首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Short-term ion uptake into roots of Limnobium stoloniferum was followed extracellularly with ion selective macroelectrodes. Cytosolic or vacuolar pH, together with the electrical membrane potential, was recorded with microelectrodes both located in the same young root hair. At the onset of chloride, phosphate, and nitrate uptake the membrane potential transiently decreased by 50 to 100 millivolts. During Cl and H2PO4 uptake cytosolic pH decreased by 0.2 to 0.3 pH units. Nitrate induced cytosolic alkalinization by 0.19 pH units, indicating rapid reduction. The extracellular medium alkalinized when anion uptake exceeded K+ uptake. During fusicoccin-dependent plasmalemma hyperpolarization, extracellular and cytosolic pH remained rather constant. Upon K+ absorption, FC intensified extracellular acidification and intracellular alkalinization (from 0.31 to 0.4 pH units). In the presence of Cl FC induced intracellular acidification. Since H+ fluxes per se do not change the pH, recorded pH changes only result from fluxes of the stronger ions. The extra- and intracellular pH changes, together with membrane depolarization, exclude mechanisms as K+/A symport or HCO3/A antiport for anion uptake. Though not suitable to reveal the actual H+/A stoichiometry, the results are consistent with an H+/A cotransport mechanism.  相似文献   

2.
The treatment of Lemna gibba plants with the weak acids (trimethylacetic acid and butyric acid), used as tools to decrease intracellular pH, induced a hyperpolarization of membrane potential, dependent on the concentration of the undissociated permeant form of the weak acid and on the value of the resting potential. Measurements were carried out both with `high potential' and `low potential' plants and the maximum values af acid induced hyperpolarizations were about 35 and 71 millivolts, respectively. Weak acids influenced also the transient light-dark membrane potential changes, typical for photosynthesizing material, suggesting a dependence of these changes on an acidification of cytoplasm. In the presence of the weak acids, the membrane depolarization induced by the cotransport of alanine and phosphate with protons was reduced; the maximum reduction (about 90%) was obtained with alanine during 2 millimolar trimethylacetic acid perfusion at pH 5. A strong inhibition of the uptake rates (up to 48% for [14C]alanine and 68% for 32P-phosphate) was obtained in the presence of the weak acids, both by decreasing the pH of the medium and by increasing the concentration of the acid. In these experimental conditions, the ATP level and O2 uptake rates did not change significantly. These results constitute good evidence that H+/solute cotransport in Lemna, already known to be dependent on the electrochemical potential difference for protons, is also strongly regulated by the cytoplasmic pH value.  相似文献   

3.
Membrane potential changes during transport of hexoses in Lemna gibba G1   总被引:1,自引:1,他引:0  
The membrane potential (pd) of duck weed (Lemna gibba G1) proved to be energy dependent. At high internal ATP levels of 74 to 105 nmol ATP g-1 FW, pd was between -175 and -265 mV. At low ATP levels of 23 to 46 nmol ATP g-1 FW, pd was low, about -90 to -120 mV at pH 5.7, but -180 mV at pH 8. Upon addition of glucose in the dark or by light energy the low pd recovered to the high values. The active component of the pd was depolarized by the addition of hexoses in the dark and in the light. Hexose-dependent depolarization of the pd (= pd) followed a saturation curve similar to active hexose influx kinetics. Depolarization of the pd recovered in the dark even in the presence of the hexoses and with a 10fold enhancement in the light. Depolarization and recovery could be repeated several times with the same cell. Glucose uptake caused a maximum depolarization of 133 mV, fructose uptake half that amount, sucrose had the same effect as glucose. During 3-O-methylglucose and 2-deoxyglucose uptake the depolarizing effect was only slightly lower. The pd remained unchanged in the presence of mannitol. The glucose dependent pd and especially the rate of pd recovery proved to be pH-dependent between pH 4 and pH 8. It was independent of the presence of 1 mM KCl. Although no pH could be measured in the incubation medium, these results can be best explained by a H+-hexose cotransport mechanism powered by active H+ extrusion at the plasmalemma.Abbreviations LD longday - SD shortday - pd membrane electropotential difference - pd maximum membrane potential depolarization - L light - D dark - FW fresh weight - d days of culture of Lemna gibba - 1X perfusing solution without sugar, see methods  相似文献   

4.
Fischer E  Lüttge U 《Plant physiology》1980,65(5):1004-1008
Accumulation of 14C-labeled glycine and microelectrode techniques were employed to study glycine transport and the effect of glycine on the membrane potential (Δψ) in Lemna gibba G1. Evidence is presented that two processes, a passive uptake by diffusion and a carrier-mediated uptake, are involved in glycine transport into Lemna cells. At the onset of active glycine uptake the component of Δψ which depended on metabolism was decreased. The depolarized membrane repolarized in the presence of glycine. This glycine-induced depolarization followed a saturation curve with increasing glycine concentration which corresponded to carrier-mediated glycine influx kinetics. The transport of glycine was correlated with the metabolically dependent component of Δψ. It is suggested (a) that the transient change in Δψ reflects the operation of an H+-glycine cotransport system driven by an electrochemical H+ gradient; and (b) that this system is energized by an active H+ extrusion. Therefore the maximum depolarization of the membrane consequently depended on both the rate of glycine uptake and the activity of the proton extrusion pump.  相似文献   

5.
Electrophysiological measurements on internodal cells of Chara corallina Klein ex Willd., em. R.D.W. revealed that in the presence of (2-[4-(2′,4′-dichlorophenoxy)phenoxy]propionic acid) (diclofop) the membrane potential was very sensitive to the pH of the bathing medium. At pH 5.7, 100 micromolar diclofop caused a slow reduction in the electrogenic component of the membrane potential to the value of −123 ± 5 millivolts. Membrane resistance initially decreased, recovered transiently, then stabilized at approximately 65% of the control value. At pH 7.0, the potential appeared to plateau around −200 millivolts before rapidly declining to −140 ± 4 millivolts; removal of diclofop resulted in recovery of the electrogenic component. Diclofop reduced cytoplasmic ATP levels by 96.4% and 36.6% at pH 5.7 and 7.0, respectively. At pH 8.2, diclofop did not change the ATP concentration significantly, but induced a hyperpolarization of the membrane potential to near −250 millivolts, and also reduced or inhibited the dark-induced hyperpolarization; the light-induced depolarization was reduced to a lesser extent. DCMU applied in the light elicited the same response at the plasmalemma as placing cells in the dark. When K+ channels were opened and cells depolarized with 10 millimolar K+, diclofop induced a further depolarization of approximately 30 millivolts. Cells decoupled with HPO4−2 were still sensitive to diclofop. Currents associated with OH efflux and HCO3 influx, as measured with a vibrating probe technique, became spatially destabilized and reduced in magnitude in the presence of diclofop. After 60 minutes, most of the cell surface was engaged in a low level of OH efflux activity. The results indicate that diclofop may be a proton ionophore at pH 7.0 and 5.7. At pH 8.2, diclofop may inhibit the operation of the H+-ATPase and OH efflux systems associated with HCO3 transport by perturbing the control processes that integrate the two, without a reduction in ATP concentration.  相似文献   

6.
The membrane potential of Lemna gibba G1 was measured with a microelectrode; glucose and glycine uptake were measured with 14C-labeled substances. The membrane potential was increased by 85 mV on the average, after the plants had been pretreated with 10 M abscisic acid (ABA) for more than 30 min. This effect is not linked to the endogenous level of soluble sugars. The concentration of these soluble sugars was increased to more than 200% by pretreatment of the plants with ABA, however, the respiration of the plants was not affected. ABA stimulated uptake of glucose and glycine. Glucose- and glycine-dependent depolarization and repolarization of the membrane was altered: depolarization was less and repolarization was slower; during uptake of glycine, the first typical phase of repolarization was suppressed. The data suggest that ABA interferes with the primary steps of substrate uptake.Abbreviations ABA abscisic acid - FW fresh weight - IAA indole acetic acid - pd membrane potential difference - 1× perfusing solution (see methods) - H+ electrochemical proton gradient - pd solute-induced maximum depolarization of the membrane  相似文献   

7.
Chloride transport, presumably via a Cl-2H+ co-transport system, was investigated in Chara corallina. At pH 6.5, the control influx (3.1 picomoles per centimeter2 per second) was stimulated 4-fold by an 18-hour Cl starvation. The stimulated influx was inhibited to 4.7 picomoles per centimeter2 per second after a 60-minute pre-exposure to 0.5 millimolar 4,4′-diisothiocyano-2,2′-disulfonic acid stilbene (DIDS). This compares with a nonsignificant inhibition of the control under similar conditions. At 2 millimolar DIDS, both stimulated and control influx were inhibited to values of 1.1 and 2.2 picomoles per centimeter2 per second, respectively; in all cases, DIDS inhibition was reversible. Over the pH range 4.8 to 8.5, the control and DIDS-inhibited influx showed only slight pH sensitivity; in contrast, the stimulated flux was strongly pH dependent (pH 6.5 optimum). Inasmuch as changes in pH alter membrane potential, N-ethylmaleimide was used to depolarize the membrane; this had no effect on Cl influx. A transient depolarization of the membrane (about 20 millivolts) was observed on restoration of Cl to starved cells. The membrane also depolarized transiently when starved cells were exposed to 0.5 millimolar DIDS, but the depolarization associated with Cl restoration was inhibited by a 40-minute pretreatment with DIDS. Exposure of control cells to DIDS caused only a small hyperpolarization (about 7 millivolts). DIDS may have blocked Cl influx by inhibiting the putative plasmalemma H+-translocating ATPase. Histochemical studies on intact cells revealed no observable effect of DIDS on plasmalemma ATPase activity. However, DIDS application after fixation resulted in complete inhibition of ATPase activity.

The differential sensitivity of the stimulated and control flux to inhibition by DIDS may reflect an alteration of transport upon stimulation, but could also result from differences in pretreatment. The stimulated cells were pretreated with DIDS in the absence of Cl, in contrast to the presence of Cl during pretreatment of controls. The differential effect could result from competition between Cl and DIDS for a common binding site. Our histochemical ATPase results indicate that Cl transport and membrane ATPase are separate systems, and the latter is only inhibited by DIDS from the inside of the cell.

  相似文献   

8.
The intracellular pH and membrane potential were determined in the acidophilic algae Cyanidoschyzon merolae as a function of extracellular pH. The alga appear to be capable of maintaining the intracellular pH at the range of 6.35 to 7.1 over the extracellular pH range of 1.5 to 7.5. The membrane potential increase from −12 millivolts (negative inside) to −71 millivolts and thus ΔH+ decreased from −300 to −47 millivolts over the same range of extracellular pH. It is suggested that the ΔH+ may set the upper and lower limits of pH for growth. Photosynthetic performance was also determined as a function of pH. The cells appeared to utilize CO2 from the medium as the apparent Km(co2) was 2 to 3 micromolar CO2 over the pH range of 1.5 to 7.5 C. merolae appear to possess a `CO2 concentrating' mechanism.  相似文献   

9.
The investigations were focussed on the question as to whether roots of intact maize plants (Zea mays L. cv Blizzard) release protons into deionized H2O. Plants in the six to seven leaf stage depressed the pH of deionized H2O from 6 to about 4.8 during an experimental period of 4 hours. Only one-third of the protons released could be ascribed to the solvation of CO2 in H2O. The main counter anions released were Cl, NO3, and SO42−. At low temperature (2°C), the H+ release was virtually blocked while a relatively high amount of K+ was released. The presence of K+, Na+, Ca2+, and Mg2+ in the external solution increased the H+ secretion significantly. Addition of vanadate to the outer medium inhibited the H+ release while fusicoccin had a stimulating effect. Substituting the nutrient solution of deionized H2O resulted in a substantial increase of the membrane potential difference from −120 to −190 millivolts. The experimental results support the conclusion that the H+ release by roots of intact maize plants is an active process driven by a plasmalemmalocated ATPase. Since the net H+ release was not associated with a net uptake of K+, it is unlikely to originate from a K+/H+ antiport.  相似文献   

10.
Lin W 《Plant physiology》1979,63(5):952-955
Evidence is presented that K+ uptake in corn root segments is coupled to an electrogenic H+/K+ -exchanging plasmalemma ATPase while phosphate uptake is coupled to an OH/Pi antiporter. The plasmalemma ATPase inhibitor, diethylstilbestrol, or the stimulator, fusicoccin, altered K+ uptake directly and phosphate uptake indirectly. On the other hand, mersalyl, an OH/Pi antiporter inhibitor, inhibited phosphate uptake instantly but only slightly affected K+ uptake. Collapse of the proton gradient across the membrane by (p-trifluoromethoxy) carbonyl cyanide phenylhydrazone resulted in immediate inhibition of K+ uptake but only later inhibited phosphate uptake. Changing the pH of the absorption solution had opposite effects on K+ and phosphate uptake. In addition, a 4-hour washing of corn root tissue induced a 5-fold increase in the rate of K+ uptake with little or no lag, but only a 2- to 3-fold increase in phosphate uptake with a 30- to 45-minute lag. Collectively these differences strongly support the coupling of an electrogenic H+/K+ -exchanging ATPase to an OH/Pi antiporter in corn root tissue.  相似文献   

11.
Sanz A  Ullrich CI 《Plant physiology》1989,90(4):1532-1537
The uptake of acidic and basic sugar derivatives in Lemna gibba L. was studied. Uronic acids applied to the experimental solution (50 millimolar) induced a small decrease of the membrane potential (10 ± 1 millivolt galacturonic acid, and 20 ± 4 millivolt glucuronic acid). After incubation of the plants in a 0.1 millimolar solution of these substrates, no decrease in the concentration of reducing groups in the external solution was detected. Respiration increased by 31% with 50 millimolar galacturonic acid, whereas no effect was found with the same concentration of glucuronic acid. Glucosamine caused a considerable concentration-dependent membrane depolarization. (14C)glucosamine uptake followed Michaelis-Menten kinetics together with a linear component. Influx of this substrate was inhibited by glucose but the type of competition could not be clearly distinguished. Glucosamine, 50 millimolar, inhibited the respiration rate by 30%. The glucosamine uptake was pH-dependent, with maximum uptake at around pH 7. Lack of enhancement of uptake by low pH as well as the permanent membrane depolarization suggest a uniport mechanism for the charged species of the substrate and an electroneutral diffusion of the uncharged species.  相似文献   

12.
The kinetics and inhibitor specificities of phosphate transport across the plasma membrane of wheat leaf mesophyll protoplasts have been examined. Studies were also carried out on the effects of light and pH on phosphate transport and the plasma membrane electropotential. At pH 5.8 (30°C), protoplasts accumulated phosphate at the rate of 3.9 ± 0.2 nanomoles per milligram protein per hour. Phosphate uptake rates and inhibitor specificities for the leaf cell plasma membrane phosphate transporter were qualitatively similar to those observed with root protoplasts. Neither picrylsulfonic acid, or p-chloromercuribenzene sulfonate affected phosphate uptake significantly at 0.1 millimolar. Of all compounds tested, carbonyl cyanide-p-trifluoromethoxy phenylhydrazone was the most effective inhibitor of phosphate uptake (60% at 0.1 millimolar). Tribenzylphosphate inhibited uptake by 34% while dibenzylphosphate had no effect. The plasma membrane electropotential was found to be −37 ± 3 millivolts. Initiation of photosynthesis lowered the membrane potential to −39 ± 3 millivolts. Inhibition of phosphate uptake by 34% with the substrate analog tribenzylphosphate resulted in a measured membrane potential of −33 ± 3 millivolts. These changes in potential were not significant at the 5% probability level. Phosphate uptake rates remained constant under photosynthetic and nonphotosynthetic conditions. The utility of tribenzylphosphate as an inhibitor in plant systems is demonstrated.  相似文献   

13.
Interference of arsenate and vanadate with phosphate uptakein Lemna gibba L. was studied by measuring voltage changes and(32P)phosphate uptake. Arsenate proved to be competitive withthe high- and low-affinity phosphate uptake system. It inducedtransient membrane potential changes of up to 120 mV which weresimilar to those induced by phosphate and indicated a cotransportmechanism with at least 2H+/H2As. The amplitude of the transient arsenate-induced membrane depolarization wasstrongly influenced by phosphate starvation. A permanent membranedepolarization to the diffusion potential was achieved within2 to 6 h in P-starved plants. Thus, arsenate is indeed a stronglycompetitive physiological analogue of phosphate in higher plants. Vanadate was easily transported into L. gibba as concluded fromtransient Em changes of up to 110 mV. Vanadate interfered onlyslightly and non-specifically with the two phosphate transportmechanisms. Like phosphate, vanadate uptake seems to be an H+-cotransportmechanism, both with similar optima at pH 6.0. Unlike phosphateuptake, vanadate-linked membrane depolarization was not affectedby high intracellular phosphate concentrations. P-starvationdid not enhance the weak long-term effect on Em. Hence, vanadate,in contrast to arsenate, is not regarded as a physiologicalphosphate analogue. The distinct and rapid vanadate-inducedand permanent membrane depolarization of Avena sativa, Triticumaestivum and Glycine max leaves was not seen in Lemna nor inleaves of Gossypium hirsutum and Nicotiana tabacum. Plasmalemma-enrichedpreparations of L. gibba revealed, however, a high vanadate-sensitiveATPase activity (87%). As a possible explanation for these differencesit is suggested that the latter plant species have cytosolicvanadate-detoxifying properties, i.e. they can reduce vanadateto vanadyl ions, in contrast to the former group of plant species. Key words: Arsenate, vanadate, H+/solute cotransport, membrane potential, phosphate competition  相似文献   

14.
Phosphate uptake inLemna gibba G1: energetics and kinetics   总被引:2,自引:0,他引:2  
Phosphate uptake was studied by determining [32P]phosphate influx and by measurements of the electrical membrane potential in duckweed (Lemna gibba L.). Phosphate-induced membrane depolarization (E m ) was controlled by the intracellular phosphate content, thus maximal E m by 1 mM H2PO 4 - was up to 133 mV after 15d of phosphate starvation. The E m was strongly dependent on the extracellular pH, with a sharp optimum at pH 5.7. It is suggested that phosphate uptake is energized by the electrochemical proton gradient, proceeding by a 2H+/H2PO 4 - contransport mechanism. This is supported also by the fusicoccin stimulation of phosphate influx. Kinetics of phosphate influx and of E m , which represent mere plasmalemma transport, are best described by two Michaelis-Menten terms without any linear components.Abbreviations E m electrical membrane potential difference - E m phosphate-induced, maximal membrane depolarization - FW fresh weight  相似文献   

15.
Extracellular pH was measured with a microelectrode positioned over the lower surface of singleLemna gibba plants. Upon addition of glucose, a transient extracellular alkalinization occurred. Saturated extracellular pH changes were observed with 5 mM glucose. Simultaneously, the membrane potential difference of –250 mV in the dark measured with intracellular glass micropipettes, trnasiently decreased by 105 mV. Uptake of [14C]glucose and extracellular alkalinization was enhanced by light whereas glucose-induced membrane-potential changes were reduced in the light and became even smaller with increasing the preillumination time. Glucose uptake was optimal at pH 6. The results are taken as further evidence in favor of H+-glucose cotransport inLemna.Dedicated to Professor W. Simonis on the occasion of his 70th birthdayUniversity of Missouri Agricultural Experiment Station Journal Series, paper No. 8266  相似文献   

16.
Summary The substrate stoichiometry of the intestinal Na+/phosphate cotransporter was examined using two measures of Na+-dependent phosphate uptake: initial rates of uptake with [32P] phosphate and phosphate-induced membrane depolarization using the potential-sensitive dye diSC3(5). Isotopic phosphate measures electrogenic and electroneutral Na+-dependent phosphate uptake, while phosphate-induced membrane depolarization measures electrogenic phosphate uptake. Using these measures of Na-dependent phosphate uptake, three parameters were compared: substrate affinity; phenylglyoxal sensitivity and labeling; and inhibiton by mono- and di-fluorophosphates. Na+/phosphate cotransport was found to have similar Na+ activations (apparentK 0.5's of 28 and 25mm), apparentK m 's for phosphate (100 and 410 m), andK 0.5's for inhibition by phenylglyoxal (70 and 90 m) using isotopic phosphate, uptake and membrane depolarization, respectively. Only difluorophosphate inhibited Na+-dependent phosphate uptake below 1mm at pH 7.4.Difluorophosphate also protected a 130-kDa polypeptide from FITC-PG labeling in the presence of Na+ with apparentK 0.5 for phosphate of 200 m; similar to the apparentK m for phosphate uptake, andK 0.5 for phosphate protection against FITC-PG inhibition of Na+-dependent phosphate uptake and FITC-PG labeling of the 130-kDa polypeptide. These results indicate that the intestinal Na+/phosphate cotransporter is electrogenic at pH 7.4, that H2PO 4 is the transport-competent species, and that the 130-kDa polypeptide is an excellent candidate for the intestinal Na+/phosphate cotransporter.  相似文献   

17.
The effect of the purified host-selective toxin victorin C, a cyclized penta peptide, was compared to that of CCCP and vanadate on membrane functions of susceptible leaves, roots, and single root cap cells of Avena sativa with conventional electrophysiology. The plasmalemma depolarized irreversibly by about 80 millivolts and to below the diffusion potential within 1 hour. Concentrations as low as 12.5 picomolar were effective in the susceptible but not the resistant cultivar. Electrical membrane potential difference changes were independent of pH and could not be prevented by fusicoccin or Ca2+. Membranes began to depolarize after a lag phase that never was shorter than 6.5 minutes, even with concentrations as high as 1.25 micromolar. Membrane depolarization was accompanied by a distinct decrease in specific membrane resistance from 4.5 to 1.0 ohm times square meter on average. These changes were followed by K+ and Cl efflux and extracellular alkalinization. ATP level and O2 uptake did not decrease within 2 hours. It is concluded that the victorin-induced deleterious membrane alterations are not caused by direct interaction with the plasmalemma H+-ATPase, K+ channels, lipid structure, nor energy metabolism, but they seem to be triggered by a cascade of events leading to an unspecific increase in membrane permeability.  相似文献   

18.
Mg2+-ATP-dependent H+-translocation has been studied in membrane vesicles derived from the roots of Gossypium hirsutum L. var. Acala San Jose 2. Establishment of a positive membrane potential was followed by measuring SCN accumulation; establishment of ΔpH across the vesicle membranes by measuring quinacrine fluorescence quenching. High specificity for ATP was shown, and H+-translocation was oligomycin stable. The pH profile for H+-translocation showed an optimum at 5.5. The relationship between SCN accumulation and ATP concentration was approximately Michaelian; the apparent Km was 0.7 millimolar. K-2-(N-morpholino)ethanesulfonic acid strongly promoted ATP-dependent SCN uptake (up to 180% stimulation). The effect was not given by Na-Mes. Carbonyl cyanide p-trifluoromethoxyphenylhydrazone totally inhibited SCN accumulation, both in the presence and absence of K-2(N-morpholino)ethanesulfonic acid. Vanadate at 200 micromolar inhibited SCN uptake by about 10 to 40% in the absence of K+, but more strongly in its presence (about 60%). NO3 at 100 millimolar inhibited initial rate of quinacrine quenching by about 25%. The NO3 insensitive fraction was activated by K+; and inhibited by 200 micromolar vanadate to about 40%, provided K+ was present. Saline conditions during the growth of the plants had no appreciable effect on the observed characteristics of H+-translocation.  相似文献   

19.
The electrical response of nitrate-grown maize (Zea mays L.) roots to 0.1 millimolar nitrate was comprised of two sequential parts: a rapid and transient depolarization of the membrane potential, followed by a slower, net hyperpolarization to a value more negative than the original resting potential. The magnitude of the response was smaller in roots of seedlings grown in the absence of nitrate, but, within 3 hours of initial exposure to 0.1 millimolar nitrate, increased to that of nitrate-grown roots. Chloride elicited a separate electrical response with a pattern similar to that of the nitrate response. However, the results presented in this study strongly indicate that the electrical response to nitrate reflects the activity of a nitrate-inducible membrane transport system for nitrate which is distinct from that for chloride. Inhibitors of the plasmalemma H+-ATPase (vanadate, diethylstilbestrol) completely inhibited both parts of the electrical response to nitrate, as did alkaline external pH. The magnitude of the initial nitrate-dependent, membrane potential depolarization was independent of nitrate concentration, but the subsequent nitrate-dependent hyperpolarization showed saturable dependence with an apparent Km of 0.05 millimolar. These results support a model for nitrate uptake in maize roots which includes a depolarizing NO3/H+ symport. The model proposes that the nitrate-dependent membrane potential hyperpolarization is due to the plasma membrane proton pump, which is secondarily stimulated by the operation of the NO3/H+ symport.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号