首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Histone methylation has a key role in oestrogen receptor (ERα)‐mediated transactivation of genes. Proline glutamic acid and leucine‐rich protein 1 (PELP1) is a new proto‐oncogene that functions as an ERα co‐regulator. In this study, we identified histone lysine demethylase, KDM1, as a new PELP1‐interacting protein. These proteins, PELP1 and KDM1, were both recruited to ERα target genes, and PELP1 depletion affected the dimethyl histone modifications at ERα target genes. Dimethyl‐modified histones H3K4 and H3K9 are recognized by PELP1, and PELP1 alters the substrate specificity of KDM1 from H3K4 to H3K9. Effective demethylation of dimethyl H3K9 by KDM1 requires a KDM1–ERα–PELP1 functional complex. These results suggest that PELP1 is a reader of H3 methylation marks and has a crucial role in modulating the histone code at the ERα target genes.  相似文献   

2.
3.
4.
5.
6.
PELP1 (proline-rich, glutamic acid-rich, and leucine-rich protein-1) is a potential proto-oncogene that functions as a coregulator of estrogen receptor (ER), and its expression is deregulated during breast cancer progression. Emerging evidence suggests growth factor signaling crosstalk with ER as one possible mechanism by which breast tumors acquire resistance to therapy. In this study, we examined mechanisms by which growth factors modulate PELP1 functions, leading to activation of ER. Using in vivo labeling assays, we have found that growth factors promote phosphorylation of PELP1. Utilizing a panel of substrate-specific phosphorylated antibodies, we discovered that growth factor stimulation promotes phosphorylation of PELP1 that is recognized by a protein kinase A (PKA) substrate-specific antibody. Accordingly, growth factor-mediated PELP1 phosphorylation was effectively blocked by PKA-specific inhibitor H89. Utilizing purified PKA enzyme and in vitro kinase assays, we obtained evidence of direct PELP1 phosphorylation by PKA. Using deletion and mutational analysis, we identified PELP1 domains that are phosphorylated by PKA. Interestingly, site-directed mutagenesis of the putative PKA site in PELP1 compromised growth factor-induced activation and subnuclear localization of PELP1 and also affected PELP1-mediated transactivation function. Utilizing MCF-7 cells expressing a PELP1 mutant that cannot be phosphorylated by PKA, we provide mechanistic insights by which growth factor signaling regulates ER transactivation in a PELP1-dependent manner. Collectively, these findings suggest that growth factor signals promote phosphorylation of ER coactivator PELP1 via PKA pathway, and such modification may have functional implications in breast tumors with deregulated growth factor signaling.  相似文献   

7.
8.
9.
10.
Multiple roles for acetylation in the interaction of p300 HAT with ATF-2   总被引:1,自引:0,他引:1  
Karanam B  Wang L  Wang D  Liu X  Marmorstein R  Cotter R  Cole PA 《Biochemistry》2007,46(28):8207-8216
  相似文献   

11.
12.
13.
14.
15.
16.
Molecular cloning of a pea H1 histone cDNA   总被引:11,自引:0,他引:11  
A pea (Pisum sativum, var. Little Marvel) H1 histone cDNA has been isolated from a lambda gt11 expression vector library. This cDNA has been sequenced and shown to represent the entire protein-coding region of the mRNA. The deduced protein sequence is 265 amino acids long (28018 Da) and contains 70 lysines and 3 arginines. The structure of the encoded protein is comparable to animal lysine-rich histones. The central region, which has an amino acid composition similar to that found in the globular domains of animal lysine-rich histones, is flanked by an amino-terminal region rich in lysine, glutamic acid and proline and by a carboxyl-terminal region rich in lysine, alanine, valine and proline. Despite the structural similarities, the protein has little sequence homology with animal lysine-rich histones. This H1 protein is unusual because 12 of the first 40 amino acids are glutamic acid.  相似文献   

17.
18.
19.
20.
Recently dynein light chain 1 (DLC1), a cytoskeleton signaling component, has been shown to interact with and transactivate estrogen receptor-alpha (ER), leading to increased expression of ER target genes and growth stimulation of breast cancer cells. However, the molecular mechanism by which DLC1 regulates the ER pathway remains poorly understood. To gain insights into the putative mechanism, here we set out to identify novel DLC1-interacting proteins. We identified KIBRA, a WW domain- and a glutamic acid stretch-containing protein, as a DLC1-binding protein and showed that it interacts with DLC1 both in vitro and in vivo. We found that KIBRA-DLC1 complex is recruited to ER-responsive promoters. We also found that KIBRA-DLC1 interaction is mandatory for the recruitment and transactivation functions of ER or DLC1 to the target chromatin. Finally we found that KIBRA interacts with histone H3 via its glutamic acid-rich region and that such interaction might play a mechanistic role in conferring an optimal ER transactivation function as well as the proliferation of ligand-stimulated breast cancer cells. Together these findings indicate that DLC1-KIBRA interaction is essential for ER transactivation in breast cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号