首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycogen, a major reservoir of energy in Saccharomyces cerevisiae, is found to be present as soluble and membrane-bound insoluble pools. Yeast cells can store excess glycogen when grown in media with higher concentration of sugar or when subjected to nutritional stress conditions. Saccharomyces cerevisiae NCIM-3300 was grown in media having ethanol concentrations up to 12% (v/v). The effects of externally added ethanol on glycogen and other carbohydrate content of yeast were studied by using alkali digestion process. Fermentative activities of cells grown in the presence of various ethanol concentrations (2–8% v/v) exhibited increase in values of glycogen and other carbohydrate, whereas cells grown with higher concentrations of ethanol (10–12% v/v) exhibited depletion in glycogen and carbohydrate content along with decrease in cell weight. Such inhibitory effect of ethanol was also exhibited in terms of reduction in total cell count of yeast grown in media with 2–16% (v/v) ethanol and 8% (w/v) sugar. These data suggest that, as the plasma membrane is a prime target for ethanol action, membrane-bound insoluble glycogen might play a protective role in combating ethanol stress. Elevated level of cell-surface α-glucans in yeast grown with ethanol, as measured by using amyloglucosidase treatment, confirms the correlation between ethanol and glycogen.  相似文献   

2.
Glycogen synthase of bovine retina was found associated with the acid-insoluble and acid-soluble proteoglycogen fractions. The synthase associated with the acid-insoluble proteoglycogen precursor showed an 8-fold lower Km for UDP-glucose than the synthase associated with the acid-soluble fraction, and was inhibited by detergent. A short digestion with pronase resulted in conversion of the acid insoluble fraction into acid-soluble. The results lead us to postulate that the acid-insolubility of the proteoglycogen fraction and the association with retina membrane proposed before, is caused by glycogen synthase strongly associated to its polysaccharide moiety. The enlargement of the polysaccharide moiety during proteoglycogen biosynthesis, from glycogenin linked to a few 11 to 12 glucose units to the acid-insoluble proteoglycogen precursor (Mr 470,000) would be carried out, together with the branching enzyme, by the glycogen synthase showing a low Km for UDP-glucose. The glycogen synthase with the highest Km for UDP-glucose would participate in conversion of the precursor into mature acid-soluble proteoglycogen.  相似文献   

3.
Carbohydrate Metabolism During Ascospore Development in Yeast   总被引:54,自引:16,他引:54       下载免费PDF全文
Carbohydrate metabolism, under sporulation conditions, was compared in sporulating and non-sporulating diploids of Saccharomyces cerevisiae. Total carbohydrate was fractionated into trehalose, glycogen, mannan, and an alkali-insoluble fraction composed of glucan and insoluble glycogen. The behavior of three fractions was essentially the same in both sporulating and non-sporulating strains; trehalose, mannan, and the insoluble fraction were all synthesized to about the same extent regardless of a strain's ability to undergo meiosis or sporulation. In contrast, aspects of soluble glycogen metabolism depended on sporulation. Although glycogen synthesis took place in both sporulating and non-sporulating strains, only sporulating strains exhibited a period of glycogen degradation, which coincided with the final maturation of ascospores. We also determined the carbohydrate composition of spores isolated from mature asci. Spores contained all components present in vegetative cells, but in different proportions. In cells, the most abundant carbohydrate was mannan, followed by glycogen, then trehalose, and finally the alkali-insoluble fraction; in spores, trehalose was most abundant, followed by the alkali-insoluble fraction, glycogen, and mannan in that order.  相似文献   

4.
A rapid technique has been developed to determine the glycogen content of yeast on an individual cell basis using a combination of image analysis technology and staining of yeast cells with an I(2):KI solution. Changes in mean cellular glycogen content during alcoholic fermentation have been reported using this technique. The glycogen content of stored brewer's yeast is heterogeneous compared to freshly propagated yeast which have a more uniform distribution of glycogen. Analysis of the distribution of yeast glycogen during fermentation indicates that a fraction of yeast cells do not dissimilate glycogen. Therefore, conventional analysis of the mean glycogen content of yeast used to inoculate fermentations is of limited use, unless information regarding the proportion of cells which utilize glycogen is known. Analysis of the distribution of glycogen within a yeast population can serve as a useful indicator of yeast quality.  相似文献   

5.
Evidence for the glycoprotein nature of retina glycogen   总被引:3,自引:0,他引:3  
Incubation of a bovine retina membrane preparation with micromolar amounts of UDP-[14C]glucose resulted in the incorporation of [14C]glucose into endogenous (1----4)-alpha-glucan, insoluble in trichloroacetic acid, and acid-soluble ethanol-insoluble glycogen. The trichloroacetic-acid-insoluble glucan fraction of retina migrated in 2.6-3% acrylamide gels when subjected to sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) and was rendered acid-soluble by digestion with pronase. The solubility of the acid-insoluble glucan in acidified organic solvent was different from that of amylose or glycogen and similar to membrane proteins and glycoproteins. The glycogen fraction of retina contained 1.5-2.0 micrograms protein/100 micrograms glucose. When this fraction was analyzed by SDS-PAGE only one band, which moved near the top of 3% acrylamide gels, was stained with periodic acid Schiff reagent and Coomassie blue. The protein nature of the Coomassie-blue-stainable material was demonstrated by iodination of the glycogen fraction with [131I]iodide and identification of labeled monoiodotyrosine and diiodotyrosine. The bulk of the label comigrated with carbohydrate near the top of gels in SDS-PAGE and treatment with alpha- amylse decreased the molecular size of both labeled and stainable material. Physical dissociative conditions (7.5 M urea/0.83% SDS/0.83% mercaptoethanol) and the following chemical treatments failed to dissociate the iodinated protein from glycogen: (a) 0.1 M NaOH/0.1 M NaBH4 at room temperature for 24 h; (b) 1 M HCl in methanol at 50 degrees C for 10 min; (c) trifluoroacetic acid at 50 degrees C for 6 min. 131I-labeled glycogenpeptide was isolated after 131I-labeled protein-bound glycogen had been subjected to digestion with papain/pronase and passed through a Sepharose column. The results suggest that at least part of glycogen in bovine retina is firmly combined to protein as a single proteoglycogen molecule. Furthermore some of the proteoglycogen might be present as a trichloroacetic-acid-precipitable proteoglucan owing to its lower glucose content.  相似文献   

6.
The linear (1 --> 6)-beta-d-glucans pustulan and luteose were effective competitive inhibitors of killer toxin action. Affinity chromatography of killer toxin on a pustulan-Sepharose column showed that toxin bound directly to a (1 --> 6)-beta-linked polysaccharide. Other polysaccharides found in yeast cell walls, including (1 --> 3)-beta-d-glucan, mannan, chitin, and glycogen, were not effective as inhibitors of toxin. Fractionation of yeast cell walls was attempted to identify the toxin receptor in sensitive Saccharomyces cerevisiae. The receptor activity was retained among the insoluble glucans in alkali-washed cells; yeast mannan and alkali-soluble glucan had little receptor activity. A minor fraction of receptor activity was removed from alkali-washed cells by hot acetic acid extraction, a procedure which solubilized some (1 --> 6)-beta-d-glucan and glycogen. The major fraction (>70%) of receptor activity remained with the acid-insoluble (1 --> 6)-beta-and (1 --> 3)-beta-glucans. Zymolyase, an endo-(1 --> 3)-beta-d-glucanase, solubilized a substantial fraction of the receptor activity in the acid-insoluble glucans. The receptor activity in yeast cell walls was periodate and (1 --> 6)-beta-d-glucanase sensitive, but was resistant to (1 --> 3)-beta-d-glucanase and alpha-amylase. The acid-soluble glucan fractions of a sensitive strain and a krel-l receptor-defective toxin-resistant mutant were examined. The krel-l strain had a reduced amount (ca. 50%) of (1 --> 6)-beta-d-glucan compared with the sensitive parent strain. A sensitive revertant of the krel-l strain regained the parental level of glucan. These results implicate (1 --> 6)-beta-d-glucan as a component of the yeast cell wall receptor for killer toxin.  相似文献   

7.
Nucleolar and nuclear envelope proteins of the yeast Saccharomyces cerevisiae   总被引:24,自引:0,他引:24  
We have developed a fast and reliable purification protocol to obtain yeast nuclei in intact and pure form and in a reasonable yield. The purified nuclei appear homogeneous at the light and electron microscopic level, are highly enriched in the nuclear marker histone H2B and devoid of mitochondrial, vacuolar and cytosolic marker proteins. On sodium dodecyl sulfate (SDS)-polyacrylamide gels, the nuclear fraction contains unique proteins which distinguishes them from the major yeast subcellular fractions. Yeast nuclei were separated by detergent/salt extraction into soluble, insoluble and membrane fractions. Antibodies raised against subnuclear fractions lead to the identification of an integral nuclear membrane protein and a high-abundance 38-kDa protein which is located in the yeast nucleolus.  相似文献   

8.
A previously uncharacterized yeast protein, YJL066c, was discovered in the membrane fraction although it has no hydrophobic stretch. The protein was partly solubilized by Triton X-100 in an oligomeric form, while it was insoluble in alkali or salt. By immunofluorescent microscopy, its localization coincided with the mitochondria. We therefore propose it should be named Mpm1 (mitochondrial peculiar membrane protein 1).  相似文献   

9.
The organization of oligonucleosomes in yeast   总被引:9,自引:2,他引:7       下载免费PDF全文
We have developed a method of preparing yeast chromatin that facilitates the analysis of nucleoprotein organization. Yeast chromatin, isolated as an insoluble complex, is digested with micrococcal nuclease and fractionated into major insoluble and soluble fractions. No nucleosomal repeat is seen early in digestion for the insoluble fraction. Nucleosomal complexes of the soluble fraction are excised by nuclease in a distinctive non-random pattern; they are markedly depleted in mononucleosomes. When we analyze the soluble material by high resolution native electrophoresis, we find that the nucleoproteins resolve into two bands for each DNA multimer of the nucleosomal repeat. Our results suggest that there are structural similarities between bulk yeast chromatin and chromatin configurations found in transcribing genes of complex eukaryotes.  相似文献   

10.
When cells of Acanthamoeba castellanii are placed in a non-nutrient medium, they differentiate into cysts which possess cellulosic walls. In the present study, the source of the glucosyl unit for cyst wall cellulose was investigated by following the encystment of trophozoites grown in the presence of 14C-labeled fatty acids (uniformly labeled palmitate or oleate) or [3-3H]glucose. Cells were fractionated at the beginning and after 30 hr of encystment using a modified Schmidt-Tannhauser procedure. In cells grown on fatty acids, 90% of the labeled material was in the lipid fractions both before and after encystment with the total amount of label/cell changing very little. Both partial and complete acid hydrolysis of the glycogen of the acidsoluble fraction and the alkali-insoluble residue of the cyst wall indicated that the glucose of both fractions was not radioactive, although Acanthamoeba is known to have a functional glyoxylate pathway.Fractionation data of cells grown on [3H]glucose indicated a sevenfold increase in radioactivity in the wall insoluble fraction and a fivefold decrease in the acid-soluble fraction with the cpm/cell of the other fractions changing very little after 30 hr of encystment. Approximately 70% of the 3H-labeled material was recovered as glucose from the 30-hr wall insoluble fraction following complete acid hydrolysis. The specific radioactivity of glucose in the cyst wall insoluble fraction was the same as that of glycogen glucose isolated from the acid soluble fraction of trophozoites. Electron microscopic autoradiography showed that the majority of nonlipid radioactivity was due to glycogen in trophozoites. Autoradiograms failed to reveal Golgi bodies or any particular region of the cell as being the specialized site of cellulose synthesis. The results of the fractionation and autoradiographic studies are consistent with the concept that glycogen is a precursor of cyst wall cellulose, and that glucosyl units of glycogen and/or other glucose derivatives are converted to cellulose without significant dilution under the experimental conditions used.  相似文献   

11.
We investigated the effects of nutritional state on carbohydrate, lipid, and protein stores in the heart, liver, and white skeletal muscle of male and female rainbow trout. For fed animals we also partitioned glycogen into fractions based on acid solubility. Fish (10-14 months-old, ~400-500 g) were held at 14 °C and either fed (1% of body weight, every other day) or deprived of food for 14 days. Under fed conditions, glycogen was increased 54% in ventricles from males compared with females, and elevated in the liver (87%) and white muscle (70%) in sexually-maturing versus immature males. Acid soluble glycogen predominated over the acid insoluble fraction in all tissues and was similar between sexes. Food deprivation 1) selectively reduced glycogen and free glucose in male ventricles by ~30%, and 2) did not change glycogen in the liver or white muscle, or triglyceride, protein or water levels in any tissues for both sexes. These data highlight sex differences in teleost cardiac stores and the metabolism of carbohydrates, and contrast with mammals where cardiac glycogen increases during fasting and acid insoluble glycogen is a significant fraction. Increased glycogen in the hearts of male rainbow trout appears to pre-empt sex-specific cardiac growth while storage of acid soluble glycogen may reflect a novel strategy for efficient synthesis and mobilization of glycogen in fishes.  相似文献   

12.
The effect of different extraction procedures on the yields of water-soluble and water-insoluble glycogen fractions from a number of Saccharomyces strains was studied by using a specific method for glycogen determination. The similarity of the yields obtained by the different procedures showed that neither form of glycogen is an artifact, and variations in the relative amounts of glycogen in the two fractions during cell growth and in different yeast strains suggest that they represent different pools of storage material with specific roles in cell development and differentiation. A proportion of the water-insoluble glycogen fraction, solubilized by mechanical agitation, was shown to be strongly associated with a beta-glucan-like polysaccharide that may be a cell wall component.  相似文献   

13.
The portions of both liver and muscle glycogen that have a high protein content have been investigated. In liver the high molecular weight protions of glycogen may be rendered insoluble by treatment with trichloroacetic acid. This shows that reported desmo- (or insoluble) glycogen is an artefact of the extraction process and therefore of no physiological significance. In contrast, muscle glycogen isolubility is not associated with any specific molecular size range. Insolubility of muscle glycogen is shown to be related to partial degradation of the polysaccharide and to the high protein content remaining after the gentle extraction procedure. Since the molecular weight profile is unaltered by the removal of the insoluble glycogen it does not interfere with the interpretation of metabolic studies.  相似文献   

14.
Insoluble glycogen is an enzymatically modified form of naturally occurring soluble glycogen with a great adsorbing capacity. It can be metabolized by phagocytes to glucose. In this study we used insoluble glycogen intravenously in the experimental endotoxin shock of rats. Wistar male rats were sensitized to endotoxin by Pb acetate. The survival of rats were compared in groups of animals endotoxin shock treated and non-treated with insoluble glycogen. Furthermore, we have determined in vitro the binding capacity of insoluble glycogen for endotoxin, tumour necrosis factor alpha, interleukin-1 and secretable phospholipase A2. Use of 10 mg/kg dose of insoluble glycogen could completely prevent the lethality of shock induced by LD50 quantity of endotoxin in rats. All animals treated survived. Insoluble glycogen is a form of 'metabolizable internal adsorbents'. It can potentially be used for treatment of septic shock.  相似文献   

15.
Approximately 90% of cases of Lafora disease, a fatal teenage-onset progressive myoclonus epilepsy, are caused by mutations in either the EPM2A or the EPM2B genes that encode, respectively, a glycogen phosphatase called laforin and an E3 ubiquitin ligase called malin. Lafora disease is characterized by the formation of Lafora bodies, insoluble deposits containing poorly branched glycogen or polyglucosan, in many tissues including skeletal muscle, liver, and brain. Disruption of the Epm2b gene in mice resulted in viable animals that, by 3 months of age, accumulated Lafora bodies in the brain and to a lesser extent in heart and skeletal muscle. Analysis of muscle and brain of the Epm2b−/− mice by Western blotting indicated no effect on the levels of glycogen synthase, PTG (type 1 phosphatase-targeting subunit), or debranching enzyme, making it unlikely that these proteins are targeted for destruction by malin, as has been proposed. Total laforin protein was increased in the brain of Epm2b−/− mice and, most notably, was redistributed from the soluble, low speed supernatant to the insoluble low speed pellet, which now contained 90% of the total laforin. This result correlated with elevated insolubility of glycogen and glycogen synthase. Because up-regulation of laforin cannot explain Lafora body formation, we conclude that malin functions to maintain laforin associated with soluble glycogen and that its absence causes sequestration of laforin to an insoluble polysaccharide fraction where it is functionally inert.  相似文献   

16.
In eukaryotic cells, glycogenin is a self-glucosylating protein that primes glycogen synthesis. In yeast, the loss of function of GLG1 and GLG2, which encode glycogenin, normally leads to the inability of cells to synthesize glycogen. In this report, we show that a small fraction of colonies from glg1glg2 mutants can switch on glycogen synthesis to levels comparable to wild-type strain. The occurrence of glycogen positive glg1glg2 colonies is strongly enhanced by the presence of a hyperactive glycogen synthase and increased even more upon deletion of TPS1. In all cases, this phenotype is reversible, indicating the stochastic nature of this synthesis, which is furthermore illustrated by colour-sectoring of colonies upon iodine-staining. Altogether, these data suggest that glycogen synthesis in the absence of glycogenin relies on a combination of several factors, including an activated glycogen synthase and as yet unknown alternative primers whose synthesis and/or distribution may be controlled by TPS1 or under epigenetic silencing.  相似文献   

17.
The uptake of nutrients (glucose, glutamine, and N-acetylglucosamine), the intracellular concentrations of metabolites (glucose-6-phosphate, cyclic AMP, amino acids, trehalose, and glycogen) and cell wall composition were studied in Candida albicans. These analyses were carried out with exponential-phase, stationary-phase, and starved yeast cells, and during germ-tube formation. Germ tubes formed during a 3-h incubation of starved yeast cells (0.8 X 10(8) cells/mL) at 37 degrees C during which time the nutrients glucose plus glutamine or N-acetylglucosamine (2.5 mM of each) were completely utilized. Control incubations with these nutrients at 28 degrees C did not form germ tubes. Uptake of N-acetylglucosamine and glutamine was inhibited by cycloheximide which suggests that de novo protein synthesis was required for the induction of these uptake systems. The glucose-6-phosphate content varied from 0.4 nmol/mg dry weight for starved cells to 2-3 nmol/mg dry weight for growing yeast cells and germ tube forming cells. Trehalose content varied from 85 nmol/mg dry weight (growing yeast cells and germ tube forming cells) to 165 nmol/mg weight (stationary-phase cells). The glycogen content decreased during germ-tube formation (from 800 to 600 nmol glucose equivalent/mg dry weight) but increased (to 1000 nmol glucose equivalent/mg dry weight) in the control incubation of yeast cells. Cyclic AMP remained constant throughout germ-tube formation at 4-6 pmol/mg dry weight. The total amino acid pool was similar in exponential, starved, and germ tube forming cells but there were changes in the amounts of individual amino acids. The overall cell wall composition of yeast cells and germ tube forming cells were similar: lipid (2%, w/w); protein (3-6%), and carbohydrate (77-85%). The total carbohydrates were accounted for as the following fractions: alkali-soluble glucan (3-8%), mannan (20-23%), acid-soluble glucan (24-27%), and acid-insoluble glucan (18-26%). The relative amounts of the alkali-soluble and insoluble glucan changed during starvation of yeast cells, reinitiation of yeast-phase growth, and germ-tube formation. Analysis of the insoluble glucan fraction from cells labelled with [14C]glucose during germ-tube formation showed that the chitin content of the cell wall increased from 0.6% to 2.7% (w/w).  相似文献   

18.
Expression of synthetic thaumatin genes in yeast   总被引:11,自引:0,他引:11  
Thaumatin is a plant protein that contains 8 disulfides and 207 amino acids in the mature form. The protein is of potential commercial interest since microgram quantities elicit an intense sweetness sensation. Two major variants of thaumatin have been identified in our laboratory by using sequence data obtained from thaumatin tryptic peptides. These differ by one amino acid at position 46 (asparagine or lysine), and both proteins differ from previously published sequences. We have synthesized DNA-coding sequences for three of these thaumatin variants using yeast preferred codons. The genes were inserted into an expression vector that contained a yeast 3-phosphoglycerate kinase promoter and terminator, and the vectors were transformed into yeast for expression of the recombinant protein. Upon lysis of the yeast cells, all thaumatin was localized in the insoluble cell fraction. Analysis of the sodium dodecyl sulfate solubilized yeast extracts by gel electrophoresis and Western blotting showed that thaumatin represented about 20% of the insoluble yeast protein. Although expressed at high levels, none of the thaumatins was biologically active (sweet). Preliminary protein folding experiments showed that two of three thaumatin variants could be folded to the sweet conformation.  相似文献   

19.
Glucose triggers posttranslational modifications that increase the activity of the Saccharomyces cerevisiae plasma membrane H+-ATPase (Pma1). Glucose activation of yeast H+-ATPase results from the change in two kinetic parameters: an increase in the affinity of the enzyme for ATP, depending on Ser899, and an increase in the Vmax involving Thr912. Our previous studies suggested that Ptk2 mediates the Ser899-dependent part of the activation. In this study we find that Ptk2 localized to the plasma membrane in a Triton X-100 insoluble fraction. In vitro phosphorylation assays using a recombinant GST-fusion protein comprising 30 C-terminal amino acids of Pma1 suggest that Ser899 is phosphorylated by Ptk2. Furthermore, we show that the Ptk2 carboxyl terminus is essential for glucose-dependent Pma1 activation and for the phosphorylation of Ser899.  相似文献   

20.
Diacylglycerol acyltransferases (DGATs) esterify sn-1,2-diacylglycerol with a long-chain fatty acyl-CoA, the last and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. At least 74 DGAT2 sequences from 61 organisms have been identified, but the expression of any DGAT2 as a partial or full-length protein in Escherichia coli had not been reported. The main objective of this study was to express and purify recombinant DGAT2 (rDGAT2) from E. coli for antigen production with a minor objective to compare rDGAT2 expression in yeast. A plasmid was engineered to express tung tree DGAT2 fused to maltose binding protein and poly-histidine (His) affinity tags. Immunoblotting showed that rDGAT2 was detected in the soluble, insoluble, and membrane fractions. The rDGAT2 in the soluble fraction was partially purified by amylose resin, nickel-nitrilotriacetic agarose (Ni-NTA) beads, and tandem affinity chromatography. Multiple proteins co-purified with rDGAT2. Size exclusion chromatography estimated the size of the rDGAT2-enriched fraction to be approximately eight times the monomer size. Affinity-purified rDGAT2 fractions had a yellow tint and contained fatty acids. The rDGAT2 in the insoluble fraction was partially solubilized by seven detergents with SDS being the most effective. Recombinant DGAT2 was purified to near homogeneity by SDS solubilization and Ni-NTA affinity chromatography. Mass spectrometry identified rDGAT2 as a component in the bands corresponding to the monomer and dimer forms as observed by SDS-PAGE. Protein bands with monomer and dimer sizes were also observed in the microsomal membranes of Saccharomyces cerevisiae expressing hemagglutinin-tagged DGAT2. Nonradioactive assay showed TAG synthesis activity of DGAT2 from yeast but not E. coli. The results suggest that rDGAT2 is present as monomer and dimer forms on SDS-PAGE, associated with other proteins, lipids, and membranes, and that post-translational modification of rDGAT2 may be required for its enzymatic activity and/or the E. coli protein is misfolded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号