首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K A Jones  R M Myers    R Tjian 《The EMBO journal》1984,3(13):3247-3255
We have tested the effects of various mutations within SV40 T antigen DNA recognition sites I and II on specific T antigen binding using the DNase footprint technique. In addition, the replication of plasmid DNA templates carrying these T antigen binding site mutations was monitored by Southern analysis of transfected DNA in COS cells. Deletion mapping of site I sequences defined a central core of approximately 18 bp that is both necessary and sufficient for T antigen recognition; this region contains the site I contact nucleotides that were previously mapped using methylation-interference and methylation-protection experiments. A similar deletion analysis delineated sequences that impart specificity of binding to site II. We find that T antigen is capable of specific recognition of site II in the absence of site I sequences, indicating that binding to site II in vitro is not dependent on binding of T antigen at site I. Site II binding was not diminished by small deletion or substitution mutations that perturb the 27-bp palindrome central to binding site II, whereas extensive substitution of site II sequences completely eliminated specific site II binding. Analysis of the replication in COS7 cells of plasmids that contain these mutant origins revealed that sequences both at the late side of binding site I and within the site II palindrome are crucial for viral DNA replication, but are not involved in binding T antigen.  相似文献   

2.
3.
SV40 large T antigen (T-ag) is a multifunctional protein that successively binds to 5'-GAGGC-3' sequences in the viral origin of replication, melts the origin, unwinds DNA ahead of the replication fork, and interacts with host DNA replication factors to promote replication of the simian virus 40 genome. The transition of T-ag from a sequence-specific binding protein to a nonspecific helicase involves its assembly into a double hexamer whose formation is likely dictated by the propensity of T-ag to oligomerize and its relative affinities for the origin as well as for nonspecific double- and single-stranded DNA. In this study, we used a sensitive assay based on fluorescence anisotropy to measure the affinities of wild-type and mutant forms of the T-ag origin-binding domain (OBD), and of a larger fragment containing the N-terminal domain (N260), for different DNA substrates. We report that the N-terminal domain does not contribute to binding affinity but reduces the propensity of the OBD to self-associate. We found that the OBD binds with different affinities to its four sites in the origin and determined a consensus binding site by systematic mutagenesis of the 5'-GAGGC-3' sequence and of the residue downstream of it, which also contributes to affinity. Interestingly, the OBD also binds to single-stranded DNA with an approximately 10-fold higher affinity than to nonspecific duplex DNA and in a mutually exclusive manner. Finally, we provide evidence that the sequence specificity of full-length T-ag is lower than that of the OBD. These results provide a quantitative basis onto which to anchor our understanding of the interaction of T-ag with the origin and its assembly into a double hexamer.  相似文献   

4.
J Laffin  D Fogleman  J M Lehman 《Cytometry》1989,10(2):205-213
Human diploid fibroblasts (HDF) have a finite life span in cell culture which can be extended when transformed with simian virus 40 (SV40). Flow cytometric analysis of SV40-HDF transformation allowed DNA content changes to be correlated with the appearance, quantity, and distribution of T antigen, p53, and V antigen, three proteins associated with this process. These studies demonstrated a shift in the DNA content to tetraploidy, which was correlated with the age of the SV40-HDF but not the time of infection. A significant increase of the epitope recognized by PAb122 to host p53 and the epitope PAb101 to SV40 T antigen occurred at the same time the tetraploid population appeared. However, an antigen reactive with SV40 V antibody was present at high levels in most of the population early after infection, but the levels declined with time. The percentage of PAb101-T antigen-positive cells increased more rapidly in cells infected at a late passage, and this was concomitant with the shift in DNA content to tetraploid. Analysis of the mean fluorescence of total, gated populations (G1, G2, and greater than G2) demonstrated that a threshold level of p53 and T antigen was reached in each compartment of the cell cycle. As the transformed phenotype appeared, a population of cells was continually released into the supernatant, and although these cells had a DNA pattern similar to the monolayer cells, the T antigen and p53 levels were 3-5 times higher in the tetraploid G2 cells. These studies correlated the expression of proteins associated with viral transformation in HDF which vary with time and shift in DNA content.  相似文献   

5.
We investigated the formation of native complexes between simian virus 40 large T antigen and the cellular protein p53 (T-p53) by using simian virus 40 tsA58-transformed mouse fibroblasts (tsA58 F2b). We observed that newly synthesized p53 bound to all structural subclasses of large T antigen detectable on sucrose density gradients. This led to various intermediates of T-p53 complexes which converted within 2 h into typical mature aggregates. The final levels of stable T-p53 complexes seemed to be determined by p53 rather than by large T antigen.  相似文献   

6.
Recombinant baculoviruses were constructed which express simian virus 40 large T antigen (SVT-Ag) or murine p53 to high levels in infected insect cells. Characterization of the expressed proteins revealed that they display many properties of the corresponding mammalian-derived proteins. Both proteins are of wild-type size, localize to the nucleus, are recognized by several SVT-Ag- or p53-specific monoclonal antibodies, and are phosphorylated in this system. Complexes are formed between baculovirus-derived SVT-Ag and p53 after coinfection of insect cells with both recombinant viruses. After infection of insect cells with either virus individually, each protein can self-associate to form a variety of oligomeric species. Pulse-chase experiments indicated that both SVT-Ag and p53 are highly stable in insect cells, even in the absence of complex formation.  相似文献   

7.
8.
9.
10.
We have compared the ATPase, DNA-binding, and helicase activities of free simian virus 40 (SV40) large T antigen (To) and T antigen complexed with cellular p53 (T+p53). Each activity is essential for productive viral infection. The T+p53 and To fractions were prepared by sequential immunosorption of infected monkey cells with monoclonal antibodies specific for p53 and T antigen. The immune-complexed T fractions were then assayed in parallel. For ATP hydrolysis, the Vmax for T+p53 was 143 nmol of ADP per min per mg of protein, or 18-fold greater than for To. ATP had no effect on the stability of the T+p53 complex. The T+p53 complex was significantly more active than To in hydrolyzing dATP, dGTP, GTP, and UTP. Of the nucleotide substrates tested, the greatest relative increase (T+p53/To) was in hydrolyzing dGTP and GTP. In DNase footprinting assays performed under replication conditions, the T+p53 complex protected regions I, II, and III of origin DNA while equivalent amounts of To protected only regions I and II. Region III is known to contribute to the efficiency of DNA replication and contains the SP1-binding sites of the early viral promoter. The T+p53 fraction was also a more efficient helicase than To, especially with a GC-rich primer and template. Thus, the T+p53 complex has enhanced ATPase, GTPase, DNA-binding, and helicase activities. These findings imply that complex formation between cellular monkey p53 and SV40 T antigen modulates a number of essential activities of T in SV40 productive infection.  相似文献   

11.
Treatment of nucleoprotein complexes (NPCs) from simian virus 40 (SV40)-infected TC7 cells with NaCl (1 or 2 M) or guanidine-hydrochloride (1 or 2 M) resulted in a significant fraction of T antigen still associated with SV40 (I) DNA. Immunoprecipitation of the salt-treated NPCs with SV40 anti-T serum indicated that T antigen is preferentially associated with SV40 (I) DNA rather than with SV40 (II) DNA. Treatment of the NPCs with 4 M guanidine-hydrochloride, however, resulted in a substantial decrease in the amount of SV40 (I) and (II) DNA associated with T antigen. As the temperature was increased to 37 degrees C during incubation of NPCs with NaCl or guanidine-hydrochloride, there was a decrease in the amount of SV40 (I) and (II) DNA immunoprecipitated with SV40 anti-T serum. In the absence of salt, temperature had no effect on the association of T antigen with the SV40 DNA in the NPCs. Treatment of NPCs from SV40 wildtype or tsA58-infected cells grown at the permissive temperature with 1 or 2 M NaCl indicated that tsA T antigen has the same sensitivities as wild-type T antigen to high salt treatment when bound to DNA in NPCs. Characterization of the proteins associated with SV40 (I) DNA after high salt treatment revealed that, in addition to T antigen, a certain amount of viral capsid proteins VP1 and VP3 remained associated with the DNA. Complexes containing SV40 (I) DNA had a sedimentation value of 53S after 1 M NaCl treatment and 43S after 2 M NaCl treatment.  相似文献   

12.
By mutational analysis, we have identified a motif critical to the proper recognition and binding of simian virus 40 large tumor antigen (T antigen) to virus DNA sequences at the origin of DNA replication. This motif is tripartite and consists of two elements (termed A1 and B2) that are necessary for sequence-specific binding of the origin and a central element (B1) which is required for nonspecific DNA-binding activity. Certain amino acids in elements A1 (residues 152 to 155) and B2 (203 to 207) may make direct contact with the GAGGC pentanucleotide sequences in binding sites I and II on the DNA. Alternatively, these two elements could determine the proper structure of the DNA-binding domain, although for a number of reasons we favor the first possibility. In contrast, element B1 (183 to 187) is most likely important for recognizing a general structural feature of DNA. Elements A1 and B2 are nearly identical in all known papovavirus T antigens, whereas B1 is identical only in the closely related papovaviruses simian virus 40, BK virus, and JC virus. In addition to these three elements, a fourth (B3; residues 215 to 219) is necessary for the binding of T antigen to site II but not to site I. We propose that additional contact sites on T antigen are involved in the interaction with site II to initiate the replication of the viral DNA.  相似文献   

13.
We investigated whether the T antigen of the simian virus 40-transformed human cell line simian virus 80 ( SV80 ) specifically recognizes DNA sequences of its own template, i.e, the viral sequences integrated in the SV80 cellular genome. In vitro DNA binding experiments clearly indicated that, in contrast to wild-type T antigen, SV80 T antigen does not specifically bind to sites on the integrated viral DNA in SV80 cells.  相似文献   

14.
The nondefective adenovirus type 2 (Ad2)-simian virus 40 (SV40) hybrid viruses, Ad2+ND2 and Ad2+ND4, have been used to determine which regions of the SV40 genome coding for the large tumor (T) antigen are involved in specific and nonspecific DNA binding. Ad2+ND2 encodes 45,000 M4 (45K) and 56,000 Mr (56K) T antigen-related polypeptides. The 45K polypeptide did not bind to DNA, but the 56K polypeptide bound nonspecifically to calf thymus DNA, Ad2+ND4 encodes 50,000 Mr (60K), 66,000 Mr (66K), 70,000 Mr (70K), 74,000 Mr (74K), and 90,000 Mr (90K) T antigen-related polypeptides, all of which bound nonspecifically to calf thymus DNA. However, in more stringent assays, where tight binding to viral origin sequences was tested, only the 90K protein specified by Ad2A+ND4 showed specific high affinity for sequences at the viral origin of replication. From these results and previously published experiments describing the SV40 DNA integrated into these hybrid viruses, it was concluded that SV40 early gene sequences located between 0.39 and 0.44 SV40 map units contribute to nonspecific DNA binding, whereas sequences located between 0.50 and 0.63 SV40 map units are necessary for specific binding to the viral origin of replication.  相似文献   

15.
An 8,000-molecular-weight (8K) T antigen was found in all cells transformed by simian virus 40. The 8K T antigen was weakly labeled in vivo with [35S]methionine or 32Pi. A deletion in the human papovavirus BK genome, in the region coding for the carboxy-terminal end of the large T antigen, reduced the size of the 8K T antigen. The last 80 amino acids of the large T antigen include the sequence Asp-Asp-Asp-Asp unique to the activation peptide of trypsinogen. Large T antigen bound diisopropyl fluorophosphate and was retained by D-phenylalanine coupled to Sepharose beads, an affinity adsorbent that can retain chymotrypsin. The large T antigen and the recA protein of Escherichia coli, a known protease, have several properties in common as well as several similar sequences. Antibodies against large T antigen interacted with native recA protein.  相似文献   

16.
We isolated 16 new monoclonal antibodies that recognize large T antigen of simian virus 40 and mapped the epitopes to three distinct regions of the large T antigen. Also, 3 of the 16 recognized the large T antigen of the human papovavirus BKV.  相似文献   

17.
Wu C  Roy R  Simmons DT 《Journal of virology》2001,75(6):2839-2847
We have previously mapped the single-stranded DNA binding domain of large T antigen to amino acid residues 259 to 627. By using internal deletion mutants, we show that this domain most likely begins after residue 301 and that the region between residues 501 and 550 is not required. To study the function of this binding activity, a series of single-point substitutions were introduced in this domain, and the mutants were tested for their ability to support simian virus 40 (SV40) replication and to bind to single-stranded DNA. Two replication-defective mutants (429DA and 460EA) were grossly impaired in single-stranded DNA binding. These two mutants were further tested for other biochemical activities needed for viral DNA replication. They bound to origin DNA and formed double hexamers in the presence of ATP. Their ability to unwind origin DNA and a helicase substrate was severely reduced, although they still had ATPase activity. These results suggest that the single-stranded DNA binding activity is involved in DNA unwinding. The two mutants were also very defective in structural distortion of origin DNA, making it likely that single-stranded DNA binding is also required for this process. These data show that single-stranded DNA binding is needed for at least two steps during SV40 DNA replication.  相似文献   

18.
Simian virus 40 large T antigen initiates DNA replication by binding to the origin of replication. We examined the binding of T antigen to origin regions I, II, and III under conditions designed for efficient in vitro replication functions. We found that 4 mM ATP enhanced the binding of T antigen to regions I and II of the origin DNA by 4- to 20-fold. DNase-footprinting and fragment assays showed that ATP extended the DNase protection domain of T antigen bound to region II by 5 to 10 base pairs at both ends of the core origin of replication. This alteration suggests a change in the conformation of T antigen, bound DNA, or both.  相似文献   

19.
Simian virus 40 large T antigen is a multifunctional protein that is encoded by the early region of the viral genome. We constructed fusion proteins between simian virus 40 large T antigen and beta-galactosidase by cloning HindIII fragments A and D of the virus into the HindIII sites of expression vectors pUR290, pUR291, and pUR292. Large amounts of the fusion protein were synthesized when the DNA fragment encoding part of simian virus 40 large T antigen was in frame with the lacZ gene of the expression vector. Using Western blotting and a competition radioimmunoassay, we assessed the binding of existing anti-T monoclonal and polyclonal antibodies to the two fusion proteins. Several monoclonal antibodies reacted with the protein encoded by the fragment A construction, but none reacted with the protein encoded by the fragment D construction. However, mice immunized with pure beta-galactosidase-HindIII fragment D fusion protein produced good levels of anti-T antibodies, which immunoprecipitated simian virus 40 large T antigen from lytically infected cells, enabling derivation of monoclonal antibodies to this region of large T antigen. Therefore, the fusion proteins allowed novel epitopes to be discovered on large T antigen and permitted the precise localization of epitopes recognized by existing antibodies. The same approach can also be used to produce antibodies against defined regions of any gene.  相似文献   

20.
Single strand DNA binding of simian virus 40 tumor antigen.   总被引:7,自引:0,他引:7  
Simian virus 40 T antigen binds to both single and double strand DNA. The single and double strand DNA binding activity of crude T antigen preparations was evaluated by chromatography of the antigen on DNA-cellulose columns. Crude T antigen was retained on both native and denatured DNA-cellulos columns and was eluted from both columns under similar conditions. The interaction of highly purified T antigen with single and double strand DNA was evaluated by competition experiments using a DNA filter binding assay. These experiments showed that T antigen binds preferentially to single strand calf thymus DNA by more than an order of magnitude when compared to double strand calf thymus DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号