首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Milk fermented with Lactobacillus helveticus (L. helveticus) contains small peptides such as isoleucyl-prolyl-proline (IPP) and valyl-prolyl-proline (VPP), which inhibit the angiotensin converting enzyme (ACE). We investigated the effects of L. helveticus fermented milk whey (Lh-whey) and its components, sour milk whey, calcium and IPP and VPP peptides, on bone cells in vitro. An osteoblast assay was performed by determining the amount of deposited calcium as an index of bone formation in cultures of mouse osteoblasts formed from bone marrow-derived osteoblast precursor cells. An osteoclast assay was performed by determining the activity of tartrate-resistant acid phosphatase released into the culture medium in cultures of mouse osteoclasts formed from bone marrow-derived osteoclast precursor cells. The Lh-whey increased bone formation 1.3-1.4 times with the 1 × 10−5, 1 × 10−4 and 1 × 10−3 solutions. The IPP and VPP peptides also demonstrated a significant 5-fold activation of bone formation in in vitro osteoblast cultures, whereas the sour milk whey and calcium had no effect. No significant effects were observed on osteoclasts in vitro with any of the study products. L. helveticus fermented milk whey contains bioactive components that increase osteoblastic bone formation in vitro. The effect may be due to the ACE-inhibitory IPP and VPP peptides, which showed a similar effect to that of the L. helveticus fermented milk whey.  相似文献   

2.
Electric stimulation has been used successfully to treat a wide range of bone disorders. However, the mechanism by which the electric fields can influence the bone cells behavior remains poorly understood. The purpose of this research was to assess the possible mechanism of the stimulatory effect of pulsed electromagnetic field (PEMF) on bone cells. A PEMF with a frequency of 15 Hz (1 G [0.1 mT]; electric field strength 2 mV/cm) were applied to neonatal mouse calvarial bone cell cultures for 14 days. The temporal effects of PEMF on the osteoblasts were evaluated by the status of proliferation, differentiation, mineralization, and gene expression on the 3rd, 5th, 7th, and 14th days of culture. Our results demonstrated that PEMF stimulation significantly increased the osteoblasts' proliferation by 34.0, 11.5, and 13.3% over the control group after 3, 5, and 7 days' culture. Although the alkaline phosphatase (ALP) staining and the mineralization nodules formation did not change, the ALP activity of the bone cells decreased significantly after PEMF stimulation. Under the PEMF stimulation, there was no effect on the extracellular matrix synthesis, while the osteoprotegerin (OPG) mRNA expression was up regulated and the receptor activator of NF-kappaB ligand (RANKL) mRNA expression were down regulated, compared to the control. In conclusion, the treatment by PEMF of osteoblasts may accelerate cellular proliferation, but did not affect the cellular differentiation. The effect of PEMF stimulation on the bone tissue formation was most likely associated with the increase in the number of cells, but not with the enhancement of the osteoblasts' differentiation.  相似文献   

3.
4.
5.
Interleukin-1alpha (IL-1alpha) is one of the most potent bone-resorbing factors involved in the bone loss that is associated with inflammation. We examined the effect of the inflammatory mediator IL-1alpha on the expression of macrophage colony-stimulating factor (M-CSF), osteoprotegerin (OPG), and prostaglandin E2 (PGE2) in rat osteoblasts, and the indirect effect of IL-1alpha on the formation of osteoclast-like cells. Osteoblasts were cultured in alpha-minimum essential medium containing 10% fetal bovine serum with or without 100 units/ml of IL-1alpha for up to 14 days. The gene and protein expression of M-CSF and OPG were estimated by determining mRNA levels using the real-time polymerase chain reaction and protein levels using Western blot analysis. PGE2 expression was determined using an enzyme-linked immunosorbent assay. The formation of osteoclast-like cells was estimated using tartrate-resistant acid phosphatase (TRAP) staining of osteoclast precursors in culture with conditioned medium from IL-1alpha-treated osteoblasts and the soluble receptor activator of NF-kappaB ligand (RANKL). M-CSF and PGE2 expression in osteoblasts increased markedly in cells cultured with IL-1alpha, whereas OPG expression decreased. The conditioned medium containing M-CSF and PGE2 produced by IL-1alpha-treated osteoblasts and soluble RANKL increased the TRAP staining of osteoclast precursors. These results suggest that IL-1alpha stimulated the formation of osteoclast-like cells via an increase in M-CSF and PGE2 production, and a decrease in OPG production by osteoblasts.  相似文献   

6.
Prolactin (PRL) enhanced bone remodeling leading to net bone loss in adult and net bone gain in young animals. Studies in PRL-exposed osteoblasts derived from adult humans revealed an increase in the expression ratio of receptor activator of nuclear factor kappaB ligand (RANKL) and osteoprotegerin (OPG), thus supporting the previous finding of PRL-induced bone loss in adults. This study thus investigated the effects of PRL on the osteoblast functions and the RANKL/OPG ratio in human fetal osteoblast (hFOB) cells which strongly expressed PRL receptors. After 48h incubation, PRL increased osteocalcin expression, but had no effect on cell proliferation. However, the alkaline phosphatase activity was decreased in a dose-response manner within 24h. The effect of PRL on alkaline phosphatase was abolished by LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor. PRL also decreased the RANKL/OPG ratio by downregulating RANKL and upregulating OPG expression, implicating a reduction in the osteoblast signal for osteoclastic bone resorption. It could be concluded that, unlike the osteoblasts derived from adult humans, PRL-exposed hFOB cells exhibited indices suggestive of bone gain, which could explain the in vivo findings in young rats. The signal transduction of PRL in osteoblasts involved the PI3K pathway.  相似文献   

7.
8.
To date, parathyroid hormone is the only clinically available bone anabolic drug. The major difficulty in the development of such drugs is the lack of clarification of the mechanisms regulating osteoblast differentiation and bone formation. Here, we report a peptide (W9) known to abrogate osteoclast differentiation in vivo via blocking receptor activator of nuclear factor-κB ligand (RANKL)-RANK signaling that we surprisingly found exhibits a bone anabolic effect in vivo. Subcutaneous administration of W9 three times/day for 5 days significantly augmented bone mineral density in mouse cortical bone. Histomorphometric analysis showed a decrease in osteoclastogenesis in the distal femoral metaphysis and a significant increase in bone formation in the femoral diaphysis. Our findings suggest that W9 exerts bone anabolic activity. To clarify the mechanisms involved in this activity, we investigated the effects of W9 on osteoblast differentiation/mineralization in MC3T3-E1 (E1) cells. W9 markedly increased alkaline phosphatase (a marker enzyme of osteoblasts) activity and mineralization as shown by alizarin red staining. Gene expression of several osteogenesis-related factors was increased in W9-treated E1 cells. Addition of W9 activated p38 MAPK and Smad1/5/8 in E1 cells, and W9 showed osteogenesis stimulatory activity synergistically with BMP-2 in vitro and ectopic bone formation. Knockdown of RANKL expression in E1 cells reduced the effect of W9. Furthermore, W9 showed a weak effect on RANKL-deficient osteoblasts in alkaline phosphatase assay. Taken together, our findings suggest that this peptide may be useful for the treatment of bone diseases, and W9 achieves its bone anabolic activity through RANKL on osteoblasts accompanied by production of several autocrine factors.  相似文献   

9.
Hyperprolactinemia caused by physiological or pathological conditions, such as those occurring during lactation and prolactinoma, respectively, results in progressive osteopenia. The underlying mechanisms, however, are controversial. Prolactin (PRL) may directly attenuate the functions of osteoblasts, since these bone cells express PRL receptors. The present study therefore aimed to investigate the effects of PRL on the expression of genes related to the osteoblast functions by using quantitative real-time PCR technique. Herein, we used primary osteoblasts that were derived from the tibiae of adult rats and displayed characteristics of differentiated osteoblasts, including in vitro mineralization. Osteoblasts exposed for 48 h to 1000 ng/mL PRL, but not to 10 or 100 ng/mL PRL, showed decreases in the mRNA expression of Runx2, osteoprotegerin (OPG), and receptor activator of nuclear factor kappaBeta ligand (RANKL) by 60.49%, 72.74%, and 87.51%, respectively. Nevertheless, PRL did not change the RANKL/OPG ratio, since expression of OPG and RANKL were proportionally decreased. These concentrations of PRL had no effect on the mRNA expression of osteocalcin and osteopontin, nor on mineralization. High pathologic concentrations of PRL (1000 ng/mL) may downregulate expression of genes that are essential for osteoblast differentiation and functions. The present results explained the clinical findings of hyperprolactinemia-induced bone loss.  相似文献   

10.
LPS is a potent stimulator of bone resorption in inflammatory diseases. The mechanism by which LPS induces osteoclastogenesis was studied in cocultures of mouse osteoblasts and bone marrow cells. LPS stimulated osteoclast formation and PGE(2) production in cocultures of mouse osteoblasts and bone marrow cells, and the stimulation was completely inhibited by NS398, a cyclooxygenase-2 inhibitor. Osteoblasts, but not bone marrow cells, produced PGE(2) in response to LPS. LPS-induced osteoclast formation was also inhibited by osteoprotegerin (OPG), a decoy receptor of receptor activator of NF-kappaB ligand (RANKL), but not by anti-mouse TNFR1 Ab or IL-1 receptor antagonist. LPS induced both stimulation of RANKL mRNA expression and inhibition of OPG mRNA expression in osteoblasts. NS398 blocked LPS-induced down-regulation of OPG mRNA expression, but not LPS-induced up-regulation of RANKL mRNA expression, suggesting that down-regulation of OPG expression by PGE(2) is involved in LPS-induced osteoclast formation in the cocultures. NS398 failed to inhibit LPS-induced osteoclastogenesis in cocultures containing OPG knockout mouse-derived osteoblasts. IL-1 also stimulated PGE(2) production in osteoblasts and osteoclast formation in the cocultures, and the stimulation was inhibited by NS398. As seen with LPS, NS398 failed to inhibit IL-1-induced osteoclast formation in cocultures with OPG-deficient osteoblasts. These results suggest that IL-1 as well as LPS stimulates osteoclastogenesis through two parallel events: direct enhancement of RANKL expression and suppression of OPG expression, which is mediated by PGE(2) production.  相似文献   

11.
Parathyroid hormone (PTH) induces osteoclast formation and activity by increasing the ratio of RANKL/OPG in osteoblasts. The proteasome inhibitor carfilzomib (CFZ) has been used as an effective therapy for multiple myeloma via the inhibition of pathologic bone destruction. However, the effect of combination of PTH and CFZ on osteoclastogenesis is unknown. We now report that CFZ inhibits PTH-induced RANKL expression and secretion without affecting PTH inhibition of OPG expression, and it does so by blocking HDAC4 proteasomal degradation in osteoblasts. Furthermore, we used different types of culture systems, including co-culture, indirect co-culture, and transactivation, to assess the effect of CFZ on PTH action to induce osteoclastogenesis. Our results demonstrated that CFZ blocks PTH-induced osteoclast formation and bone resorption by its additional effect to inhibit RANKL-mediated IκB degradation and NF-κB activation in osteoclasts. This study showed for the first time that CFZ targets both osteoblasts and osteoclasts to suppress PTH-induced osteoclast differentiation and bone resorption. These findings warrant further investigation of this novel combination in animal models of osteoporosis and in patients.  相似文献   

12.
While androgen receptor (AR)-deficient mice developed osteopenia in endochondral bones due to the high bone turnover with increased bone resorption by osteoclasts, little is known about the mechanism of intramembranous bone loss contributed by AR in osteoblasts. Here, we discovered a dramatic decrease in the area of calcification, new bone, and the number of osteocytes in calvaria from AR-deficient mice related to a reduction in mineralization caused, in part, by the diminished activity of AR-deficient osteoblasts. Enforced AR expression in differentiated osteoblasts boosts mineralization while knockdown of AR expression prevents androgen-induced mineralization. We identified the tissue-nonspecific alkaline phosphatase (TNSALP) and several members of small integrin binding ligand N-linked glycoprotein (SIBLING) gene family as androgen target genes required for AR-mediated bone formation. We show that inorganic phosphate (P(i)) levels and TNSALP activity increased in response to androgen/AR and P(i) signals increase the expression and translocation of AR. The ectopic expression of TNSALP or P(i) partially rescued the bone loss due to AR deficiency. Thus, androgen/AR signaling plays an essential role in bone formation by coordinating the expression of genes associated with phosphate regulation.  相似文献   

13.
Mechanical unloading causes detrimental effects on the skeleton, but the underlying mechanisms are still unclear. We investigated the effect of microgravity on osteoblast ability to regulate osteoclastogenesis. Mouse osteoblast primary cultures were grown for 24 h at unit gravity or under simulated microgravity, using the NASA-developed Rotating Wall Vessel bioreactor. Conditioned media (CM) from osteoblasts subjected to microgravity increased osteoclastogenesis and bone resorption in mouse bone marrow cultures. In these osteoblasts, the RANKL/OPG ratio was higher relative to 1g. Consistently, treatment with high concentrations of OPG-inhibited osteoclastogenesis and bone resorption in the presence of CM arising from osteoblasts cultured under microgravity. Microgravity failed to affect osteoblast differentiation and function in the time frame of the experiment, as we found no effect on alkaline phosphatase mRNA and activity, nor on Runx2, osteocalcin, osteopontin, and collagen1A2 mRNA expression. In contrast, microgravity induced a time dependent increase of ERK-1/2 phosphorylation, while phospho-p38 and phospho-JNK remained unchanged. Apoptosis, revealed by bis-benzimide staining, was similar among the various gravity conditions, while it was increased under microgravity after treatment with the MEK-1/2 inhibitor, PD98059, suggesting a protection role by ERK-1/2 against cell death. In conclusion, microgravity is capable to indirectly stimulate osteoclast formation and activity by regulating osteoblast secretion of crucial regulatory factors such as RANKL and OPG. We hypothesize that this mechanism could contribute to bone loss in individuals subjected to weightlessness and other unloading conditions.  相似文献   

14.
15.
Bisphosphonates are potent antiresorptive drugs commonly employed in the treatment of metabolic bone diseases. Despite their frequent use, the mechanisms of bisphosphonates on bone cells have largely remained unclear. Receptor activator of nuclear factor-kappaB ligand (RANKL) is essential for osteoclast formation and activation, whereas osteoprotegerin (OPG) neutralizes RANKL. Various osteotropic drugs have been demonstrated to modulate osteoblastic production of RANKL and OPG. In this study, we assessed the effects of the bisphosphonates pamidronate (PAM) and zoledronic acid (ZOL) on OPG mRNA steady-state levels (by semiquantitative RT-PCR) and protein production (by ELISA) in primary human osteoblasts (hOB). PAM increased OPG mRNA levels and protein secretion by hOB by up to 2- to 3-fold in a dose-dependent fashion with a maximum effect at 10(-6) M (P < 0.001) after 72 h. Similarly, ZOL enhanced OPG gene expression and protein secretion by hOB in a dose-dependent fashion with a maximum effect at 10(-8) M after 72 h, consistent with the higher biological potency of ZOL. Time course experiments indicated a stimulatory effect of PAM and ZOL on osteoblastic OPG protein secretion by 6-fold, respectively (P < 0.001). Pretreatment with PAM and ZOL prevented the inhibitory effects of the glucocorticoid dexamethasone on OPG mRNA and protein production. Analysis of cellular markers of osteoblastic differentiation revealed that PAM and ZOL induced type I collagen secretion and alkaline phosphatase activity by 2- and 4-fold, respectively (P < 0.0001 by ANOVA). In conclusion, our data suggest that bisphosphonates modulate OPG production by normal human osteoblasts, which may contribute to the inhibition of osteoclastic bone resorption. Since, OPG production increases with osteoblastic cell maturation, enhancement of OPG by bisphosphonates could be related to their stimulatory effects on osteoblastic differentiation.  相似文献   

16.
Anti-diabetic drug metformin has been shown to enhance osteoblasts differentiation and inhibit osteoclast differentiation in vitro and prevent bone loss in ovariectomized (OVX) rats. But the mechanisms through which metformin regulates osteoclastogensis are not known. Osteoprotegerin (OPG) and receptor activator of nuclear factor κB ligand (RANKL) are cytokines predominantly secreted by osteoblasts and play critical roles in the differentiation and function of osteoclasts. In this study, we demonstrated that metformin dose-dependently stimulated OPG and reduced RANKL mRNA and protein expression in mouse calvarial osteoblasts and osteoblastic cell line MC3T3-E1. Inhibition of AMP-activated protein kinase (AMPK) and CaM kinase kinase (CaMKK), two targets of metformin, suppressed endogenous and metformin-induced OPG secretion in osteoblasts. Moreover, supernatant of osteoblasts treated with metformin reduced formation of tartrate resistant acid phosphatase (TRAP)-positive multi-nucleated cells in Raw264.7 cells. Most importantly, metformin significantly increased total body bone mineral density, prevented bone loss and decreased TRAP-positive cells in OVX rats proximal tibiae, accompanied with an increase of OPG and decrease of RANKL expression. These in vivo and in vitro studies suggest that metformin reduces RANKL and stimulates OPG expression in osteoblasts, further inhibits osteoclast differentiation and prevents bone loss in OVX rats.  相似文献   

17.
The effects of pulsed electromagnetic field (PEMF, 15 Hz pulse burst, 7 mT peak) stimulation on bone tissue-like formation on osteoblasts (MC3T3-E1 cell line) in different stages of maturation were assessed to determine whether the PEMF stimulatory effect on bone tissue-like formation was associated with the increase in the number of cells and/or with the enhancement of the cellular differentiation. The cellular proliferation (DNA content), differentiation (alkaline phosphatase activity), and bone tissue-like formation (area of mineralized matrix) were determined at different time points. PEMF treatment of osteoblasts in the active proliferation stage accelerated cellular proliferation, enhanced cellular differentiation, and increased bone tissue-like formation. PEMF treatment of osteoblasts in the differentiation stage enhanced cellular differentiation and increased bone tissue-like formation. PEMF treatment of osteoblasts in the mineralization stage decreased bone tissue-like formation. In conclusion, PEMF had a stimulatory effect on the osteoblasts in the early stages of culture, which increased bone tissue-like formation. This stimulatory effect was most likely associated with enhancement of the cellular differentiation, but not with the increase in the number of cells.  相似文献   

18.
Oestradiol can stimulate osteoblast activity. Osteoblast function is thought to be regulated by nitric oxide (NO). We hypothesised that the effect of 17beta-oestradiol (17beta-E(2)) on osteoblast activity is mediated by NO. This hypothesis was tested using osteoblasts isolated from human trabecular bone, calvariae of rats, endothelial NO synthase (eNOS) gene-deficient mice, and their wild-type counterparts. Our results show that 17beta-E(2) dose-dependently stimulated proliferation and differentiation of primary human, rat and wild-typeosteoblasts. The presence of N(G)-monomethyl-l-arginine (10(-3) M), an inhibitor of NOS activity, blocked the 17beta-E(2)-(10(-7) M)-induced increases in thymidine incorporation (P < 0.01), alkaline phosphatase activity (P < 0.01) and bone nodule formation (P < 0.01) of wild-type, human and rat osteoblasts, respectively. Moreover, 17beta-E(2) did not induce a response in eNOS gene-deficient osteoblasts. 17beta-E(2) also increased total eNOS enzyme expression in rat osteoblasts. These findings indicate 17beta-E(2) modulates osteoblast function by NO-dependent mechanisms mediated via the eNOS isoform.  相似文献   

19.

Purpose

Osteoprotegerin (OPG) affects bone metabolism by intercepting the RANK-RANKL interaction which prevents osteoclastic differentiation and consequently reduces bone resorption. Different bone phenotypes of mice overexpressing OPG and of mice with knockdown of receptor activator of NF-κB (RANK) or RANK-ligand (RANKL) suggest that the mechanism of action of the OPG-RANKL-RANK system in regulating bone remodeling is not completely understood. Furthermore, OPG increases bone mass and density independently from reduced osteoclastogenesis which is consistent with the possibility that OPG may directly affect bone metabolism beyond its known role as decoy receptor for RANKL.

Methods

We treated primary human osteoblastic cells with OPG and inhibitory anti-RANKL antibodies and measured cellular ALP activity, in vitro mineralization, vitronectin receptor protein expression and ERK phosphorylation. We also analyzed the mRNA co-expression of ALP and OPG ex vivo in bone biopsies from acute and old stable vertebral fractures.

Results

OPG directly increased ALP activity and in vitro mineralization of HOC, enhanced expression of the vitronectin receptor thereby increasing adherence of HOC to vitronectin and stimulated ERK phosphorylation. All OPG-mediated effects could be prevented by RANKL antibodies or RANKL-siRNA transfection and MAPK inhibitor PD98059 reduced the stimulatory effect of OPG on integrin αv expression. In acutely fractured vertebrae OPG and ALP mRNA expression was significantly increased compared to stable vertebral fractures. In conclusion, OPG exerts direct osteoanabolic effects on HOC metabolism via RANKL in addition to its well described role as decoy receptor for RANKL.  相似文献   

20.
To promote bone formation is one of the fundamental strategies in osteoporosis treatment and fractures repair. As one of the stimulators on bone formation, osteogenic growth peptide (OGP) increases both proliferation and differentiation of the osteoblasts in vitro and in vivo, in which osteoprotegerin (OPG) has been suggested being involved. In this study, we evaluated the effects of OGP on bone marrow mesenchymal stem cells (MSCs) from OPG-deficient mice in vitro by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, alkaline phosphatase (ALP) activity assay, real-time polymerase chain reaction, and western blot analysis. Results showed that OGP stimulated MSC proliferation and increased the expression of CDK2 and cyclin A in MSCs both at mRNA and protein levels. However, no differentiative effect of OGP was shown as ALP activity and the expression levels of Runx2 and Osterix were not increased significantly by OGP. Our study suggested that OGP may increase the bone formation in OPG-deficient mice by stimulating MSC proliferation rather than differentiation, and probably by triggering CDK2/cyclin A pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号