首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of microtubules in platelet aggregation and secretion has been analyzed using platelets permeabilized with digitonin and monoclonal antibodies to alpha (DM1A) and beta (DM1B) subunits of tubulin. Permeabilized platelets were able to undergo aggregation and secretory release. However, threshold doses of agonists capable of eliciting a second wave of aggregation and the platelet release reaction were higher than in control platelets exposed to dimethyl sulfoxide, the solvent for digitonin. Both antibodies to alpha and beta tubulin caused a further increase in the threshold concentration of agonists and inhibited the secretory release of permeabilized platelets, but were ineffective using intact platelets. Neither monoclonal antibody inhibited polymerization or depolymerization of platelet tubulin in vitro. Antibodies to platelet actin and myosin also exhibited an inhibitory activity on platelet aggregation albeit less severe than that observed with the antibodies to alpha and beta tubulin. There was evidence of an interaction between DM1A and DM1B and the antibodies to actin and myosin. The interaction of platelet tubulin and myosin was investigated by two different methods. (1) Coprecipitation of the proteins at low ionic strength at which tubulin by itself did not precipitate and (2) affinity chromatography on columns of immobilized myosin. Tubulin freed of its associated proteins (MAPs) by phosphocellulose chromatography bound to myosin in a molar ratio which approached 2. Platelet actin competed with tubulin for 1 binding site on the myosin molecule. MAPs also reduced the binding stoichiometry of tubulin/myosin. Treatment of microtubule protein with p-chloromercuribenzoate or colchicine did not influence its binding to myosin. DM1A and DM1B inhibited the interaction of tubulin and myosin. This effect could also be demonstrated by reaction of electrophoretic transblots of extracted platelet tubulin with the respective proteins. We interpret these results as evidence for an interference of the two monoclonal antibodies to the tubulin subunits (DM1A and DM1B) with the translocation of microtubule protein from its submembranous site to a more central one during the activation process.  相似文献   

2.
Affinity chromatography of Ca2+-containing extracts of platelets on DNAase I-Sepharose, using Ca2+-free buffer as eluant, selects a 1:1 complex of a 90 000-dalton protein with actin. The complex shows little interaction with either DNAase or actin unless Ca2+ is present. In the presence of Ca2+, the complex nucleates polymerization of actin, reduces the viscosity attained, and delays filament formation from profilactin with characteristics closely resembling those shown by chicken villin. Proteolysis of the native proteins indicates structural similarity between the platelet protein and villin or villin core; limited proteolytic digestion in the presence of SDS distinguishes the platelet protein from villin but not from the functionally related plasma protein, brevin. The platelet protein is not accessible to enzyme-mediated iodination of surface components on intact cells. The term 'platelet brevin' is proposed for the protein.  相似文献   

3.
Integrin-mediated interactions between cytoskeletal proteins and extracellular fibrinogen are required for platelet adhesion. We have previously demonstrated that the major platelet integrin, alpha(IIb)beta(3), becomes incorporated into the actin cytoskeleton of platelets in an activation-dependent, aggregation-independent manner. To determine if regulatory molecules are also associated with these integrin-rich cytoskeletal complexes, we examined actin cytoskeletons for the presence of kinases and phosphoproteins. Western immunoblot analysis revealed that the tyrosine kinases Src, Fyn, and Lyn are specifically associated with actin cytoskeletons of activated, nonaggregated platelets. However, as noted by others, the cytoskeletal association of focal adhesion kinase depends on platelet aggregation. Actin cytoskeletons isolated from (32)P-labeled platelets also contain a number of phosphorylated proteins. Interestingly, an approximately 18-kDa phosphoprotein was uniquely present in activated platelet cytoskeletons. Collectively, our results demonstrate that actin cytoskeletons of activated, nonaggregated platelets contain not only integrins, but also kinases and phosphoproteins that could regulate platelet adhesion and transmembrane communication.  相似文献   

4.
Platelet function is inhibited by agents such as prostaglandin E1 (PGE1) that elevate the cytoplasmic concentration of cyclic AMP. Inhibition presumably results from the cyclic AMP-stimulated phosphorylation of intracellular proteins. Polypeptides that become phosphorylated are actin-binding protein, P51 (Mr = 51,000), P36 (Mr = 36,000), P24 (Mr = 24,000), and P22 (Mr = 22,000). Recently, we identified P24 as the beta-chain of glycoprotein (GP) Ib, a component of the plasma membrane GP Ib.IX complex. The existence of Bernard-Soulier syndrome, a hereditary disorder in which platelets selectively lack the GP Ib.IX complex, enabled us to examine whether the phosphorylation of GP Ib beta (P24) is responsible for any of the inhibitory effects of elevated cyclic AMP on platelet function. Exposure of control platelets to PGE1 increased phosphorylation of actin-binding protein, P51, P36, GP Ib beta, and P22. Prostaglandin E1 induced the same phosphorylation reactions in Bernard-Soulier platelets, except that of GP Ib beta, which is absent. In control platelets, PGE1 inhibited collagen-induced phosphorylation of myosin light chain, phosphorylation of P47 (an unidentified Mr 47,000 cytoplasmic protein that is phosphorylated by protein kinase C in stimulated platelets), aggregation, and the secretion of granule contents. Despite the absence of GP Ib beta, PGE1 also inhibited these collagen-induced responses in Bernard-Soulier platelets. However, while PGE1 inhibited collagen-induced polymerization of actin in control platelets, it did not inhibit actin polymerization in Bernard-Soulier platelets. These results suggest that cyclic AMP-induced phosphorylation of GP Ib inhibits collagen-induced actin polymerization in platelets. Because actin polymerization is required for at least some of the functional responses of platelets to an agonist, phosphorylation of Gp Ib beta may be one way in which cyclic AMP inhibits platelet function.  相似文献   

5.

Background

Blood platelets undergo a carefully regulated change in shape to serve as the primary mediators of hemostasis and thrombosis. These processes manifest through platelet spreading and aggregation and are dependent on platelet actin cytoskeletal changes orchestrated by the Rho GTPase family member Rac1. To elucidate how Rac1 is regulated in platelets, we captured Rac1-interacting proteins from platelets and identified Rac1-associated proteins by mass spectrometry.

Findings

Here, we demonstrate that Rac1 captures the Rac guanine nucleotide exchange factor P-Rex1 from platelet lysates. Western blotting experiments confirmed that P-Rex1 is expressed in platelets and associated with Rac1. To investigate the functional role of platelet P-Rex1, platelets from P-Rex1 -/- -deficient mice were treated with platelet agonists or exposed to platelet activating surfaces of fibrinogen, collagen and thrombin. Platelets from P-Rex1 -/- mice responded to platelet agonists and activating surfaces similarly to wild type platelets.

Conclusions

These findings suggest that P-Rex1 is not required for Rac1-mediated platelet activation and that the GEF activities of P-Rex1 may be more specific to GPCR chemokine receptor mediated processes in immune cells and tumor cells.  相似文献   

6.
The diaphanous-related formins are actin nucleating and elongating factors. They are kept in an inactive state by an intramolecular interaction between the diaphanous inhibitory domain (DID) and the diaphanous-autoregulatory domain (DAD). It is considered that the dissociation of this autoinhibitory interaction upon binding of GTP-bound Rho to the GTPase binding domain next to DID induces exposure of the FH1-FH2 domains, which assemble actin filaments. Here, we isolated two diaphanous-related formins, mDia1 and Daam1, in platelet extracts by GTP-RhoA affinity column chromatography. We characterized them by a novel assay, where beads coated with the FH1-FH2-DAD domains of either mDia1 or Daam1 were incubated with platelet cytosol, and the assembled actin filaments were observed after staining with rhodamine-phalloidin. Both formins generated fluorescent filamentous structures on the beads. Quantification of the fluorescence intensity of the beads revealed that the initial velocity in the presence of mDia1 was more than 10 times faster than in the presence of Daam1. The actin assembly activities of both FH1-FH2-DADs were inhibited by adding cognate DID domains. GTP-RhoA, -RhoB, and -RhoC, but not GTP-Rac1 or -Cdc42, bound to both mDia1 and Daam1 and efficiently neutralized the inhibition by the DID domains. The association between RhoA and Daam1 was induced by thrombin stimulation in platelets, and RhoA-bound endogenous formins induced actin assembly, which was inhibited by the DID domains of Daam1 and mDia1. Thus, mDia1 and Daam1 are platelet actin assembly factors having distinct efficiencies, and they are directly regulated by Rho GTPases.  相似文献   

7.
Exposure of cryptic actin filament fast growing ends (barbed ends) initiates actin polymerization in stimulated human and mouse platelets. Gelsolin amplifies platelet actin assembly by severing F-actin and increasing the number of barbed ends. Actin filaments in stimulated platelets from transgenic gelsolin-null mice elongate their actin without severing. F-actin barbed end capping activity persists in human platelet extracts, depleted of gelsolin, and the heterodimeric capping protein (CP) accounts for this residual activity. 35% of the approximately 5 microM CP is associated with the insoluble actin cytoskeleton of the resting platelet. Since resting platelets have an F- actin barbed end concentration of approximately 0.5 microM, sufficient CP is bound to cap these ends. CP is released from OG-permeabilized platelets by treatment with phosphatidylinositol 4,5-bisphosphate or through activation of the thrombin receptor. However, the fraction of CP bound to the actin cytoskeleton of thrombin-stimulated mouse and human platelets increases rapidly to approximately 60% within 30 s. In resting platelets from transgenic mice lacking gelsolin, which have 33% more F-actin than gelsolin-positive cells, there is a corresponding increase in the amount of CP associated with the resting cytoskeleton but no change with stimulation. These findings demonstrate an interaction between the two major F-actin barbed end capping proteins of the platelet: gelsolin-dependent severing produces barbed ends that are capped by CP. Phosphatidylinositol 4,5-bisphosphate release of gelsolin and CP from platelet cytoskeleton provides a mechanism for mediating barbed end exposure. After actin assembly, CP reassociates with the new actin cytoskeleton.  相似文献   

8.
Occlusive vascular diseases are promoted by a "prethrombotic state" with increased platelet activity. Polymerization of cytoskeletal proteins and exposure of subcellular structures or rebinding of secreted proteins have been characterized as early reactions after platelet activation preceding adhesion and aggregation. Here, we demonstrate the kinetic increase in specific binding of monoclonal antibodies to thrombospondin (P10) and to platelet membrane activation markers CD63 (GP53, a 53 kD lysosomal protein) and CD62 (GMP140, a 140 kD alpha granule protein) by using a flow-cytometric bio-assay and the related change in the actin status by using the DNase-I inhibition assay after stimulation of normal human platelets with 0.2 U/ml thrombin. F-actin was raised from 41% to 51% of total platelet actin content 30 s after stimulation and remained thereafter constant (50% at 60 s). Simultaneously, the percentage of P10, CD63, and CD62 positive platelets was elevated from 5.4%, 24.4%, and 9.1% to 67.4%, 80.2%, and 82.3% respectively. The mean number of P10, CD63, and CD62 antibody binding sites increased from 3,300, 1,715, and 2,146 to 6,400, 6,800, and 9,016 per platelet. Conclusively, changes in the organization of the cytoskeletal protein "actin" and exposure of subcellular structures indicating platelet secretion can be regarded as markers of early platelet activation. Thus, the parallel response in both analytical systems provides further support for the diagnostic concept of flow-cytometric detection of preactivated platelets in the peripheral blood by using fluochrome staining procedures detecting activation dependent structural alterations directly at the cellular level.  相似文献   

9.
M Coué  F Landon  A Olomucki 《Biochimie》1982,64(3):219-226
A new procedure of purification of actin from human blood platelets was used. This method starting from acetone powder of whole platelets gives a much higher yield than the one previously described (actin I) (Landon et al. (1977) Eur. J. Biochem., 81, 571-577). This actin II preparation has the same reduced viscosity as skeletal muscle actin, while the reduced viscosity of actin I preparation is about 1/10 of this value. Moreover actin I has the form of very short filaments as shown by electron microscopy. After an extra step of purification actin I, when polymerized, acquired a high reduced viscosity. We confirmed that platelet and sarcomeric actins are similar in their polymerization properties and their ability to activate muscular myosin. A circular dichroism study showed that the overall conformation of both actins are similar, but the environment of their aromatic chromophores is different.  相似文献   

10.
Triton X-100-insoluble residues, or skeletons, of plasma membrane-rich vesicles obtained from unstimulated human platelets were isolated by high speed centrifugation. About 10-15% of the total surface iodinatable glycoproteins IIb and III (GPIIb and GPIII, respectively) co-isolated with the insoluble fraction. After sonication and centrifugation the solubilized material was further purified by affinity chromatography on Lens culinaris lectin-Sepharose. SDS PAGE analysis of this material revealed the presence of at least three major proteins, which were shown to be GPIIb, GPIII, and membrane actin, as judged by their electrophoretic properties and on the basis of immunological criteria. Antibodies directed against platelet surface glycoproteins and antibodies directed against rabbit actin were able to immunoprecipitate all three proteins, which indicates that they were noncovalently associated with one another. Gel filtration of the Lens lectin-purified Triton-insoluble complex on Ultrogel AcA 22 showed that greater than 85% of the total surface GPIIb and III was associated with an actin-rich peak that eluted in the void volume. In contrast, the form of GPIIb-III present in the Triton-soluble membrane fraction behaved as monomeric species when chromatographed under identical conditions. Finally, the GPIIb-III membrane actin complex bound with high efficiency to rabbit f-actin in vitro in a Ca++-independent manner, whereas the monomeric forms found in the Triton-soluble fraction did not bind to actin. These results indicate that two forms of GPIIb and III exist: one that binds directly to endogenous membrane actin and one that does not.  相似文献   

11.
Changes in shape, and aggregation that accompanies platelet activation, are dependent on the assembly and reorganization of the cytoskeleton. To assess the changes in cytoskeleton induced by thrombin and PMA, suspensions of aspirin-treated,32P-prelabeled, washed pig platelets in Hepes buffer containing ADP scavengers were activated with thrombin, and with PMA, an activator of protein kinase C. The cytoskeletal fraction was prepared by adding Triton extraction buffer. The Triton-insoluble (cytoskeletal) fraction isolated by centrifugation was analysed by SDS-PAGE and autoradiography. Incorporation of actin into the Triton-insoluble fraction was used to quantify the formation of F-actin. Thrombin-stimulated platelet cytoskeletal composition was different from PMA-stimulated cytoskeletal composition. Thrombin-stimulated platelets contained not only the three major proteins: actin (43 kDa), myosin (200 kDa) and an actin-binding protein (250 kDa), but three additional proteins of Mr56 kDa, 80 kDa and 85 kDa in the cytoskeleton, which were induced in by thrombin dose-response relationship. In contrast, PMA-stimulated platelets only induced actin assembly, and the 56 kDa, 80 kDa and 85 kDa proteins were not found in the cytoskeletal fraction. Exposure of platelets to thrombin or PMA induced phosphorylation of pleckstrin parallel to actin assembly. Staurosporine, an inhibitor of protein kinase C, inhibited actin assembly and platelet aggregation induced by thrombin or PMA, but did not inhibit the incorporation of 56 kDa, 80 kDa and 85 kDa into the cytoskeletal fraction induced by thrombin. These three extra proteins seem to be unrelated to the induction of protein kinase C. We conclude that actin polymerization and platelet aggregation were induced by a mechanism dependent on protein kinase C, and suggest that thrombin-activated platelets aggregation could involve additional cytoskeletal components (56 kDa, 80 kDa, 85 kDa) of the cytoskeleton, which made stronger actin polymerization and platelet aggregation more.  相似文献   

12.
Human platelets express the receptor for immunoglobulin G, FcgammaRIIa, that triggers cell aggregation upon interaction with immune complexes. Here, we report that the rapid tyrosine phosphorylation of the Linker for Activation of T-cell (LAT) in human platelets stimulated by FcgammaRIIa cross-linking was followed by its complete dephosphorylation in an alphaIIb/beta3 integrin-dependent manner. Concomitant to LAT dephosphorylation, the protein tyrosine phosphatase 1B (PTP1B) was activated through a mechanism involving its proteolysis by calpains downstream of integrins. Both PTP1B and LAT were associated with the actin cytoskeleton complex formed during platelet aggregation. Moreover, phospho-LAT appeared as a good substrate of activated PTP1B in vitro and these two proteins interacted upon platelet activation by FcgammaRIIa cross-linking. The permeant substrate-trapping PTP1B (TAT-PTP1B D181A) partly inhibited LAT dephosphorylation in human platelets, strongly suggesting that this tyrosine phosphatase was involved in this regulatory pathway. Using a pharmacological inhibitor, we provide evidence that PTP1B activation and LAT dephosphorylation processes were required for irreversible platelet aggregation. Altogether, our results demonstrate that PTP1B plays an important role in the integrin-mediated dephosphorylation of LAT in human platelets and is involved in the control of irreversible aggregation upon FcgammaRIIa stimulation.  相似文献   

13.
Integrin-mediated adhesion induces the formation of focal adhesions that link the extracellular matrix and intracellular actin cytoskeletal networks. We previously showed that integrin-linked kinase (ILK), which can interact with beta1 and beta3 integrins, and its interacting protein, affixin, play an essential role in the initial assembly of focal adhesion structures and actin stress fibers. Although the relevant structures are also observed in integrin alphaIIbbeta3 in platelets, the precise underlying molecular mechanism remains unclarified. Here, we found that ILK stably forms a complex with ss-affixin in platelets. Thrombin stimulation induces their association with integrin beta3, which is followed by their incorporation into the Triton-insoluble membrane-cytoskeletal fraction. During the course of thrombin-induced platelet aggregation, ILK activity was enhanced within 90s to 2.1-fold of the basal level, independent of phosphatidylinositol 3-kinase. Taken together with the observation that the treatment with an anti-integrin beta3 antibody stimulates ILK activity without inducing platelet aggregation, these results suggest that the outside-in signaling induced by fibrinogen binding to integrin enhances ILK activity and results in the initial phase to reorganize the actin cytoskeleton.  相似文献   

14.
Platelets contribute to vessel formation through the release of angiogenesis-modulating factors stored in their α-granules. Galectins, a family of lectins that bind β-galactoside residues, are up-regulated in inflammatory and cancerous tissues, trigger platelet activation and mediate vascularization processes. Here we aimed to elucidate whether the release of platelet-derived proangiogenic molecules could represent an alternative mechanism through which galectins promote neovascularization. We show that different members of the galectin family can selectively regulate the release of angiogenic molecules by human platelets. Whereas Galectin (Gal)-1, -3, and -8 triggered vascular endothelial growth factor (VEGF) release, only Gal-8 induced endostatin secretion. Release of VEGF induced by Gal-8 was partially prevented by COX-1, PKC, p38 and Src kinases inhibitors, whereas Gal-1-induced VEGF secretion was inhibited by PKC and ERK blockade, and Gal-3 triggered VEGF release selectively through a PKC-dependent pathway. Regarding endostatin, Gal-8 failed to stimulate its release in the presence of PKC, Src and ERK inhibitors, whereas aspirin or p38 inhibitor had no effect on endostatin release. Despite VEGF or endostatin secretion, platelet releasates generated by stimulation with each galectin stimulated angiogenic responses in vitro including endothelial cell proliferation and tubulogenesis. The platelet angiogenic activity was independent of VEGF and was attributed to the concerted action of other proangiogenic molecules distinctly released by each galectin. Thus, secretion of platelet-derived angiogenic molecules may represent an alternative mechanism by which galectins promote angiogenic responses and its selective blockade may lead to the development of therapeutic strategies for angiogenesis-related diseases.  相似文献   

15.
《The Journal of cell biology》1993,121(6):1329-1342
Activation of blood platelets triggers a series of responses leading to the formation and retraction of blood clots. Among these responses is the establishment of integrin-mediated transmembrane connections between extracellular matrix components and the actin cytoskeleton of the platelet. Here we report that a specific subpopulation of the major platelet integrin, glycoprotein IIb-IIIa (GPIIb-IIIa) (also referred to as alpha IIb beta 3 integrin), becomes incorporated into the detergent- insoluble actin cytoskeleton of platelets during the platelet activation response. The cytoskeletal association of GPIIb-IIIa is independent of platelet aggregation and fibrin sedimentation and is sensitive to cytochalasin D treatment. As determined by Western immunoblot analysis, approximately 22% of the total cellular GPIIb-IIIa becomes associated with the actin cytoskeleton upon thrombin activation in a manner that is independent of the detection of talin, alpha- actinin, or vinculin in the complex. We found that the cytoskeleton- associated GPIIb-IIIa is derived from an intracellular source since it is not available for lactoperoxidase-catalyzed radioiodination before platelet activation. Two intracellular sources of GPIIb-IIIa are present in resting platelets: GPIIb-IIIa associated with the alpha- granule secretory compartment as well as surface-inaccessible domains of the surface-connected canalicular system. Interestingly, alpha- granule secretion, which occurs in thrombin-activated platelets and results in the translocation of intracellular GPIIb-IIIa to the plasma membrane, appears to be required for the cytoskeleton incorporation of GPIIb-IIIa that we observe. Collectively, our data provide evidence that a subpopulation of GPIIb-IIIa derived from an intracellular source is selectively linked to the actin cytoskeleton of platelets upon thrombin activation in the absence of platelet aggregation.  相似文献   

16.
We have studied the interactions between gelsolin and actin in crude extracts from activated and unactivated platelets and in mixtures of purified platelet gelsolin and muscle actin. Extracts were prepared using 10 mM EGTA from human platelets treated either with 100 microM aspirin and 2.5 mM tetracaine to retard activation or with the calcium ionophore A23187 to effect activation. The extracts were fractionated by gel filtration on Sephadex G-150 or by sedimentation on sucrose gradients and then analyzed using anti-gelsolin immunoblots and actin filament nucleation assays. The nucleation activity in both extracts was associated with gelsolin. The activity in the extracts from unactivated platelets sedimented with an S value of 5.2 and had an Mr = 90,000. The activity in the extracts prepared with EGTA from activated platelets sedimented at 6.8 S and had an Mr = 130,000. We have shown previously that the Mr = 130,000 species is an EGTA-stable binary complex of one actin and one gelsolin. Transient exposure of the extracts from unactivated platelets to 100 microM Ca2+ and subsequent fractionation in EGTA-containing buffers demonstrated that the formation of the binary complex occurs in the presence of Ca2+. Fractionation in the presence of 100 microM Ca2+ demonstrated higher order complexes including a ternary complex with a sedimentation constant of 8.2 S and an Mr = 165,000. Sedimentation and gel filtration experiments using purified platelet gelsolin and rabbit skeletal muscle actin demonstrated that formation of the EGTA-stable binary complex required Ca2+. At least one additional actin is bound to the binary complex in the presence of Ca2+, but is not sufficiently stable to be purified when EGTA is added. The results suggest that gelsolin exists either as a monomer or perhaps as a weak complex with actin in unactivated platelets but complexes tightly with actin during the transient Ca2+ rise that occurs during activation.  相似文献   

17.
Proteomic studies have facilitated the identification of proteins associated with the detergent‐resistant membrane (DRM) fraction in a variety of cell types. Here, we have undertaken label‐free quantitative (LFQ) proteomic profiling of the proteins associated with detergent‐resistant plasma and internal membranes from resting and activated platelets. One hundred forty‐one proteins were identified and raw data is available via ProteomeXchange with identifier PXD002554. The proteins identified include a myriad of important platelet signaling and trafficking proteins including Rap1b, Src, SNAP‐23, syntaxin‐11, and members of the previously unattributed Ragulator complex. Mean LFQ intensities calculated across three technical replicates for the three biological donors revealed that several important platelet signaling proteins altered their detergent solubility upon activation, including GPIbα, GPIbβ, Src, and 14‐3‐3ζ. Altered detergent solubility for GPIbα, following activation using a variety of platelet agonists, was confirmed by immunoblotting and further coimmunoprecipitation experiments revealed that GPIbα forms a complex with 14‐3‐3ζ that shifts into DRMs following activation. Taken together, proteomic profiling of platelet DRMs allowed greater insight in the complex biology of both DRMs and platelets and will be a useful subproteome to study platelet‐related disease. All MS data have been deposited in the ProteomeXchange with identifier PXD002554 ( http://proteomecentral.proteomexchange.org/dataset/PXD002554 ).  相似文献   

18.
Three different surface receptors mediate thrombin-induced activation and aggregation of human blood platelets: the protease activated receptors 1 and 4 (PAR1 and PAR4), and the glycoprotein (GP) Ibα of the GPIb-IX-V complex. However, their relative contribution in the stimulation of specific intracellular signaling pathways by thrombin remains largely controversial. In this work, we have shown that activation of PAR1 and PAR4 by thrombin or by selective activating peptides stimulated phospholipase C, tyrosine kinases, as well as the small GTPase Rap1b, promoted actin polymerization and cytoskeleton reorganization. When platelets were desensitized for both PAR1 and PAR4, high doses of thrombin, were unable to activate Rap1b, but produced a still evident stimulation of phospholipase C, as documented by the measurement of intracellular Ca2+ mobilization and protein kinase C activation. These events were abrogated upon proteolysis of GPIbα by the metalloproteinase mocarhagin. In PAR1- and PAR4-desensitized platelets, thrombin also induced tyrosine phosphorylation of some substrates, but, surprisingly, this event was largely independent of GPIbα binding, as it persisted upon platelet treatment with mocarhagin. Similarly, thrombin-induced actin polymerization and cytoskeleton reorganization were only minimally altered upon PAR1 and PAR4 inactivation and GPIbα proteolysis. Interestingly, none of these events were elicited by enzymatically inactive thrombin. Finally we found that GPIbα cleavage reduced, but did not abrogate, platelet aggregation in PAR1- and PAR4-desensitized platelets. These results identify a novel pathway for platelet activation operated by thrombin independently of PAR1, PAR4 and GPIbα.  相似文献   

19.
An initial step in platelet shape change is disassembly of actin filaments, which are then reorganized into new actin structures, including filopodia and lamellipodia. This disassembly is thought to be mediated primarily by gelsolin, an abundant actin filament-severing protein in platelets. Shape change is inhibited by VASP, another abundant actin-binding protein. Paradoxically, in vitro VASP enhances formation of actin filaments and bundles them, activities that would be expected to increase shape change, not inhibit it. We hypothesized that VASP might inhibit shape change by stabilizing filaments and preventing their disassembly by gelsolin. Such activity would explain VASP's known physiological role. Here, we test this hypothesis in vitro using either purified recombinant or endogenous platelet VASP by fluorescence microscopy and biochemical assays. VASP inhibited gelsolin's ability to disassemble actin filaments in a dose-dependent fashion. Inhibition was detectable at the low VASP:actin ratio found inside the platelet (1:40 VASP:actin). Gelsolin bound to VASP-actin filaments at least as well as to actin alone. VASP inhibited gelsolin-induced nucleation at higher concentrations (1:5 VASP:actin ratios). VASP's affinity for actin (K(d) approximately 0.07 microM) and its ability to promote polymerization (1:20 VASP actin ratio) were greater with Ca(++)-actin than with Mg(++)-actin (K(d) approximately 1 microM and 1:1 VASP), regardless of the presence of gelsolin. By immunofluorescence, VASP and gelsolin co-localized in the filopodia and lamellipodia of platelets spreading on glass, suggesting that these in vitro interactions could take place within the cell as well. We conclude that VASP stabilizes actin filaments to the severing effects of gelsolin but does not inhibit gelsolin from binding to the filaments. These results suggest a new concept for actin dynamics inside cells: that bundling proteins protect the actin superstructure from disassembly by severing, thereby preserving the integrity of the cytoskeleton.  相似文献   

20.
Calponin is an actin binding protein found in the smooth muscle cells of chicken gizzard. The localization of the protein was examined in bovine platelets, mouse fibroblasts, and the smooth muscle cells of the bovine aorta. Immunoblotting of whole platelet lysates revealed that the antibody to chicken gizzard calponin recognized two proteins with apparent molecular masses of 37 and 23 kDa in the resting state and an additional high-molecular-weight component (approximately 40 kDa) in the activated state. The localizations of calponin and caldesmon, and the correlation of their localizations with that of the actin cytoskeleton were analyzed by immunofluorescence microscopy using appropriate antibodies and rhodamine-phalloidin. In resting bovine platelets, calponin exhibited the same distribution as actin filaments, which are organized in a characteristic wheel-like structure. A similar distribution was observed with the anti-caldesmon antibody. Colocalization of calponin and actin were shown in activated platelets and along stress fibers of both fibroblasts and smooth muscle cells. These results suggest not only a cytoskeletal role associated with microfilaments but also a regulatory role of these proteins for actin-myosin interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号