首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The architecture of a tree root system may influence its abilityto withstand uprooting by wind loading. To determine how theroot branching pattern may alter the anchorage efficiency ofa tree, artificial model root systems with different topologiesand branching angles were built. The root systems were embeddedat various depths in wet sand and the pull-out resistance measured.A model to predict the uprooting resistance from the data collectedwas designed, allowing predictions of anchorage strength withregards to architecture. The dominant factors influencing pull-outresistance were the depth and length of roots in the soil. Themost efficient type of branching pattern predicted by the programwas one with an increased number of roots deep in the soil.The optimum branching angle most likely to resist pull-out isa vertical angle of 90° between a lateral and the main axis.The predicted mechanically optimal radial angle between a lateralbranch and its daughter is between 0 and 20°. Values ofbranching angle are compared with those measured in real woodyroot systems of European larch and Sitka spruce. Root architecture; root anchorage; pull-out resistance; windthrow; Picea sitchensis ; Larix decidua  相似文献   

2.
Though the resistance to uprooting of cylindrical roots and root systems has been extensively investigated, almost no research has been performed on the factors that influence the uprooting resistance of bulbs. However, engineers have modelled bulb-like foundations and have investigated their resistance to upward movements. This study combined engineering theory with practical biology, using model bulbs of different shapes and sizes, embedding them at different depths in different soil media, and pulling them out while recording the uprooting force. Uprooting resistances of the models was compared to those of real onion and garlic bulbs with and without their root systems. Cone shaped models resisted uprooting best at all embedment depths and in both soil types, always followed by bulb shaped and cylindrical models. These results are explicable in terms of engineering theory. Cones resisted uprooting best because their maximum diameter is embedded deepest. A bulb shape is an ideal compromise as it has no sharp edges, and also allows easy downward movement. In sand uprooting resistance increased faster with depth than with bulb diameter, whereas in agricultural soils, the uprooting force was proportional both to the depth and the diameter of the model. The tests on the plants showed that real bulbs anchor plants by similar mechanisms and amounts to the models. The bulbs accounted for between 15% and 50% of the uprooting resistance of the plant, so they can make an important contribution to anchorage, particularly towards the end of the season.  相似文献   

3.
The mechanics of anchorage in seedlings of sunflower, Helianthus annuus L.   总被引:2,自引:0,他引:2  
Forces applied to plants will subject many of the roots to tension, which must be transferred to the soil via shear if uprooting is to be prevented. The stress distribution will depend on the relative stiffnesses of the earth and root, and the mode of failure will depend on the relative strength of the soil and of the root soil bond. This study of the anchorage of sunflower radicles combined uprooting tests performed by a tensile testing machine with mechanical tests on the roots and soil.
The maximum extraction force increased with length to an asymptotic value and was reached at a very low displacement. Root hairs and soil particles covered the tapered top 20 mm of extracted root, but the lower cylindrical region was bare. The soil was stiffer than the root, so shear stress was initially concentrated at the top of the root, soil strength over the top 20 mm resisting uprooting. Lower regions of the root were stressed later, their sparser root hairs being sheared off, and resist uprooting only by friction. In a further lest upper and lower regions of radicles were uprooted separately. As predicted, the upper region generated much greater resistance to uprooting per unit length, and at much lower displacements than the lower region.
The top of the radicle is well adapted for anchorage, the profuse root hairs and mucigel it produces glueing the root to the soil. The lower regions are thus protected from damage.  相似文献   

4.
The Anchorage of Leek Seedlings: The Effect of Root Length and Soil Strength   总被引:15,自引:1,他引:14  
ENNOS  A. ROLAND 《Annals of botany》1990,65(4):409-416
The mechanical behaviour of single roots being extracted fromsoil was modelled as a process in which tension is transferredfrom the upper regions of the root to the soil via shear. Quantitativepredictions were made about the extraction forces and the shapeof the uprooting curves, and these were tested using leek radiclesof different lengths in soil of two different strengths. Results of uprooting tests were qualitatively similar to thepredictions. The pullout resistance rose with root length, untilthe breaking strength of the root was reached, at around 30mm: longer roots all broke before the tip was stressed. In wholeroot systems, therefore, failure will occur proximally beforethe line distal roots are mechanically stressed, so these canhave no anchorage function. Resistance to an upward force will be most economically achievedby having many strengthened proximal root axes, as in the adventitiousroot systems of grasses, sedges and stoloniferous dicots. Allium porrum, root, anchorage, shear, tension, soil  相似文献   

5.
Root architecture and tree stability   总被引:17,自引:3,他引:14  
M. P. Coutts 《Plant and Soil》1983,71(1-3):171-188
Summary Root anchorage is discussed with a view to determining the optimum use of root material for enhanced stability. Field observations were made on Sitka spruce root systems while lateral forces were applied to the stem with a winch to pull the tree over. Measurements included the applied force, angles of inclination, soil and root movement, timing of the sound of root breakage using buried microphones, weight and shape of the root-soil plate and damage to the roots.Components of anchorage include the dimensions and mass of the root-soil plate levered from the ground by the displaced stem, and tensile strength of roots and soil beneath the plate; root and soil tensile strength and root/soil resistance on the windward perimeter; and on the lee side the stiffness of the hinge at the fulcrum.Strength properties of roots and soil are reviewed. Models devised for landslip are extended to consider behaviour under tension, of roots singly and in groups, and the concept is developed of a critical rooting density at which root/soil resistance exceeds soil strength, giving rise to the characteric root-soil plate on uprooted trees. The lee side part of the root-soil plate acts as a cantilevered beam and determines the distance of the fulcrum from the tree. Physical laws defining the reduced stiffness of beams as a result of subdivision, indicate the importance of the number/size distribution of roots and weakening effects of branching.On the windward side upward movement of the root-soil plate causes sequential breakage of soil and roots. Under an increasing applied load, failure occurs in parts of the soil-root system before the maximum force for uprooting is achieved. A preliminary approach is made to modelling where the changing contributions of the components of anchorage are allowed for throughout the uprooting process.  相似文献   

6.
The anchorage of deep rooted 16-year-old larch trees, Larixeuropea japonica, has been studied by combining winching testswith analyses of strain around the base of the trunk and rootsystem and mechanical tests on individual roots. These showedthat anchorage is provided by the laterals which emerge fromaround the stem base, sinker roots which emerge along theirlength, and tap roots positioned directly underneath the bole.During anchorage failure the leeward laterals are bent and eventuallybreak close to their base, whilst the windward laterals arepulled out of the ground, with their sinker roots intact. Afterinitially being confined by the soil and bending, the tap rootrotates in the soil. Anchorage failure is similar when the soilis dry as when it is wet, but failure occurs closer to the trunk.Strain measurements along the lateral roots revealed that thestresses were highest close to the trunk and that these regionsof the roots contribute most to tree stability. The two major components of anchorage were found to be the resistanceof leeward laterals to bending and the resistance of tap rootsand windward sinkers to uprooting. Bending tests on leewardlaterals revealed that they provide around 25% of tree anchorage.Almost 75% of the anchorage strength must, therefore, be providedby the windward sinkers and tap roots. Anchorage strength ofroots was positively correlated to their cross-sectional area.The vertical orientation of the sinkers makes the anchoragesystem of larch more efficient than the plate system formedby Sitka spruce on waterlogged soils and means that no root-soilplate is formed. Key words: Anchorage, root architecture, sinker roots, root bending strength, windthrow  相似文献   

7.
Fourcaud T  Ji JN  Zhang ZQ  Stokes A 《Annals of botany》2008,101(8):1267-1280
BACKGROUND AND AIMS: The Finite Element Method (FEM) has been used in recent years to simulate overturning processes in trees. This study aimed at using FEM to determine the role of individual roots in tree anchorage with regard to different rooting patterns, and to estimate stress distribution in the soil and roots during overturning. METHODS: The FEM was used to carry out 2-D simulations of tree uprooting in saturated soft clay and loamy sand-like soil. The anchorage model consisted of a root system embedded in a soil block. Two root patterns were used and individual roots removed to determine their contribution to anchorage. KEY RESULTS: In clay-like soil the size of the root-soil plate formed during overturning was defined by the longest roots. Consequently, all other roots localized within this plate had no influence on anchorage strength. In sand-like soil, removing individual root elements altered anchorage resistance. This result was due to a modification of the shape and size of the root-soil plate, as well as the location of the rotation axis. The tap root and deeper roots had more influence on overturning resistance in sand-like soil compared with clay-like soil. Mechanical stresses were higher in the most superficial roots and also in leeward roots in sand-like soil. The relative difference in stresses between the upper and lower sides of lateral roots was sensitive to root insertion angle. Assuming that root eccentricity is a response to mechanical stresses, these results explain why eccentricity differs depending on root architecture. CONCLUSIONS: A simple 2-D Finite Element model was developed to better understand the mechanisms involved during tree overturning. It has been shown how root system morphology and soil mechanical properties can modify the shape of the root plate slip surface as well as the position of the rotation axis, which are major components of tree anchorage.  相似文献   

8.
The successful adoption of water recycling strategies in many arid regions will require crops able to tolerate poor-quality waters. We evaluated different clones for salt and boron (B) tolerance within each of seven genetically distinct genomic groups (e.g., deltoides, deltoides x nigra, trichocarpa x deltoides, trichocarpa x deltoides x maximowizcii, trichocarpa x deltoides x nigra, trichocarpa x nigra, trichocarpa x maximowizcii). During each evaluation period, different clones within each of the groups were irrigated with high sodium chloride (NaCl) salinity (i.e., 10-30 dS m(-1)) and B (i.e., 10 mg L(-1)) water up to a maximum of 150 days, for a 4-year testing period under micro-field plot conditions. Excessive accumulation (up to 6%) of chloride (Cl) likely caused toxicity symptoms (necrosis of the leaves) observed in the less tolerant clones, while leaf B concentrations rarely exceeded 300 mg kg(-1) DM in any clone. Increased soil salinity likely hindered the uptake of B by the clones. Our results show that a wide range of selected Populus clones, of parentage trichocarpa x nigra, followed by deltoides x nigra show potential salt and B tolerance as young trees to recycled waters high in salinity and B.  相似文献   

9.
In marly catchments of the French Southern Alps, soils are subjected to harsh water erosion that can result in concentrated flows uprooting small plants. Evaluating and predicting plant resistance to uprooting from simple plant traits is therefore highly important so that the most efficient plant strategy for future restoration of eroded slopes can be defined. Twelve species growing on marly land were studied. For each species, in-situ lateral uprooting tests were conducted and morphological plant traits were measured on small plants at the early stages of their development. The results show that maximum uprooting force was most positively correlated with stem basal diameter. Resistance to uprooting depends on a combination of several traits. Tap root length, the proportion of fine lateral roots and root topology were the best predictors of anchorage strength.  相似文献   

10.
After its recent introduction to Chile, the aphid Chaitophorus leucomelas Koch is becoming a serious pest affecting commercial poplar, Populus spp., plantations. The pattern of natural infestation of C. leucomelas among poplar hybrids with different pedigrees and the aphid intrinsic rate of increase (r(m)), of C. leucomelas were assessed in the field. In most of the hybrids, aphid abundance peaked in March (late summer). Among 12 types of poplar crosses, [(P. trichocarpa Torr. & Gray x P. deltoides Bartram ex Marshall) x (P. trichocarpa x P. deltoides)] and [(P. trichocarpa x P. maximowiczii Henry) x P. maximowiczii] showed the highest and lowest aphid densities, respectively. A trend to find more aphids in branch bases was apparent. The intrinsic rate of C. leucomelas increase was higher in [(P. trichocarpa x P. deltoides) x P. deltoides] hybrids, and lower in [(P. trichocarpa x P. maximowiczii) x P. trichocarpa] hybrids. Aphid density and performance were higher in hybrids with P. deltoides parentage, whereas hybrids with P. maximowiczii parentage showed lower aphid densities and performance. Hybrids with P. nigra L. parentage, namely, [P. trichocarpa x P. nigra], also had high aphid density, but aphid performance was lower compared with hybrids with P. deltoides parentage. These results suggest that among poplar hybrids studied, susceptibility to C. leucomelas is inherited through P. deltoides, whereas resistance seems to be inherited through P. maximowiczii. Thus, P. maximowiczii hybrids are recommended for commercial or ornamental planting programs in zones where there is a high risk of aphid infestation.  相似文献   

11.
The role played by lateral roots and root hairs in promoting plant anchorage, and specifically resistance to vertical uprooting forces has been determined experimentally. Two species were studied, Allium cepa (onion) which has a particularly simple root system and two mutants of Arabidopsis thaliana, one without root hairs (rhd 2-1) and another with reduced lateral root branching (axr 4-2). Maximum strength of individual onion roots within a plant increased with plant age. In uprooting tests on onion seedlings, resistance to uprooting could be resolved into a series of events associated with the breakage of individual roots. Peak pulling resistance was explained in a regression model by a combination of a measure of plant size and the extent to which the uprooting resistance of individual roots was additive. This additive effect is termed root co-operation. A simple model is presented to demonstrate the role played by root co-operation in uprooting resistance. In similar uprooting tests on Arabidopsis thaliana, the mutant axr 4-2, with very restricted lateral development, showed a 14% reduction in peak pulling resistance when compared with the wild-type plants of similar shoot dry weight. The uprooting force trace of axr 4-2 was different to that of the wild type, and the main axis was a more significant contributor to anchorage than in the wild type. By contrast, the root hair-deficient mutant rhd 2-1 showed no difference in peak pulling resistance compared with the wild type, suggesting that root hairs do not normally play a role in uprooting resistance. The results show that lateral roots play an important role in anchorage, and that co-operation between roots may be the most significant factor.  相似文献   

12.
杨树派间不同种的遗传密码子使用频率分析   总被引:1,自引:0,他引:1  
周猛  童春发  施季森 《遗传学报》2007,34(6):555-561
遗传密码子的简并性特征造成了不同物种使用的密码子存在偏爱性。了解不同物种的密码子使用特点,可以为外源基因导入过程中的基因改造提供依据,从而实现外源基因的高效表达。杨树是世界上广泛栽培的重要造林树种之一,已经成为林木基因工程研究的模式植物。本研究采用高频密码子分析法,对美洲山杨P.tremuloides,毛白杨P.tomentosa,美洲黑杨P.deltoids和毛果杨P.trichocarpa 4种杨树的蛋白质编码基因序列(CDS)进行了分析,计算出了杨树同义密码子相对使用频率(RFSC),确定了4种杨树的高频率密码子,发现虽然不同种类的杨树密码子使用上有一些差别,但是偏爱密码子的差别却很小,共性的密码子占绝大多数。仅有Pro,Thr和Cys等少数几个氨基酸的偏爱密码子有差别。这种“共性”提示我们,用不同种的杨树中任何一种杨树的偏爱密码子所设计的外源基因在其他杨树中也可以使用。  相似文献   

13.
Bamboo is considered useful for controlling landslides, but we observed numerous shallow-slope failures in forests of big node bamboo (Phyllostachys nidularia) in Sichuan, China. Therefore, we inventoried landslide occurrence and vegetation type along one valley. To quantify bamboo root anchorage, we performed uprooting tests and measured plant morphological characteristics. Landslide occurrence was greatest at sites with bamboo and young trees. Culm failure was common because of the high length to diameter ratio (242 ± 6). Uprooting tests showed that the maximal force to cause failure was small (1615 ± 195 N). Uprooting force was strongly and positively regressed with a combination of the predictors lateral root number and volume (R(2) = 0.92), and root systems were highly superficial (depth = 0.15 ± 0.12 m), contributing little to slope stability. In P. nidularia, which grows on landslide-prone slopes, surprisingly few resources have been allocated to anchorage. We suggest that this strategy puts this pioneer at an advantage on steep slopes, where it contributes little to slope stability and colonizes frequently formed gaps through vegetative regeneration. Fewer disturbances would result in subsequent secondary succession and dying back of this shade intolerant species.  相似文献   

14.
Populus deltoides, P. nigra, and P. trichocarpa are the most important species for poplar breeding programs worldwide. In addition, Populus has become a model for fundamental research on trees. Linkage maps were constructed for these three species by analyzing progeny of two controlled crosses sharing the same female parent, Populus deltoides cv. S9-2 x P. nigra cv. Ghoy and P. deltoides cv. S9-2 x P. trichocarpa cv. V24. The two-way pseudotestcross mapping strategy was used to construct the maps. Amplified fragment length polymorphism (AFLP) markers that segregated 1:1 were used to form the four parental maps. Microsatellites and sequence-tagged sites were used to align homoeologous groups between the maps and to merge linkage groups within the individual maps. Linkage analysis and alignment of the homoeologous groups resulted in 566 markers distributed over 19 groups for P. deltoides covering 86% of the genome, 339 markers distributed over 19 groups for P. trichocarpa covering 73%, and 369 markers distributed over 28 groups for P. nigra covering 61%. Several tests for randomness showed that the AFLP markers were randomly distributed over the genome.  相似文献   

15.
Leaf growth responses to light have been compared in two species of Populus, P. deltoides and P. trichocarpa. These species differ markedly in morphology, anatomy, and dependence on light during leaf expansion. Light stimulates the growth rate and acidification of cell walls in P. trichocarpa but not in P. deltoides, whereas leaves of P. deltoides maintain growth in the dark. Light-induced growth is promoted in P. deltoides when cells are provided 50-100 mM KCl. In both species, light initially depolarizes, then hyperpolarizes mesophyll plasma membranes. However, in the dark, the resting E(m) of mesophyll cells in P. deltoides, but not in P. trichocarpa, is relatively insensitive to decade changes in external [K+]. Results suggest that light-stimulated leaf growth depends on developmentally regulated cellular mechanisms controlling ion fluxes across the plasma membrane. These developmental differences underlie species-level differences in growth and physiological responses to the photoenvironment.  相似文献   

16.
Plant and Soil - A reliable root architectural model is required to study tree anchorage, including secondary root growth, from seed to the mature stage. We calibrated the generic RootTyp model for...  相似文献   

17.
The mechanical development of the anchorage system of the taprooted tropical speciesMallotus wrayiKing (Euphorbiaceae) wasinvestigated by pulling over and examining trees with a diameterat breast height (dbh) of 4.2 cm to 14.3 cm. The mode of mechanicalfailure depended upon the size of the tree: thicker trees (dbhapprox.9 cm) failed in the ground with their tap roots pushing intothe soil on the winchward side; in smaller trees (dbhapprox.7 cm) the trunk snapped before anchorage failure; and in verysmall trees (of dbh<6 cm) neither type of failure occurredand the trees returned to their original upright position undamagedafter the test. The anchorage strength of the trees was correlatedwith the second power of trunk diameter rather than with thethird power that theory suggests is optimal because tap rootsdid not show an isometric increase in length or diameter. Thereforeas trees grow larger the ‘factor of safety’ againstanchorage failure falls, making them prone to fail in theirroots. These results suggest that only relatively small treespecies can rely solely on the tap root to prevent uprooting.It may be for this reason that most larger trees develop thicklateral roots.Copyright 1998 Annals of Botany Company Anchorage, tap roots, scaling,Mallotus wrayi, isometric growth, functional development, windthrow, root systems.  相似文献   

18.
Eugenia grandis (Wight) is grown in urban environments throughout Malaysia and root systems are often damaged through trenching for the laying down of roads and utilities. We investigated the effect of root cutting through trenching on the biomechanics of mature E. grandis. The force necessary to winch trees 0.2 m from the vertical was measured. Trenches were then dug at different distances (1.5, 1.0 and 0.5 m) from the trunk on the tension side of groups of trees. Each tree was winched sideways again and the uprooting force recorded. No trenches were made in a control group of trees which were winched until failure occurred. Critical turning moment (TMcrit) and tree anchorage rotational stiffness (TARS) before and after trenching were calculated. Root systems were extracted for architectural analysis and relationships between architectural parameters and TMcrit and TARS were investigated. No differences were found between TMcrit and trenching distance. However, in control trees and trees with roots cut at 1.5 m, significant relationships did exist between both TMcrit and TARS with stem dimensions, rooting depth and root plate size. TARS was significantly decreased when roots were cut at 0.5 m only. Surprisingly, no relationships existed between TMcrit and TARS with any root system parameter when trenching was carried out at 0.5 or 1.0 m. Our study showed that in terms of TARS and TMcrit, mechanical stability was not greatly affected by trenching, probably because rooting depth close to the trunk was a major component of anchorage.  相似文献   

19.
The anchorage of winter wheat, Triticum aestivum L., is providedby a cone of rigid coronal roots which emerge from around thestem base. During root lodging this cone rotates at its windwardedge below the soil surface, the soil inside the cone movingas a block and compressing the soil beneath. A theoretical modelof anchorage suggested that lodging resistance should be dependenton the diameter of the root-soil cone, coronal root bendingstrength and soil shear strength. We tested the predictions of the anchorage model by carryingout two series of experiments. In the first, varieties of contrastinglodging resistances were artificially lodged. The moment requiredto rotate plants into the soil, the diameter of the root-soilcone, and the bending strength of the coronal roots were recorded.The lodging moment was correlated with the size of the soilcone, as predicted. Generally, differences in anchorage strengthbetween varieties were due to differences in root-soil conediameter, although coronal root strength was also important. A second series of tests was carried out using model plantsanchored by plastic discs. The behaviour of the models duringartificial lodging supported the anchorage model; the forceresisting lodging was similar to that of plants with root-soilcones of the same size and the resisting force was dependenton the soil strength. These results suggest that root lodging resistance might beimproved by increasing both the angle of spread and the bendingstrength of the coronal roots. Key words: Anchorage, root-soil cone, coronal roots, lodging, wheat  相似文献   

20.
Model of the mechanics of uprooting lead to the identificationof ‘optimal’ anchorage systems which can withstanda given upward force at a minimum construction cost. Such systemshave many downward-pointing fibrous roots which are strengthenedprogressively towards the base. A study of the anchorage systemof 7- and 21-d-old wheat (Triticum aestivum L.) plants showedthat the plants possessed five seminal roots, of which onlythree pointed vertically. Each root was well suited for anchorage,being convered in root hairs and strengthened progressivelytowards the base by lignification of the stele. Strength andstiffiness of roots but not their mass per unit length increasedwith age. There was little interaction between roots when plantswere uprooted; the three vertical roots broke while the twohorizontal ones pulled out, as occurred when roots were pulledout singly, Uprooting forces increased with age and the rootsystem could withstand uprooting forces greater than those requiredto pull out upper leaves, so reducing the chances of the plantbeing uprooted by a herbivore, By 3 weeks a stiff adventitiousroot system, which would later help prevent the wheat lodging,was developing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号