首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Festuca arundinacea Schreb., commonly known as tall fescue, is a major forage crop in temperate regions. Recently, a molecular analysis of different accessions of a world germplasm collection of tall fescue has demonstrated that it contains different species from the genus Festuca and allowed their rapid classification into the three major morphotypes (Continental, Mediterranean and Rhizomatous). In this study, we explored the genetic diversity of 161 accessions of Festuca species from 29 countries, including 28 accessions of INTA (Argentina), by analyzing 15 polymorphic SSR markers by capillary electrophoresis. These molecular markers allowed us to detect a total of 214 alleles. The number of alleles per locus varied between 5 and 24, and the values of polymorphic information content ranged from 0.627 to 0.840. In addition, the accessions analyzed by flow cytometry showed different ploidy levels (diploid, tetraploid, hexaploid and octaploid), placing in evidence that the world germplasm collection consisted of multiple species, as previously suggested. Interestingly, almost all accessions of INTA germplasm collection were true hexaploid tall fescue, belonging to two eco-geographic races (Continental and Mediterranean). Finally, the data presented revealed an ample genetic diversity of tall fescue showing the importance of preserving the INTA collection for future breeding programs.  相似文献   

2.

Background  

The agriculturally important pasture grass tall fescue (Festuca arundinacea Schreb. syn. Lolium arundinaceum (Schreb.) Darbysh.) is an outbreeding allohexaploid, that may be more accurately described as a species complex consisting of three major (Continental, Mediterranean and rhizomatous) morphotypes. Observation of hybrid infertility in some crossing combinations between morphotypes suggests the possibility of independent origins from different diploid progenitors. This study aims to clarify the evolutionary relationships between each tall fescue morphotype through phylogenetic analysis using two low-copy nuclear genes (encoding plastid acetyl-CoA carboxylase [Acc1] and centroradialis [CEN]), the nuclear ribosomal DNA internal transcribed spacer (rDNA ITS) and the chloroplast DNA (cpDNA) genome-located matK gene. Other taxa within the closely related Lolium-Festuca species complex were also included in the study, to increase understanding of evolutionary processes in a taxonomic group characterised by multiple inter-specific hybridisation events.  相似文献   

3.
Phylogeny of tall fescue and related species using RFLPs   总被引:4,自引:0,他引:4  
The wild species of tall fescue (Festuca arundinacea var.genuina Schreb.) represent a wide range of genetic variation and constitute potential germplasm for tall fescue improvement. Our objective was to evaluate genome specificity of the previously-identified DNA probes and to examine the phylogenetic relationship of tall fescue with six related species by using RFLP data. A total of 29 DNA probes from aPstI-genomic library of tall fescue were hybridized toEcoRI-orHindIII-digested DNA of 32 plants from sixFestuca species and fromLolium perenne L. Fifteen probes hybridized to all seven species. The remaining 14 probes showed differential hybridization patterns (i.e., ±), especially at the diploid and tetraploid levels. This hybridization pattern reflected genome divergence in these species. The DNA probes will be useful markers in breeding programs involving interspecific and intergeneric hybridization. Cluster analyses were performed using the average genetic distances calculated with the RFLP data from 53 probe-enzyme combinations. Generally, genotypes from the same species were grouped in the same cluster. These data indicated that tall fescue has a close relationship withF. pratensis Huds. (diploid),F. arundinacea var.glaucescens Boiss. (tetraploid), andL. perenne L. (diploid) and thatFestuca pratensis andL. perenne had the closest degree of relationship.This paper is a contribution of the Missouri Agricultural Experimental Station, Journal Series no. 11,798  相似文献   

4.
Genetic mapping using molecular markers such as restriction fragment length polymorphisms (RFLPs) has become a powerful tool for plant geneticists and breeders. Like many economically important polyploid plant species, detailed genetic studies of hexaploid tall fescue (Festuca arundinacea Schreb.) are complicated, and no genetic map has been established. We report here the first tall fescue genetic map. This map was generated from an F2 population of HD28-56 by Kentucky-31 and contains 108 RFLP markers. Although the two parental plants were heterozygous, the perennial and tillering growth habit, high degree of RFLP, and disomic inheritance of tall fescue enabled us to identify the segregating homologous alleles. The map covers 1274 cM on 19 linkage groups with an average of 5 loci per linkage group (LG) and 17.9 cM between loci. Mapping the homoeologous loci detected by the same probe allowed us to identify five homoeologous groups within which the gene orders were found to be generally conserved among homoeologous chromosomes. An exception was homoeologous group 5, in which only 2 of the 3 homoeologous chromosomes were identified. Using 12 genome-specific probes, we were able to assign several linkage groups to one of the three genomes (PG1G2) in tall fescue. All the loci detected by the 11 probes specific to the G1 and/or G2 genomes, with one exception, identified loci located on 4 chromosomes of two homoeologous groups (LG2a, LG2c, LG3a, and LG3c). A P-genome-specific probe was used to map a locus on LG5c. Comparative genome mapping with maize probes indicated that homoeologous group 3 and 2 chromosomes in tall fescue corresponded to maize chromosome 1. Difficulties and advantages of applying RFLP technology in polyploids with high levels of heterozygosity are discussed.Journal Series No. 12, 190  相似文献   

5.
Epichloid endophytes provide protection from a variety of biotic and abiotic stresses for cool-season grasses, including tall fescue. A collection of 85 tall fescue lines from 15 locations in Greece, including both Continental and Mediterranean germplasm, was screened for the presence of native endophytes. A total of 37 endophyte-infected lines from 10 locations were identified, and the endophytes were classified into five distinct groups (G1 to G5) based on physical characteristics such as colony morphology, growth rate, and conidial morphology. These classifications were supported by phylogenetic analyses of housekeeping genes tefA and tubB, and the endophytes were further categorized as Neotyphodium coenophialum isolates (G1, G4, and G5) or Neotyphodium sp. FaTG-2 (Festuca arundinacea taxonomic group 2 isolates (G2 and G3). Analyses of the tall fescue matK chloroplast genes indicated a population-wide, host-specific association between N. coenophialum and Continental tall fescue and between FaTG-2 and Mediterranean tall fescue that was also reflected by differences in colonization of host tillers by the native endophytes. Genotypic analyses of alkaloid gene loci combined with chemotypic (chemical phenotype) profiles provided insight into the genetic basis of chemotype diversity. Variation in alkaloid gene content, specifically the presence and absence of genes, and copy number of gene clusters explained the alkaloid diversity observed in the endophyte-infected tall fescue, with one exception. The results from this study provide insight into endophyte germplasm diversity present in living tall fescue populations.  相似文献   

6.
Summary Cochliobolus sativus (Ito and Kurib.) Drechsl. ex Dastur is a major foliar pathogen of tall fescue (Festuca arundinacea Schreb.) which can greatly reduce the quantity and quality of forages available for animal consumption. A greenhouse screening program was initiated to determine the inheritance of resistance to C. sativus in tall fescue over several cycles of mass selection. Resistance to C. sativus in four tall fescue cultivars was increased with 2–3 cycles of mass selection. Realized heritabilities were low to moderate (0.04 to 0.58) indicating that environmental influences on the expression of resistance are quite high. Variances were unchanged by selection, indicating that further improvement should be possible. However, progress with mass selection can be expected to be slow. Lesion size was decreased in each cultivar by selecting for lesion coverage. Lesion size, being independent of inoculum load and therefore less subject to environmental variation, should be considered as an additional selection criteria to improve the rate of progress.Journal article No. 6370 of the Mississippi Agricultural and Forestry Experiment Station  相似文献   

7.
A decaploid tall fescue (Festuca arundinacea Schreb) genotype has been found which exhibits net photosynthetic rates of 32 to 41 mg CO2/dm2·hour as opposed to a mean of 22 mg CO2/dm2·hour for 10 hexaploid genotypes. The decaploid genotype exhibited a ribulose 1,5-bisphosphate (RuBP) carboxylase specific activity 1.3- to 2-fold higher than typical tall fescue genotypes. Specific activities of photorespiratory enzymes and nitrate reduction enzymes were lower in the decaploid than the hexaploid genotypes. Results suggest that genetic expression of RuBP carboxylase activity may have been altered to increase the net photosynthesis rate in the decaploid genotype.  相似文献   

8.
Simple sequence repeat (SSR) markers are highly informative and widely used for genetic and breeding studies. Currently, a very limited number of SSR markers are available for tall fescue (Festuca arundinacea Schreb.) and other forage grass species. A tall fescue genomic library enriched in (GA/CT) n repeats was used to develop primer pairs (PPs) flanking SSRs and assess PP functionality across different forage, cereal, and turf grass species. A total of 511 PPs were developed and assessed for their utility in six different grass species. The parents and a subset of a tall fescue mapping population were used to select PPs for mapping in tall fescue. Survey results revealed that 48% (in rice) to 66% (in tall fescue) of the PPs produced clean SSR-type amplification products in different grass species. Polymorphism rates were higher in tall fescue (68%) compared to other species (46% ryegrass, 39% wheat, and 34% rice). A set of 194 SSR loci (38%) were identified which amplified across all six species. Loci segregating in the tall fescue mapping population were grouped as loci segregating from the female parent (HD28-56, 37%), the male parent (R43-64, 37%), and both parents (26%). Three percent of the loci that were polymorphic between parents were monomorphic in the pseudo F1 mapping population and the remaining loci segregated. Sequencing of amplified products obtained from PP NFFAG428 revealed a very high level of sequence similarity among the grass species under study. Our results are the first report of genomic SSR marker development from tall fescue and they demonstrate the usefulness of these SSRs for genetic linkage mapping in tall fescue and cross-species amplification.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

9.
10.
Tall fescue (Festuca arundinacea Schreb.) is an important turf and forage grass species worldwide. Fungal diseases present a major limitation in the maintenance of tall fescue lawns, landscapes, and forage fields. Two severe fungal diseases of tall fescue are brown patch, caused by Rhizoctonia solani, and gray leaf spot, caused by Magnaporthe grisea. These diseases are often major problems of other turfgrass species as well. In efforts to obtain tall fescue plants resistant to these diseases, we introduced the bacteriophage T4 lysozyme gene into tall fescue through Agrobacterium-mediated genetic transformation. In replicated experiments under controlled environments conducive to disease development, 6 of 13 transgenic events showed high resistance to inoculation of a mixture of two M. grisea isolates from tall fescue. Three of these six resistant plants also displayed significant resistance to an R. solani isolate from tall fescue. Thus, we have demonstrated that the bacteriophage T4 lysozyme gene confers resistance to both gray leaf spot and brown patch diseases in transgenic tall fescue plants. The gene may have wide applications in engineered fungal disease resistance in various crops.  相似文献   

11.
Comparative RFLP mapping of meadow and tall fescue   总被引:7,自引:2,他引:5  
 Molecular markers based on restriction fragment length polymorphism (RFLP) were used to construct a genetic linkage map in diploid meadow fescue, Festuca pratensis Huds. (2n=2x=14, genomic designation PP), and to compare its genomic relationship with a related species, hexaploid tall fescue (Festuca arundinacea Schreb.; 2n=6x=42, PPG1G1G2G2). Using a collection of 66 tall-fescue (heterologous) markers, an RFLP linkage map was constructed in F. pratensis. This map, which has a total length of 280.1 cM, includes seven linkage groups. A comparison of 33 markers that were mapped in both F. pratensis and F. arundinacea detected highly conserved linkage groups between these two species. Our data are consistent with the proposal that one of the genomes of F. arundinacea was derived from F. pratensis. However, since significant changes in marker sequences, map distances, and homoeologous linkage groups were also detected between the two species, it appears that the P genome diverged substantially during evolution from the diploid to the hexaploid Festuca. Received: 23 May 1997 / Accepted: 15 January 1998  相似文献   

12.
Tall fescue EST-SSR markers with transferability across several grass species   总被引:26,自引:0,他引:26  
Tall fescue (Festuca arundinacea Schreb.) is a major cool season forage and turf grass in the temperate regions of the world. It is also a close relative of other important forage and turf grasses, including meadow fescue and the cultivated ryegrass species. Until now, no SSR markers have been developed from the tall fescue genome. We designed 157 EST-SSR primer pairs from tall fescue ESTs and tested them on 11 genotypes representing seven grass species. Nearly 92% of the primer pairs produced characteristic simple sequence repeat (SSR) bands in at least one species. A large proportion of the primer pairs produced clear reproducible bands in other grass species, with most success in the close taxonomic relatives of tall fescue. A high level of marker polymorphism was observed in the outcrossing species tall fescue and ryegrass (66%). The marker polymorphism in the self-pollinated species rice and wheat was low (43% and 38%, respectively). These SSR markers were useful in the evaluation of genetic relationships among the Festuca and Lolium species. Sequencing of selected PCR bands revealed that the nucleotide sequences of the forage grass genotypes were highly conserved. The two cereal species, particularly rice, had significantly different nucleotide sequences compared to the forage grasses. Our results indicate that the tall fescue EST-SSR markers are valuable genetic markers for the Festuca and Lolium genera. These are also potentially useful markers for comparative genomics among several grass species.Electronic Supplementary Material Supplementary material is available for this article at .  相似文献   

13.
14.
Summary Tall fescue (Festuca arundinacea Schreb.) is the most important forage species worldwide of the Festuca genus. Single genotype-derived embryogenic suspension cultures were established from tall fescue cultivar Kentucky-31, and were used as target cells for biolistic transformation. A chimeric hygromycin phosphotransferase gene (hph) was used as the selectable marker, and a chimeric β-glucuronidase (gusA) gene was co-transformed with hph. Transgenic plants were recovered after microprojectile bombardment of suspension cells and subsequent selection in the presence of a high concentration of hygromycin. Fertile transgenic plants were obtained after vernalization under field conditions. T1 and T2 progenies were obtained after reciprocal crosses between transgenic and untransformed control plants. PCR and Southern hybridization analyses revealed a 1∶1 segregation ratio for both transgenes in the T1 and T2 generations. Southern hybridization patterns were identical for T0, T1, and T2 plants. The results demonstrated for the first time the stable meiotic transmission of transgenes following Mendelian rules in transgenic tall fescue.  相似文献   

15.
Tall fescue (Festuca arundinacea Schreb.) is commonly grown as forage and turf grass in the temperate regions of the world. Here, we report the first genetic map of tall fescue constructed with PCR-based markers. A combination of amplified fragment length polymorphisms (AFLPs) and expressed sequence tag-simple sequence repeats (EST-SSRs) of both tall fescue and those conserved in grass species was used for map construction. Genomic SSRs developed from Festuca × Lolium hybrids were also mapped. Two parental maps were initially constructed using a two-way pseudo-testcross mapping strategy. The female (HD28-56) map included 558 loci placed in 22 linkage groups (LGs) and covered 2,013 cM of the genome. In the male (R43-64) map, 579 loci were grouped in 22 LGs with a total map length of 1,722 cM. The marker density in the two maps varied from 3.61 cM (female parent) to 2.97 (male parent) cM per marker. These differences in map length indicated a reduced level of recombination in the male parent. Markers that revealed polymorphism within both parents and showed 3:1 segregation ratios were used as bridging loci to integrate the two parental maps as a bi-parental consensus. The integrated map covers 1,841 cM on 17 LGs, with an average of 54 loci per LG, and has an average marker density of 2.0 cM per marker. Homoeologous relationships among linkage groups of six of the seven predicted homeologous groups were identified. Three small groups from the HD28-56 map and four from the R43-64 map are yet to be integrated. Homoeologues of four of those groups were detected. Except for a few gaps, markers are well distributed throughout the genome. Clustering of those markers showing significant segregation distortion (23% of total) was observed in four of the LGs of the integrated map.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

16.
Summary Tall fescue (Festuca arundinacea Schreb.) protoplasts, inactivated by iodoacetamide, and non-morphogenic Italian ryegrass (Lolium multiflorum Lam.) protoplasts, both derived from suspension cultures, were electrofused and putative somatic hybrid plants were recovered. Two different genotypic fusion combinations were carried out and several green plants were regenerated in one of them. With respect to plant habitus, leaf and inflorescence morphology, the regenerants had phenotypes intermediate between those of the parents. Southern hybridization analysis using a rice ribosomal DNA probe revealed that the regenerants contained both tall fescue- and Italian ryegrass-specific-DNA fragments. A cloned Italian ryegrass-specific interspersed DNA probe hybridized to total genomic DNA from Italian ryegrass and from the green regenerated somatic hybrid plants but not to tall fescue. Chromosome counts and zymograms of leaf esterases suggested nuclear genome instability of the somatic hybrid plants analyzed. Four mitochondrial probes and one chloroplast DNA probe were used in Southern hybridization experiments to analyze the organellar composition of the somatic hybrids obtained. The somatic hybrid plants analyzed showed tall fescue, additive or novel mtDNA patterns when hybridized with different mitochondrial gene-specific probes, while corresponding analysis using a chloroplast gene-specific probe revealed in all cases the tall fescue hybridization profile. Independently regenerated F. arundinacea (+) L. multiflorum somatic hybrid plants were successfully transferred to soil and grown to maturity, representing the first flowering intergeneric somatic hybrids recovered in Gramineae.  相似文献   

17.
18.
Tall fescue (Festuca arundinacea Schreb.) is a hexaploid, outcrossing grass species widely used for forage and turf purposes. Transgenic tall fescue plants were generated by biolistic transformation of embryogenic cell suspension cultures that were derived from single genotypes of widely used cultivar Kentucky-31. Primary transgenics from two genotypes, their corresponding regenerants from the same genotypes and control seed-derived plants were transferred to the field and evaluated for 2 years. Progenies of these three classes of plants were obtained and evaluated together with seed-derived plants in a second field experiment. The agronomic characteristics evaluated were: heading date, anthesis date, height, growth habit, number of reproductive tillers, seed yield and biomass. The agronomic performance of the primary transgenics and regenerants was generally inferior to that of the seed-derived plants, with primary transgenics having fewer tillers and a lower seed yield. However, no major differences between the progenies of transgenics and the progenies of seed-derived plants were found for the agronomic traits evaluated. Primary transgenics and regenerants from the same genotype were more uniform than plants from seeds. Progenies of transgenics performed similarly to progenies of the regenerants. The addition of a selectable marker gene in the plant genome seems to have had little effect on the agronomic performance of the regenerated plants. No indication of weediness of the transgenic tall fescue plants was observed. Our results indicate that outcrossing grass plants generated through transgenic approaches can be incorporated into forage breeding programs.  相似文献   

19.
 PCR-based DNA profiling of coconut palms indigenous to Sri Lanka was conducted using amplified fragment length polymorphism (AFLPs). A total of 322 amplification products were generated from the 42 genotypes with eight pairs of primers (EcoRI and MseI). Overall most variation was detected in the tall (Typica) rather than the intermediate (Aurantiaca) and dwarf (Nana) forms. A hierarchical analysis of molecular variance (AMOVA) was used to quantify and partition levels of variability into between- and within-form components. This revealed that for the inbreeding dwarf and intermediate forms most variation was observed between, rather than within, forms. In contrast, the outbreeding tall forms exhibited as much variation within as between forms. These observations have important implications for the maintenance and collection of coconut germplasm. This study also provided insights into the genetic (as opposed to phenotypic) relatedness of coconut accessions. Morphologically the Aurantiaca group of accessions are considered to be intermediate between the tall and dwarf accessions. Estimation of genetic relatedness based on AFLP analysis identified the Aurantiaca group as being more similar to the dwarf rather than the tall group. In addition, putative duplicate accessions were identified in the Aurantiaca group. Information emerging from this study will facilitate the management of coconut germplasm and optimise the choice of genetically divergent parents for crossing. Received: 16 June 1997 / Accepted: 14 October 1997  相似文献   

20.
To improve turfgrasses using genetic engineering, we have developed a transformation system in turf-type tall fescue, one of the most important turfgrass species. Embryogenic cell cultures were established after callus induction from embryos of mature seed. The agarose-bead method with nurse cells was used to culture protoplasts and plants were regenerated from protoplasts of tall fescue cultured cells. To develop transgenic tall fescue plants, the hygromycin resistance gene and the -glucuronidase gene were introduced into the tall fescue protoplasts by electroporation. A high concentration (200 mg/l) of hygromycin was required to select transformed cells because of the high level of endogenous resistance to the antibiotic in tall fescue. Most of the transformed cells exhibited GUS activity and several plants were regenerated from these cells. The presence of introduced genes was confirmed by Southern blot hybridization of PCR amplified DNA from transgenic plants.Abbreviations Adh alcohol dehydrogenase - BAP benzylaminopurine - bp base pair(s) - GUS -glucuronidase - Kb kilobase(s) - MS Murashige and Skoog's medium - PCR polymerase chain reaction  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号