首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
NMDA receptor activation: critical role in oxidant tissue injury   总被引:7,自引:0,他引:7  
The excitatory amino acid glutamate serves important neurologic functions, but overactivation of its N-methyl-D-aspartate (NMDA) receptor is toxic to neurons (excitotoxicity). We report that NMDA receptor blocker MK-801 (dizocilpine maleate) attenuated oxidant injury induced by paraquat or by xanthine oxidase. We conclude that excitotoxicity may be a key factor in oxidant tissue injury.  相似文献   

2.
In cynomologus monkeys, systemic administration of MK-801, a noncompetitive antagonist for the N-methyl-D-aspartate receptor, prevented the development of the parkinsonian syndrome induced by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MK-801 also attenuated dopamine depletion in the caudate and putamen and protected dopaminergic neurons in the substantia nigra from the degeneration induced by the neurotoxin. Nevertheless, 7 days after MPTP administration in the caudate and putamen of monkeys also receiving MK-801, the levels of toxic 1-methyl-4-phenylpyridinium were even higher than those measured in monkeys receiving MPTP alone. This indicates that the protective action of MK-801 is not related to MPTP metabolism and strongly suggests that, in primates, the excitatory amino acids could play a crucial role in the mechanism of the selective neuronal death induced by MPTP.  相似文献   

3.
Glutamate is a major excitatory neurotransmitter in the mammalian central nervous system and initiates the events leading to ischemic brain damage. Glutamate receptor antagonists are being used to reduce neuronal damage observed after hypoxia and ischemia. The glutamate receptor antagonist, (+)-5-methyl-10,11-dihydro-5H-dibenzo-(a,d)-cyclohepten-5,10-imine maleate (MK-801) crosses the blood-brain barrier readily and produces a non-competitive use-dependent blockade of the N-methyl-D-aspartate subtype of glutamate receptor. The aim of this study was to investigate effects of MK-801 administered before and just after the onset of ischemia in rats on nitrite and cyclic guanosine monophosphate (cGMP) levels. Focal cerebral ischemia in rats was produced by permanent occlusion of right middle cerebral artery (MCAO). Nitrite and cGMP levels were measured in both cortex and cerebellum at 0, 10, and 60 min following MCAO. The same parameters were measured in rats treated with MK-801 (0.5 mg/kg, i.p.) 30 min before or just after MCAO. Ipsilateral cortical nitrite levels were increased relative to contralateral cortex after MCAO. No significant changes were observed in cerebellum. The cGMP concentrations in both sides of the cortex and cerebellum were increased at 10 and 60 min compared with 0 min values. cGMP level in the ipsilateral cortex was higher than contralateral cortex, whereas the opposite was found for the cerebellum. MK-801 treatment before or just after MCAO decreased significantly nitrite and cGMP production. Our data indicate that MK-801 treatment before or just after focal ischemia prevents the increase in NO and cGMP production.  相似文献   

4.
The potent noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist [3H]MK-801 bound with nanomolar affinity to rat brain membranes in a reversible, saturable, and stereospecific manner. The affinity of [3H]MK-801 was considerably higher in 5 mM Tris-HCl (pH 7.4) than in previous studies using Krebs-Henseleit buffer. [3H]MK-801 labels a homogeneous population of sites in rat cerebral cortical membranes with KD of 6.3 nM and Bmax of 2.37 pmol/mg of protein. This binding was unevenly distributed among brain regions, with hippocampus greater than cortex greater than olfactory bulb = striatum greater than medulla-pons, and the cerebellum failing to show significant binding. Detailed pharmacological characterization indicated [3H]MK-801 binding to a site which was competitively and potently inhibited by known noncompetitive NMDA receptor antagonists, such as phencyclidine, thienylcyclohexylpiperidine (TCP), ketamine, N-allylnormetazocine (SKF 10,047), cyclazocine, and etoxadrol, a specificity similar to sites labelled by [3H]TCP. These sites were distinct from the high-affinity sites labelled by the sigma receptor ligand (+)-[3H]SKF 10,047. [3H]MK-801 binding was allosterically modulated by the endogenous NMDA receptor antagonist Mg2+ and by other active divalent cations. These data suggest that [3H]MK-801 labels a high-affinity site on the NMDA receptor channel complex, distinct from the NMDA recognition site, which is responsible for the blocking action of MK-801 and other noncompetitive NMDA receptor antagonists.  相似文献   

5.
Conantokins T and G are polypeptide toxins present in snails of the genus Conus. These substances were recently reported to act as N-methyl-D-aspartate (NMDA) antagonists. In the present study, we examined the possible mechanisms producing this antagonism. Conantokin-G inhibited spermine- and spermidine-stimulated [3H]MK-801 binding to extensively washed rat forebrain membranes in a noncompetitive manner with IC50 values of approximately 507 and approximately 946 nM, respectively. In contrast, glutamate-enhanced [3H]MK-801 binding was unaffected by conantokin-G concentrations of less than or equal to 20 microM. At concentrations greater than or equal to 5 microM, conantokin-G effected a modest, noncompetitive inhibition of glycine-stimulated [3H]MK-801 binding and also produced a small enhancement of basal [3H]MK-801 binding. Conantokin-G reduced (IC50 approximately 1.08 microM) the NMDA-stimulated accumulation of cyclic GMP in cerebellar granule cell cultures to basal values, but did not affect kainate-mediated increases in cyclic GMP. These findings indicate that conantokin-G acts as a noncompetitive NMDA antagonist through an allosteric inhibition of polyamine responses. The neurochemical profile of this polypeptide is distinct from previously described noncompetitive NMDA antagonists.  相似文献   

6.
Abstract: Excitatory amino acid (EAA) neurotransmitters may play a role in the pathophysiology of traumatic injury to the CNS. Although NMDA receptor antagonists have been reported to have therapeutic efficacy in animal models of brain injury, these compounds may have unacceptable toxicity for clinical use. One alternative approach is to inhibit the release of EAAs following traumatic injury. The present study examined the effects of administration of a novel sodium channel blocker and EAA release inhibitor, BW1003C87, or the NMDA receptor-associated ion channel blocker magnesium chloride on cerebral edema formation following experimental brain injury in the rat. Animals (n = 33) were subjected to fluid percussion brain injury of moderate severity (2.3 atm) over the left parietal cortex. Fifteen minutes after injury, the animals received a constant infusion of BW1003C87 (10 mg/kg, i.v.), magnesium chloride (300 µmol/kg, i.v.), or saline over 15 min (2.75 ml/kg/15 min). In all animals, regional tissue water content in brain was assessed at 48 h after injury, using the wet weight/dry weight technique. In saline-treated control animals, fluid percussion brain injury produced significant regional brain edema in injured left parietal cortex ( p < 0.001), the cortical area adjacent to the site of maximal injury ( p < 0.001), left hippocampus ( p < 0.001), and left thalamus ( p = 0.02) at 48 h after brain injury. Administration of BW1003C87 15 min postinjury significantly reduced focal brain edema in the cortical area adjacent to the site of maximal injury ( p < 0.02) and left hippocampus ( p < 0.01), whereas magnesium chloride attenuated edema in left hippocampus ( p = 0.02). These results suggest that excitatory neurotransmission may play an important role in the pathogenesis of posttraumatic brain edema and that pre- or post-synaptic blockade of glutamate receptor systems may attenuate part of the deleterious sequelae of traumatic brain injury.  相似文献   

7.
We have investigated the contribution of excitatory amino acid receptor activation to the inhibition of protein synthesis observed after anoxia in rat hippocampal slices. Protein synthesis was assessed in normoxic medium by measuring the incorporation of [14C]lysine into perchloric acid-insoluble tissue extracts. Protein synthesis was impaired after anoxia; the extent of inhibition was dependent on the duration of anoxia and on the time allowed for postanoxic recovery. There was a similar impairment under normoxic conditions when the N-methyl-D-aspartate (NMDA) receptor channel was activated by removing Mg2+ and adding NMDA. This was prevented by noncompetitive antagonists of the NMDA receptor channel (MK-801, phencyclidine, and N-allylnormetazocine). In contrast, incubation with the NMDA antagonists failed to prevent the protein synthesis inhibition caused by anoxia, although it moderately facilitated the postanoxic recovery. Protein synthesis was also impaired under normoxic conditions after incubation with quisqualate and kainate, agonists of non-NMDA glutamate receptors. This impairment was prevented by 6-cyano-7-nitroquinoxaline-2,3-dione, an antagonist of these receptors. Although 6-cyano-7-nitroquinoxaline-2,3-dione alone failed to prevent anoxic damage, when used in combination with an NMDA antagonist it did partially enhance the later recovery of protein synthesis. These results indicate that the activation of excitatory amino acid receptors cannot alone account for anoxia-induced impairment of protein synthesis in rat hippocampal slices.  相似文献   

8.
Direct stimulation of pituitary prolactin release by glutamate   总被引:4,自引:0,他引:4  
I S Login 《Life sciences》1990,47(24):2269-2275
The ability of glutamate and other excitatory amino acids to stimulate prolactin secretion when administered to adult animals is hypothesized to depend on a central site of action in the brain, but there are no data to support this position. An alternative hypothesis was tested that glutamate would stimulate prolactin release when applied directly to primary cultures of dispersed adult female rat anterior pituitary cells studied in a perifusion protocol. Glutamate increased the rate of prolactin release within two minutes in a self-limited manner. Glutamate-stimulated prolactin release was augmented about 4-fold by elimination of magnesium from the perfusate and was associated with stimulation of pituitary calcium flux. Ketamine and MK-801 both reduced the basal rate of prolactin release and abolished the effects of glutamate. Pituitary cells of 10-day-old rats responded similarly to glutamate. Exposure to glutamate did not influence subsequent responses to physiological hypothalamic secretagogues, thus the likelihood of toxicity was minimized. These results suggest that the N-methyl-D-aspartate (NMDA) subclass of the glutamate receptor complex is involved. Prolactin secretion may be regulated physiologically through a functional glutamate receptor on pituitary cells.  相似文献   

9.
Multiple studies demonstrate that coadministration of N-methyl-D-aspartate (NMDA) receptor antagonists with the opioid agonist morphine attenuates the development of analgesic tolerance. Sex differences in the effects of noncompetitive, but not competitive NMDA receptor antagonists on acute morphine analgesia, have been reported in mice, yet the role of sex in modulation of morphine tolerance by NMDA receptor antagonists has yet to be addressed. Therefore, we tested whether there is a sex difference in the effect of NMDA receptor antagonists on the development of morphine analgesic tolerance in C57BL/6J mice. Acutely, at a dose required to affect morphine tolerance in male mice, the noncompetitive NMDA receptor antagonist dizocilpine (MK-801) prolonged morphine analgesia similarly in both sexes in the hot plate and tail withdrawal assays. In the hot plate assay, coadministration of MK-801 or the competitive antagonist 3-(2-carboxpiperazin-4-yl)propyl-1-phosphanoic acid (CPP) with morphine attenuated the development of tolerance in male mice, while having no effect in females. Like normal and sham females, ovariectomized mice were similarly insensitive to the attenuation of morphine tolerance by MK-801 in the hot plate assay. Surprisingly, in the tail withdrawal assay, MK-801 facilitated the development of morphine-induced hyperalgesia and tolerance in males but not females. The results demonstrate that male mice are more sensitive to modulation of nociception and morphine analgesia after repeated coadministration of NMDA receptor antagonists. Furthermore, the underlying mechanisms are likely to be different from those mediating the sex difference in the modulation of acute morphine analgesia that has previously been reported.  相似文献   

10.
[3H]Glycine binding and glycine modulation of [3H]MK-801 binding have been used to study the glycine allosteric site associated with the N-methyl-D-aspartate receptor complex in postmortem human brain. The effect of glycine on [3H]MK-801 binding appeared sensitive to duration of terminal coma, and possibly postmortem delay. Thirty percent of the binding occurred in a subfraction of brain tissue and did not show enhancement by glycine and glutamic acid. [3H]Glycine binding to a subfraction free from this component was studied and showed high specific binding. KD and Bmax values showed considerable intersubject variability which did not appear to be due to demographic features or to tissue content of amino acids with an affinity for this site. The pharmacological characteristics of binding in this subfraction and a correlation between Bmax values and the maximal enhancement of [3H]MK-801 binding by glycine are consistent with [3H]glycine binding occurring to an N-methyl-D-aspartate receptor complex associated site. Further support for this is provided by a significantly lower Bmax value for [3H]glycine binding in subjects with Alzheimer's disease and reduced glycine enhancement of [3H]MK-801 binding. However, the effect of perimortem factors makes it difficult to confidently attribute this solely to a disease-related change in the receptor. The possible role of the glycine allosteric site in the treatment of neuropsychiatric disorders is discussed.  相似文献   

11.
Systemic injection of MK-801, a noncompetitive antagonist of N-methyl-D-aspartate (NMDA) receptor ion channels, increases meal size and delays satiation. We examined whether MK-801 increases food intake by directly interfering with actions of cholecystokinin (CCK). Prior administration of MK-801 (100 microg/kg ip) reversed the inhibitory effects of CCK-8 (2 and 4 microg/kg ip) on real feeding of both liquid and solid foods. MK-801 alone did not alter 30-min sham intake of 15% sucrose compared with intake after saline. Furthermore, while CCK-8 (2 or 4 microg/kg ip) reduced sham intake, this reduction was not attenuated by MK-801 pretreatment. To ascertain whether MK-801 attenuation of CCK-induced reduction of real feeding was associated with attenuated inhibition of gastric emptying, we tested the effect of MK-801 pretreatment on CCK-induced inhibition of gastric emptying of 5-ml saline loads. Ten-minute gastric emptying was accelerated after MK-801 (3.9 +/- 0.2 ml) compared with saline vehicle (2.72 +/- 0.2 ml). CCK-8 (0.5 microg/kg ip) reduced 10-min emptying to 1.36 +/- 0.3 ml. Pretreatment with MK-801 did not significantly attenuate CCK-8-induced reduction of gastric emptying (0.9 +/- 0.4 ml). This series of experiments demonstrates that blockade of NMDA ion channels reverses inhibition of real feeding by CCK. However, neither inhibition of sham feeding nor inhibition of gastric emptying by CCK is attenuated by MK-801. Therefore, increased food intake after NMDA receptor blockade is not caused by a direct interference with CCK-induced satiation. Rather, increased real feeding, either in the presence or absence of CCK, depends on blockade of NMDA receptor participation in other post-oral feedback signals such as gastric sensation or gastric tone.  相似文献   

12.
To evaluate the possibility of pharmacologically distinct N-methyl-D-aspartate (NMDA) receptor subtypes, quantitative autoradiography was used to determine the potency of several compounds as inhibitors of L-[3H]glutamate or [3H]MK-801 binding to rat brain NMDA receptors in 10 brain regions. Competitive NMDA receptor antagonists displayed differing pharmacological profiles in the forebrain, cerebellum, and medial regions of the thalamus (midline nuclei). For example, compared with other competitive antagonists, 3-[(+/-)-2-carboxypiperazin-4-yl]propyl-1-phosphonate (CPP) and LY-233536 were especially weak displacers of L-[3H]glutamate binding in the cerebellum. In the the medial thalamus, CPP and D-2-amino-5-phosphonopentanoate displayed relatively low affinities, whereas LY-233536 was relatively potent. The noncompetitive NMDA receptor antagonists also displayed regional variations in their pharmacological profiles. Relative to other regions, [3H]MK-801 binding in the cerebellum was weakly displaced by MK-801 and potently displaced by dextromethorphan and SKF-10047. In the medial thalamus, 1-[1-(2-thienyl)-cyclohexyl]piperidine was relatively potent and SKF-10047 was relatively weak. These results confirm previous suggestions that the cerebellum contains a distinct NMDA receptor subtype and indicate that nuclei of the medial thalamus contain a novel NMDA receptor subtype that is distinct from both those found in the cerebellum and in the forebrain.  相似文献   

13.
The N-methyl-D-aspartate (NMDA) receptor is thought to contain several distinct binding sites that can regulate channel opening. In the present experiments, the effects of ligands for these sites have been examined on [3H]MK-801 binding to a soluble receptor preparation, which had been passed down a gel filtration column to reduce the levels of endogenous small-molecular-weight substances. Glycine site agonists, partial agonists, and antagonists gave effects similar to those observed in membranes [EC50 values (in microM): glycine, 0.31; D-serine, 0.20; D-cycloserine, 1.46; (+)-HA-966, 4.06; and 7-chlorokynurenic acid, 1.81]. Spermine and spermidine enhanced [3H]MK-801 binding to the soluble receptor preparation (EC50, 4.3 and 20.1 microM, respectively), whereas putrescine and cadaverine gave small degrees of inhibitions. When spermine and spermidine were tested under conditions where [3H]MK-801 binding approached equilibrium, their ability to enhance [3H]MK-801 binding was much reduced, a result suggesting that the polyamines increase the rate to equilibrium. Putrescine antagonised the effects of spermine. Ifenprodil reduced [3H]MK-801 binding under both equilibrium and nonequilibrium conditions, although the high-affinity component of inhibition described in membranes was not observed. Ifenprodil antagonised spermine effects in an apparently noncompetitive manner. Desipramine was able to give total inhibition of specific [3H]MK-801 binding under nonequilibrium conditions with an IC50 of 4 microM, and this value was unaltered when [3H]MK-801 binding was allowed to reach equilibrium. These results suggest that the sites mediating the effects of glycine and its analogues, polyamines and desipramine are integral components of the NMDA receptor protein.  相似文献   

14.
MK-801, an N-methyl-D-aspartate antagonist in mammalian brain tissue, is a potent nematocidal agent. Specific MK-801 binding sites have been identified and characterized in a membrane fraction prepared from the free-living nematode Caenorhabditis elegans. The high-affinity MK-801 binding site has an apparent dissociation constant, Kd, of 225 nM. Unlike the MK-801 binding site in mammalian tissues, the C. elegans binding site is not effected by glutamate or glycine, and polyamines are potent inhibitors of specific MK-801 binding.  相似文献   

15.
Chronic in vivo or in vitro application of GABA(A) receptor agonists alters GABA(A) receptor peptide expression and function. Furthermore, chronic in vitro application of N-methyl-D-aspartate (NMDA) agonists and antagonists alters GABA(A) receptor function and mRNA expression. However, it is unknown if chronic in vivo blockade of NMDA receptors alters GABA(A) receptor function and peptide expression in brain. Male Sprague-Dawley rats were chronically administered the noncompetitive NMDA receptor antagonist MK-801 (0.40 mg/kg, twice daily) for 14 days. Chronic blockade of NMDA receptors significantly increased hippocampal GABA(A) receptor alpha4 and gamma2 subunit expression while significantly decreasing hippocampal GABA(A) receptor alpha2 and beta2/3 subunit expression. Hippocampal GABA(A) receptor alpha1 subunit peptide expression was not altered. In contrast, no significant alterations in GABA(A) receptor subunit expression were found in cerebral cortex. Chronic MK-801 administration also significantly decreased GABA(A) receptor-mediated hippocampal Cl- uptake, whereas no change was found in GABA(A) receptor-mediated cerebral cortical Cl- uptake. Finally, chronic MK-801 administration did not alter NMDA receptor NR1, NR2A, or NR2B subunit peptide expression in either the cerebral cortex or the hippocampus. These data demonstrate heterogeneous regulation of GABA(A) receptors by glutamatergic activity in rat hippocampus but not cerebral cortex, suggesting a new mechanism of GABA(A) receptor regulation in brain.  相似文献   

16.
N-methyl-D-aspartate prevented memory deficits induced by MK-801 in mice   总被引:2,自引:0,他引:2  
An interaction between N-methyl-D-aspartate (NMDA) and MK-801 was examined in mice using a modified elevated plus-maze paradigm that allows assessment of the adaptive form of spatial memory. NMDA administered (s.c.) immediately after the acquisition session protected the animals against the amnesia induced by MK-801 given shortly before the retention session. Behavioral performance, expressed as the transfer latency, and therefore spatial memory potency of NMDA plus MK-801 treated animals was comparable with that of both NMDA-treated animals and the controls.  相似文献   

17.
The relationship between an initial mechanical event causing brain tissue deformation and delayed neurodegeneration in vivo is complex because of the multiplicity of factors involved. We have used a simplified brain surrogate based on rat hippocampal slices grown on deformable silicone membranes to study stretch-induced traumatic brain injury. Traumatic injury was induced by stretching the culture substrate, and the biological response characterized after 4 days. Morphological abnormalities consistent with traumatic injury in humans were widely observed in injured cultures. Synaptic function was significantly reduced after a severe injury. The N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 attenuated neuronal damage, prevented loss of microtubule-associated protein 2 immunoreactivity and attenuated reduction of synaptic function. In contrast, the NMDA receptor antagonists 3-[(R)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (CPP) and GYKI53655, were neuroprotective in a moderate but not a severe injury paradigm. Nifedipine, an L-type voltage-dependent calcium channel antagonist was protective only after a moderate injury, whereas omega-conotoxin attenuated damage following severe injury. These results indicate that the mechanism of damage following stretch injury is complex and varies depending on the severity of the insult. In conclusion, the pharmacological, morphological and electrophysiological responses of organotypic hippocampal slice cultures to stretch injury were similar to those observed in vivo. Our model provides an alternative to animal testing for understanding the mechanisms of post-traumatic delayed cell death and could be used as a high-content screen to discover neuroprotective compounds before advancing to in vivo models.  相似文献   

18.
The N-methyl-D-aspartate (NMDA) receptor complex as defined by the binding of [3H]MK-801 has been solubilized from membranes prepared from both rat and porcine brain using the anionic detergent deoxycholate (DOC). Of the detergents tested DOC extracted the most receptors (21% for rat, 34% for pig), and the soluble complex, stabilized by the presence of MK-801, could be stored for up to 1 week at 4 degrees C with less than 25% loss in activity. Receptor preparations from both species exhibited [3H]MK-801 binding properties in solution very similar to those observed in membranes (Bmax = 485 +/- 67 fmol/mg of protein, KD = 11.5 +/- 2.9 nM in rat; Bmax = 728 +/- 108 fmol/mg of protein, KD = 7.1 +/- 1.6 nM in pig, n = 3). The pharmacological profile of the solubilized [3H]MK-801 binding site was virtually identical to that observed in membranes. The rank order of potency of: MK-801 greater than (-)-MK-801 = thienylcyclohexylpiperidine greater than dexoxadrol greater than SKF 10,047 greater than ketamine, for inhibition of [3H]MK-801 binding, was observed in all preparations. The receptor complex in solution exhibited many of the characteristic modulations observed in membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
In order to elucidate the possible roles of the glutamate system in the mechanisms underlying behavioral sensitization, which is used as an animal model for human psychosis, we investigated the effects of 3-((+/-)-2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) and MK-801 ((+)-dizocilpine), a competitive and noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, respectively, on methamphetamine-induced behavioral sensitization in rats. Administration of 0.5 mg/kg MK-801 enhanced 2 mg/kg methamphetamine-induced hyperactivity, whereas it reduced 6 mg/kg methamphetamine-induced stereotyped behavior markedly. CPP (10 mg/kg) reduced 2 mg/kg methamphetamine-induced stereotypy slightly. Repeated treatment with 2 and 6 mg/kg methamphetamine alone induced progressive augmentation of stereotypy, whereas combining either MK-801 or CPP with methamphetamine treatment abolished or attenuated this augmentation. However, when rats were challenged with methamphetamine after a 7-day period of abstinence, the intensity of stereotypy among the rats pretreated with repeated doses of methamphetamine alone or in combination with MK-801 or CPP did not differ significantly. These results indicate that competitive and non-competitive NMDA receptor antagonists modulate acute methamphetamine-induced abnormal behavior and sensitization expression, but they failed to prevent the induction of the neural mechanisms underlying behavioral sensitization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号