) with the Gln-143 replacement activated guanylate cyclase of Tetrahymena plasma membrane in the presence of Ca2+, with the maximal activation being half of that produced by Tetrahymena CaM. In contrast, neither CaM.D nor wCaM could stimulate the cyclase activity. A CaM antagonist, W-7 (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide), prevented the cyclase activation by either Tetrahymena CaM, CaM.A, or CaM.AD. Thus, we conclude that Arg-143 is in a region of the molecule involved in activation of Tetrahymena guanylate cyclase. The data also suggest that the cyclase activation by Tetrahymena CaM requires complex macromolecular interactions between the entire CaM molecule and the enzyme.  相似文献   

13.
Calcineurin (CN) dephosphorylated [32P] phosphotyrosyl glutamine synthetase, a model phosphoprotein substrate containing approximately 1 mol of phosphotyrosine per mol subunit. Phosphatase activity with and without calmodulin (CaM) was greatly stimulated by Mn2+; with Ca2+, even in the presence of CaM, activity was very low. CaM-stimulated phosphatase activity exhibited deactivation with time; initial rates declined markedly after 2-3 min. The Michaelis constant for substrate (3 microM) was identical whether 2 or 12 min assays (with CaM) were used suggesting that the decreased rate of hydrolysis did not result from a decrease in affinity for the phosphoprotein substrate. Limited proteolysis of CN by chymotrypsin increased phosphatase activity 2-3 times that of CaM-supported activity; however, addition of CaM to assays with protease-activated CN reduced activity to that observed for non-proteolyzed enzyme. These data suggest that, in addition to stimulation, CaM can inhibit certain activated conformations of the phosphatase.  相似文献   

14.
Amino acid residues His and Cys of the NAD-dependent hydrogenase from the hydrogen-oxidizing bacterium Ralstonia eutropha H16 were chemically modified with specific reagents. The modification of His residues of the nonactivated hydrogenase resulted in decrease in both hydrogenase and diaphorase activities of the enzyme. Activation of NADH hydrogenase under anaerobic conditions additionally modified a His residue (or residues) significant only for the hydrogenase activity. The rate of decrease in the diaphorase activity was unchanged. The modification of thiol groups of the nonactivated enzyme did not affect the hydrogenase activity. The effect of thiol-modifying agents on the activated hydrogenase was accompanied by inactivation of both diaphorase and hydrogenase activities. The modification degree and changes in the corresponding catalytic activities depended on conditions of the enzyme activation. Data on the modification of cysteine and histidine residues of the hydrogenase suggested that the enzyme activation should be associated with significant conformational changes in the protein globule.  相似文献   

15.
A rabbit lung cyclic nucleotide phosphodiesterase (PDE) prepared by successive chromatography on DEAE-cellulose and G-200 Sephadex columns in the presence of EGTA was activated by Ca2+ and contained calmodulin (CaM), suggesting that the enzyme exists as a stable CaM X PDE complex (Sharma, R. K., and Wirch, E. (1979) Biochem. Biophys. Res. Commun. 91, 338-344). An enzyme with similar properties was demonstrated to exist in bovine lung extract. C1, a monoclonal antibody previously shown to react with the 60-kDa subunit of bovine brain PDE isozymes (Sharma, R. K., Adachi, A.-M., Adachi, K., and Wang, J. H.) (1984) J. Biol. Chem. 259, 9248-9254), cross-reacted with the lung enzyme. Purification of the lung enzyme by C1 antibody immunoaffinity chromatography rendered the enzyme dependent on exogenous CaM for Ca2+ stimulation. Further purification was achieved by CaM affinity chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the purified enzyme showed a predominant polypeptide of Mr 58,000 and a minor band of about 50,000. The purified enzyme could be reconstituted into a PDE X CaM complex upon incubation with CaM in the presence of either Ca2+ or EGTA. The reconstituted protein complex did not dissociate in buffers containing 0.1 mM EGTA. Analysis of the purified and reconstituted lung phosphodiesterase by Sephacryl S-300 gel filtration indicated that the lung enzyme is a dimeric protein and that the reconstituted enzyme contained two molecules of calmodulin. Analysis of the reconstituted phosphodiesterase by sodium dodecyl sulfate-polyacrylamide gel electrophoresis also showed it to contain equimolar calmodulin and the enzyme subunit. The CaM antagonists, fluphenazine, compound 48/80, and calcineurin at concentrations abolishing CaM stimulation of bovine brain PDE had little effect on the activity of reconstituted bovine lung phosphodiesterase.  相似文献   

16.
We found that ionophore A23187 interacted reversibly with calmodulin (CaM), in a calcium-dependent fashion. It was found that A23187 interacts selectively with CaM, among calcium binding proteins (such as troponin C and S-100 protein) and other proteins. However, apparently differing from W-7, A23187 did not suppress CaM-dependent enzyme activity such as myosin light chain kinase and Ca2+-dependent cyclic nucleotide phosphodiesterase. Our observations suggest that there are novel calcium-dependent regions of CaM which can be monitored using ionophore A23187 and may not be related to enzyme activation.  相似文献   

17.
The cytosol fraction of an extract of Xenopus laevis ovaries contains a protein inhibitor that can specifically block the activation of calmodulin-sensitive cyclic nucleotide phosphodiesterase (PDE I) found in that tissue. This inhibitor was purified by DEAE-cellulose chromatography, gel filtration on Sephacryl S-200, and affinity chromatography on calmodulin-Sepharose. It has a molecular weight of approximately 90,000, and is heat-labile and susceptible to inactivation by chymotrypsin. The inhibitor blocks calmodulin activation of cyclic nucleotide phosphodiesterases from amphibian ovary and bovine brain and of the myosin light chain kinase from rabbit smooth muscle, but does not affect the activity of a calmodulin-insensitive cyclic nucleotide phosphodiesterase. The inhibitor not only affects the activation of Xenopus PDE I and of the bovine brain phosphodiesterase by calmodulin, but also inhibits the stimulation of these enzymes by lysophosphatidylcholine. The inhibitor also acts on PDE I activated by partial tryptic proteolysis, but the enzyme fully activated by trypsin is only slightly susceptible to inhibition by this protein. The inhibition of PDE I activation caused by this ovarian factor can be reversed by adding excess amounts of calmodulin or lysophosphatidylcholine. The presence of this inhibitor provides a possible explanation for the previously observed inactivity of PDE I in vivo.  相似文献   

18.
1. Diethyl pyrocarbonate inactivated l-lactate oxidase from Mycobacterium smegmatis. 2. Two histidine residues underwent ethoxycarbonylation when the enzyme was treated with sufficient reagent to abolish more than 90% of the enzyme activity, but analyses of the inactivation showed that the modification of one histidine residue was sufficient to cause the loss of enzyme activity. The rates of enzyme inactivation and histidine modification were the same. 3. Substrate and competitive inhibitors decreased the maximum extent of inactivation to a 50% loss of enzyme activity and modification was decreased from 1.9 to 0.75–1.2 histidine residues modified/molecule of FMN. 4. Treatment of the enzyme with diethyl [14C]pyrocarbonate (labelled in the carbonyl groups) confirmed that only histidine residues were modified under the conditions used and that deacylation of the ethoxycarbonylhistidine residues by hydroxylamine was concomitant with the removal of the 14C label and the re-activation of the enzyme. 5. No evidence was found for modification of tryptophan, tyrosine or cysteine residues, and no difference was detected between the conformation and subunit structure of the modified and native enzyme. 6. Modification of the enzyme with diethyl pyrocarbonate did not alter the following properties: the binding of competitive inhibitors, bisulphite and substrate or the chemical reduction of the flavin group to the semiquinone or fully reduced states. The normal reduction of the flavin by lactate was, however, abolished.  相似文献   

19.
The purified catalytic subunit (C) of cAMP-dependent protein kinase produced a 2-fold activation of the low Km phosphodiesterase in crude microsomes (P-2 pellet) of rat adipocytes. This activation was C subunit concentration-dependent, ATP-dependent, blocked by a specific peptide inhibitor, and lost if the C subunit was first heat denatured. The concentration of ATP necessary for half-maximal activation of the low Km phosphodiesterase was 4.50 +/- 1.1 microM, which was nearly the same as the known Km of C subunit for ATP (3.1 microM) using other substrates. The concentration of C subunit producing half-maximal activation of phosphodiesterase was 0.22 +/- 0.04 microM, slightly less than the measured concentration of total C subunit in adipocytes (0.45 microM). The activation of the low Km phosphodiesterase by C subunit was specific, since on an equimolar basis, myosin light chain kinase, cGMP-dependent protein kinase, or Ca2+/calmodulin-dependent protein kinase II did not activate the enzyme. The percent stimulation of phosphodiesterase by C subunit was about the same as that produced by incubation of adipocytes with a cAMP analog, and the enzyme first activated in vivo with the analog was not activated to the same extent (on a percentage basis) by in vitro treatment with C subunit. Treatment of the crude microsomes with trypsin resulted in transfer of phosphodiesterase catalytic activity from the particulate to the supernatant fraction, but the enzyme in the supernatant was minimally activated by C subunit, suggesting either loss or dislocation of the regulatory component. The C subunit-mediated activation of phosphodiesterase was preserved after either transfer of phosphodiesterase activity to the supernatant fraction by nonionic detergents or partial purification of the transferred enzyme. The present findings are consistent with the suggestion that protein kinase regulates the concentration of cAMP through phosphodiesterase activation and provide direct evidence that the mechanism of activation involves phosphorylation.  相似文献   

20.
N J Silman  N G Carr    N H Mann 《Journal of bacteriology》1995,177(12):3527-3533
Glutamine synthetase (GS) inactivation was observed in crude cell extracts and in the high-speed supernatant fraction from the cyanobacterium Synechocystis sp. strain PCC 6803 following the addition of ammonium ions, glutamine, or glutamate. Dialysis of the high-speed supernatant resulted in loss of inactivation activity, but this could be restored by the addition of NADH, NADPH, or NADP+ and, to a lesser extent, NAD+, suggesting that inactivation of GS involved ADP-ribosylation. This form of modification was confirmed both by labelling experiments using [32P]NAD+ and by chemical analysis of the hydrolyzed enzyme. Three different forms of GS, exhibiting no activity, biosynthetic activity only, or transferase activity only, could be resolved by chromatography, and the differences in activity were correlated with the extent of the modification. Both biosynthetic and transferase activities were restored to the completely inactive form of GS by treatment with phosphodiesterase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号