首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In two models of pest control using a pesticidal crop along with a non-pesticidal refuge to prevent the development of resistance, we numerically compute the bifurcations that bound the region in parameter space where control is sustainable indefinitely. An exact formula for one of the bifurcation surfaces in one of the models is also found. One model is conceptual and as simple as possible. The other is realistic and very detailed. Despite the great differences in the models, we find the same distinctive bifurcation structure. We focus on the parameters that determine: (i) the restriction of pest exchange between the crop and the refuge, which we call 'screening' the refuge, and (ii) the recessiveness of the resistance trait. The screened refuge technique is seen to work in the models up to quite high values of fitness of resistant heterozygotes, that is, even when resistance is not strongly recessive.  相似文献   

2.
We constructed a reaction-diffusion model of the development of resistance to transgenic insecticidal Bt crops in pest populations. Kostitzin’s demo-genetic model describes local interactions between three competing pest genotypes with alleles conferring resistance or susceptibility to transgenic plants, the spatial spread of insects being modelled by diffusion. This new approach makes it possible to combine a spatial demographic model of population dynamics with classical genetic theory. We used this model to examine the effects of pest dispersal and of the size and shape of the refuge on the efficiency of the “high-dose/refuge” strategy, which was designed to prevent the development of resistance in populations of insect pests, such as the European corn borer, Ostrinia nubilalis Hübner (Lepidoptera, Crambidae). We found that, with realistic combinations of refuge size and pest dispersal, the development of resistance could be considerably delayed. With a small to medium-sized farming area, contiguous refuge plots are more efficient than a larger number of smaller refuge patches. We also show that the formal coupling of classical Fisher–Haldane–Wright population genetics equations with diffusion terms inaccurately describes the development of resistance in a spatially heterogeneous pest population, notably overestimating the speed with which Bt resistance is selected in populations of pests targeted by Bt crops.  相似文献   

3.
The evolution of resistance against pesticides is an important problem of modern agriculture. The high‐dose/refuge strategy, which divides the landscape into treated and nontreated (refuge) patches, has proven effective at delaying resistance evolution. However, theoretical understanding is still incomplete, especially for combinations of limited dispersal and partially recessive resistance. We reformulate a two‐patch model based on the Comins model and derive a simple quadratic approximation to analyze the effects of limited dispersal, refuge size, and dominance for high efficacy treatments on the rate of evolution. When a small but substantial number of heterozygotes can survive in the treated patch, a larger refuge always reduces the rate of resistance evolution. However, when dominance is small enough, the evolutionary dynamics in the refuge population, which is indirectly driven by migrants from the treated patch, mainly describes the resistance evolution in the landscape. In this case, for small refuges, increasing the refuge size will increase the rate of resistance evolution. Our analysis distils major driving forces from the model, and can provide a framework for understanding directional selection in source‐sink environments.  相似文献   

4.
A mathematical model was constructed to describe the evolution of resistance to the Bacillus thuringiensis toxin (Bt) in an insect pest (European corn borer) population on a transgenic crop (Bt corn). The model comprises a set of partial differential equations of the reaction-diffusion type; local interactions of three competing pest genotypes formed by alleles of Bt resistance and susceptibility are described as in the Kostitzin model, and the spread of insects is modeled as diffusion. The model was used to evaluate the influence of pest characteristics on the efficacy of the high-dose/refuge strategy aiming to prevent or delay the spread of Bt resistance in pest populations. It was shown, by contrast, that a model based on Fisher-Haldane-Wright equations and formally incorporating a diffusion term cannot adequately describe the evolution of Bt resistance in a spatially inhomogeneous pest population. Further development of the proposed demo-genetic model is discussed.  相似文献   

5.
The refuge strategy is designed to delay evolution of pest resistance to transgenic crops producing Bacillus thuringiensis Berliner (Bt) toxins. Movement of insects between Bt crops and refuges of non-Bt crops is essential for the refuge strategy because it increases chances that resistant adults mate with susceptible adults from refuges. Conclusions about optimal levels of movement for delaying resistance are not consistent among previous modeling studies. To clarify the effects of movement on resistance evolution, we analyzed simulations of a spatially explicit model based partly on the interaction of pink bollworm, Pectinophora gossypiella (Saunders), with Bt cotton. We examined resistance evolution as a function of insect movement under 12 sets of assumptions about the relative abundance of Bt cotton (50 and 75%), temporal distribution of Bt cotton and refuge fields (fixed, partial rotation, and full rotation), and spatial distribution of fields (random and uniform). The results show that interactions among the relative abundance and distribution of refuges and Bt cotton fields can alter the effects of movement on resistance evolution. The results also suggest that differences in conclusions among previous studies can be explained by differences in assumptions about the relative abundance and distribution of refuges and Bt crop fields. With fixed field locations and all Bt cotton fields adjacent to at least one refuge, resistance evolved slowest with low movement. However, low movement and fixed field locations favored rapid resistance evolution when some Bt crop fields were isolated from refuges. When refuges and Bt cotton fields were rotated to the opposite crop type each year, resistance evolved fastest with low movement. Nonrecessive inheritance of resistance caused rapid resistanceevolution regardless of movement rate. Confirming previous reports, results described here show that resistance can be delayed effectively by fixing field locations and distributing refuges uniformly to ensure that Bt crop fields are not isolated from refuges. However, rotating fields provided better insect control and reduced the need for insecticide sprays.  相似文献   

6.
Experimental evaluation of the effectiveness of resistance management tactics is vital to help provide guidelines for the deployment of transgenic insecticidal crops. Transgenic broccoli expressing a Cry1Ac gene of Bacillus thuringiensis (Bt) and the diamondback moth, Plutella xylostella (L.), were used in greenhouse tests to evaluate the influence of size and placement of nontransgenic refuge plants on changes in resistance allele frequency and pest population growth. In the first test with an initial Cry1Ac-resistance (R) allele frequency of 0.007, P. xylostella were introduced into cages with the following treatments: 0, 3.3, 10, 20, and 100% refuge plants. Results after four generations showed that resistance could be delayed by increasing the proportion of refuge plants in the cage. Population growth was also influenced by refuge size with the highest populations occurring in treatments that had either no refuge plants or all refuge plants. In the second test, we evaluated the effect of refuge placement by comparing 20% separate and 20% mixed refuges. P. xylostella with an initial frequency of resistant alleles at 0.0125 were introduced into cages and allowed to cycle; later generations were evaluated for resistance and population growth. Separating the refuge had a pronounced effect on delaying resistance and slowing establishment of resistant larvae on Bt plants. Combining information from both trials, we found a strong negative correlation between the number of larvae on Bt plants and the mortality of the population in leaf dip bioassays. Results from larval movement studies showed that separate refuges delayed resistance better than mixed refuges because they conserved relatively more susceptible alleles than R alleles and did not increase the effective dominance of resistance.  相似文献   

7.
The major lepidopteran insect pests of cotton and maize harbor intra-specific variation for behavior determining the selection of host plants for oviposition. Yet, the consequences of behavioral adaptation for fitness have neither been modeled nor monitored for Bt cotton and maize crops, the most widely grown transgenic herbivore-resistant plants. Here, we present a general two-locus heuristic model to examine potential outcomes of natural selection when pest populations initially have low frequencies of alleles for both physiological and behavioral adaptation to Bt crops. We demonstrate that certain ecological conditions allow for the evolution of behavioral choices favoring alternative oviposition hosts that limit the increase in resistance alleles, even when they are phenotypically dominant. These results have implications for current refuge policies, which should be adapted to promote the evolution of certain behavioral choices for alternative oviposition hosts in addition to dilution of physiological resistance alleles. Collection of data on oviposition host preference as a component of monitoring schemes will provide important insights into mechanisms underlying the durability of Bt-transgenic host-plant resistance.  相似文献   

8.
In order to delay the development of pest resistance to genetically engineered insecticidal crop varieties, it is current practice to grow "refugees" of non-toxic plants close to insecticidal crops. We model such a toxic/nontoxic crop complex as an open system with a small stream of toxin-susceptible immigrants. We find that, for intermediate values of the dominance of a pest gene for resistance to the toxin, the local refuge can spoil the benefit that is provided by the immigrant stream. We provide formulas for some important boundaries in parameter space.  相似文献   

9.
The 'high-dose-refuge' (HDR) strategy is widely recommended by the biotechnology industry and regulatory authorities to delay pest adaptation to transgenic crops that produce Bacillus thuringiensis (Bt) toxins. This involves cultivating nontoxic plants (refuges) in close proximity to crops producing a high dose of Bt toxin. The principal cost associated with this strategy is due to yield losses suffered by farmers growing unprotected, refuge plants. Using a population genetic model of selection in a spatially heterogeneous environment, we show the existence of an optimal spatial configuration of refuges that could prevent the evolution of resistance whilst reducing the use of costly refuges. In particular, the sustainable control of pests is achievable with the use of more aggregated distributions of nontransgenic plants and transgenic plants producing lower doses of toxin. The HDR strategy is thus suboptimal within the context of sustainable agricultural development.  相似文献   

10.
胡阳  傅强 《昆虫学报》2009,52(6):691-698
目前, 抗虫转基因作物的抗性管理方法主要是高剂量/庇护所策略。该策略的有效性取决于3个基本的假设条件:(1)抗虫转基因作物(Bt作物)表达出高剂量的杀虫蛋白, 该剂量使得靶标害虫对Bt杀虫蛋白的抗性表现型为功能性完全隐性或近于完全隐性, 进而使得Bt作物可以杀死几乎所有的抗性杂合个体和所有的敏感性个体;(2)靶标害虫种群的Bt抗性基因起始频率处于很低的水平;(3)源自转基因作物田和非转基因作物田(庇护所)的成虫在田间随机混合并交配。这3个假设必须同时满足, 缺一不可。本文就这3个假设的理论基础和经验研究的进展进行了综合论述, 并着重讨论了随机交配假设的最新研究进展以及今后的研究方向和方法。  相似文献   

11.
Transgenic crops producing Bacillus thuringiensis (Bt) toxins for insect control have been successful, but their efficacy is reduced when pests evolve resistance. To delay pest resistance to Bt crops, the U.S. Environmental Protection Agency (EPA) has required refuges of host plants that do not produce Bt toxins to promote survival of susceptible pests. Such refuges are expected to be most effective if the Bt plants deliver a dose of toxin high enough to kill nearly all hybrid progeny produced by matings between resistant and susceptible pests. In 2003, the EPA first registered corn, Zea mays L., producing a Bt toxin (Cry3Bb1) that kills western corn rootworm, Diabrotica virgifera virgifera LeConte, one of the most economically important crop pests in the United States. The EPA requires minimum refuges of 20% for Cry3Bb1 corn and 5% for corn producing two Bt toxins active against corn rootworms. We conclude that the current refuge requirements are not adequate, because Bt corn hybrids active against corn rootworms do not meet the high-dose standard, and western corn rootworm has rapidly evolved resistance to Cry3Bb1 corn in the laboratory, greenhouse, and field. Accordingly, we recommend increasing the minimum refuge for Bt corn targeting corn rootworms to 50% for plants producing one toxin active against these pests and to 20% for plants producing two toxins active against these pests. Increasing the minimum refuge percentage can help to delay pest resistance, encourage integrated pest management, and promote more sustainable crop protection.  相似文献   

12.
Globally, the estimated total area planted with transgenic plants producing Bacillus thuringiensis (Bt) toxins was 12 million hectares in 2001. The risk of target pests becoming resistant to these toxins has led to the implementation of resistance-management strategies. The efficiency and sustainability of these strategies, including the high-dose plus refuge strategy currently recommended for North American maize, depend on the initial frequency of resistance alleles. In this study, we estimated the initial frequencies of alleles conferring resistance to transgenic Bt poplars producing Cry3A in a natural population of the poplar pest Chrysomela tremulae (Coleoptera: Chrysomelidae). We used the F(2) screen method developed for detecting resistance alleles in natural pest populations. At least three parents of the 270 lines tested were heterozygous for a major Bt resistance allele. We estimated mean resistance-allele frequency for the period 1999-2001 at 0.0037 (95% confidence interval = 0.00045-0.0080) with a detection probability of 90%. These results demonstrate that (i) the F(2) screen method can be used to detect major alleles conferring resistance to Bt-producing plants in insects and (ii) the initial frequency of alleles conferring resistance to Bt toxin can be close to the highest theoretical values that are expected prior to the use of Bt plants if considering fitness costs and typical mutation rates.  相似文献   

13.
A stochastic spatially explicit computer model is described that simulates the adaptation by western corn rootworm, Diabrotica virgifera virgifera LeConte, to rootworm-resistance traits in maize. The model reflects the ecology of the rootworm in much of the corn belt of the United States. It includes functions for crop development, egg and larval mortality, adult emergence, mating, egg laying, mortality and dispersal, and alternative methods of rootworm control, to simulate the population dynamics of the rootworm. Adaptation to the resistance trait is assumed to be controlled by a monogenic diallelic locus, whereby the allele for adaptation varies from incompletely recessive to incompletely dominant, depending on the efficacy of the resistance trait. The model was used to compare the rate at which the adaptation allele spread through the population under different nonresistant maize refuge deployment scenarios, and under different levels of crop resistance. For a given refuge size, the model indicated that placing the nonresistant refuge in a block within a rootworm-resistant field would be likely to delay rootworm adaptation rather longer than planting the refuge in separate fields in varying locations. If a portion of the refuge were to be planted in the same fields or in-field blocks each year, rootworm adaptation would be delayed substantially. Rootworm adaptation rates are also predicted to be greatly affected by the level of crop resistance, because of the expectation of dependence of functional dominance on dose. If the dose of the insecticidal protein in the maize is sufficiently high to kill >90% of heterozygotes and approximately 100% of susceptible homozygotes, the trait is predicted to be much more durable than if the dose is lower. A partial sensitivity analysis showed that parameters relating to adult dispersal affected the rate of pest adaptation. Partial validation of the model was achieved by comparing output of the model with field data on population dynamics, and with field data documenting rootworm adaptation to cyclodienes and organophosphates.  相似文献   

14.
In the context of genetically modified crops expressing the Bacillus thuringiensis (Bt) toxin, a ‘refuge’ refers to a crop of the same or a related species that is planted nearby to enable growth and reproduction of the target pest without the selection pressure imposed by the Bt toxin. The goal of this study is to discuss the role of natural refuge crops in slowing down the buildup of resistance of cotton bollworm (CBW), and to evaluate China’s no-refuge policy for Bt cotton. We describe in detail the different factors that China should consider in relation to the refuge policy. Drawing on a review of scientific data, economic analyses of other cases, and a simulation exercise using a bio-economic model, we show that in the case of Bt cotton in China, the no-refuge policy is defensible.  相似文献   

15.
Tabashnik BE  Gould F  Carrière Y 《Journal of evolutionary biology》2004,17(4):904-12; discussion 913-8
The refuge strategy is used widely for delaying evolution of insect resistance to transgenic crops that produce Bacillus thuringiensis (Bt) toxins. Farmers grow refuges of host plants that do not produce Bt toxins to promote survival of susceptible pests. Many modelling studies predict that refuges will delay resistance longest if alleles conferring resistance are rare, most resistant adults mate with susceptible adults, and Bt plants have sufficiently high toxin concentration to kill heterozygous progeny from such matings. In contrast, based on their model of the cotton pest Heliothis virescens, Vacher et al. (Journal of Evolutionary Biology, 16, 2003, 378) concluded that low rather than high toxin doses would delay resistance most effectively. We demonstrate here that their conclusion arises from invalid assumptions about larval concentration-mortality responses and dominance of resistance. Incorporation of bioassay data from H. virescens and another key cotton pest (Pectinophora gossypiella) into a population genetic model shows that toxin concentrations high enough to kill all or nearly all heterozygotes should delay resistance longer than lower concentrations.  相似文献   

16.
The European corn borer, Ostrinia nubilalis Hübner (Lepidoptera: Crambidae) has been a major pest of corn and other crops in North America since its accidental introduction nearly a hundred years ago. Wide adoption of transgenic corn hybrids that express toxins from Bacillus thuringiensis, referred to as Bt corn, has suppressed corn borer populations and reduced the pest status of this insect in parts of the Corn Belt. Continued suppression of this pest, however, will depend on managing potential resistance to Bt corn, currently through the high-dose refuge (HDR) strategy. In this review, we describe what has been learned with regard to O. nubilalis resistance to Bt toxins either through laboratory selection experiments or isolation of resistance from field populations. We also describe the essential components of the HDR strategy as they relate to O. nubilalis biology and ecology. Additionally, recent developments in insect resistance management (IRM) specific to O. nubilalis that may affect the continued sustainability of this technology are considered.  相似文献   

17.
Myths, models and mitigation of resistance to pesticides   总被引:3,自引:0,他引:3  
Resistance to pesticides in arthropod pests is a significant economic, ecological and public health problem. Although extensive research has been conducted on diverse aspects of pesticide resistance and we have learned a great deal during the past 50 years, to some degree the discussion about ''resistance management'' has been based on ''myths''. One myth involves the belief that we can manage resistance. I will maintain that we can only attempt to mitigate resistance because resistance is a natural evolutionary response to environmental stresses. As such, resistance will remain an ongoing dilemma in pest management and we can only delay the onset of resistance to pesticides. ''Resistance management'' models and tactics have been much discussed but have been tested and deployed in practical pest management programmes with only limited success. Yet the myth persists that better models will provide a ''solution'' to the problem. The reality is that success in using mitigation models is limited because these models are applied to inappropriate situations in which the critical genetic, ecological, biological or logistic assumptions cannot be met. It is difficult to predict in advance which model is appropriate to a particular situation; if the model assumptions cannot be met, applying the model sometimes can increase the rate of resistance development rather than slow it down. Are there any solutions? I believe we already have one. Unfortunately, it is not a simple or easy one to deploy. It involves employing effective agronomic practices to develop and maintain a healthy crop, monitoring pest densities, evaluating economic injury levels so that pesticides are applied only when necessary, deploying and conserving biological control agents, using host-plant resistance, cultural controls of the pest, biorational pest controls, and genetic control methods. As a part of a truly multi-tactic strategy, it is crucial to evaluate the effect of pesticides on natural enemies in order to preserve them in the cropping system. Sometimes, pesticide-resistant natural enemies are effective components of this resistance mitigation programme. Another name for this resistance mitigation model is integrated pest management (IPM). This complex model was outlined in some detail nearly 40 years ago by V. M. Stern and colleagues. To deploy the IPM resistance mitigation model, we must admit that pest management and resistance mitigation programmes are not sustainable if based on a single-tactic strategy. Delaying resistance, whether to traditional pesticides or to transgenic plants containing toxin genes from Bacillus thuringiensis, will require that we develop multi-tactic pest management programmes that incorporate all appropriate pest management approaches. Because pesticides are limited resources, and their loss can result in significant social and economic costs, they should be reserved for situations where they are truly needed--as tools to subdue an unexpected pest population outbreak. Effective multi-tactic IPM programmes delay resistance (= mitigation) because the number and rates of pesticide applications will be reduced.  相似文献   

18.
A distributed-parameter population dynamics model is developed specifically for use with variational optimization techniques. The objective is to develop a modeling/ optimization technique that will permit the development of optimal control policies which minimize combined costs of pest control and economic-yield loss. The model results and optimal control policies are continuous and distributed in time and in insect age. The technique is applied to a study of control by pesticide of the southern green stink bug, Nezara viridula (Linnaeus), a major pest of soybeans in the South. In this case study, the model results agree well with field-survey results, while the optimal control trajectories are reasonable and suggest several avenues for further study.  相似文献   

19.
To counter the threat of insect resistance, Bacillus thuringiensis (Bt) maize growers in the U.S. are required to plant structured non-Bt maize refuges. Concerns with refuge compliance led to the introduction of seed mixtures, also called RIB (refuge-in-the-bag), as an alternative approach for implementing refuge for Bt maize products in the U.S. Maize Belt. A major concern in RIB is cross-pollination of maize hybrids that can cause Bt proteins to be present in refuge maize kernels and negatively affect refuge insects. Here we show that a mixed planting of 5% nonBt and 95% Bt maize containing the SmartStax traits expressing Cry1A.105, Cry2Ab2 and Cry1F did not provide an effective refuge for an important above-ground ear-feeding pest, the corn earworm, Helicoverpa zea (Boddie). Cross-pollination in RIB caused a majority (>90%) of refuge kernels to express ≥ one Bt protein. The contamination of Bt proteins in the refuge ears reduced neonate-to-adult survivorship of H. zea to only 4.6%, a reduction of 88.1% relative to larvae feeding on ears of pure non-Bt maize plantings. In addition, the limited survivors on refuge ears had lower pupal mass and took longer to develop to adults.  相似文献   

20.
Fitness costs associated with insect resistance to transgenic crops producing toxins from Bacillus thuringiensis (Bt) reduce the fitness on non-Bt refuge plants of resistant individuals relative to susceptible individuals. Because costs may vary among host plants, choosing refuge cultivars that increase the dominance or magnitude of costs could help to delay resistance. Specifically, cultivars with high concentrations of toxic phytochemicals could magnify costs. To test this hypothesis, we compared life history traits of three independent sets of pink bollworm, Pectinophora gossypiella (Saunders), populations on two cotton cultivars that differed in antibiosis against this cotton pest. Each set had an unselected susceptible population, a resistant population derived by selection from the susceptible population, and the F1 progeny of the susceptible and resistant populations. Confirming previous findings with pink bollworm feeding on cotton, costs primarily affected survival and were recessive on both cultivars. The magnitude of the survival cost did not differ between cultivars. Although the experimental results did not reveal differences between cultivars in the magnitude or dominance of costs, modeling results suggest that differences between cultivars in pink bollworm survival could affect resistance evolution. Thus, knowledge of the interaction between host plants and fitness costs associated with resistance to Bt crops could be helpful in guiding the choice of refuge cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号