首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The present study used an optical imaging paradigm to investigate plastic changes in the auditory cortex induced by fear conditioning, in which a sound (conditioned stimulus, CS) was paired with an electric foot-shock (unconditioned stimulus, US). We report that, after conditioning, auditory information could be retrieved on the basis of an electric foot-shock alone. Before conditioning, the auditory cortex showed no response to a foot-shock presented in the absence of sound. In contrast, after conditioning, the mere presentation of a foot-shock without any sound succeeded in eliciting activity in the auditory cortex. Additionally, the magnitude of the optical response in the auditory cortex correlated with variation in the electrocardiogram (correlation coefficient: −0.68). The area activated in the auditory cortex, in response to the electric foot-shock, statistically significantly had a larger cross-correlation value for tone response to the CS sound (12 kHz) compared to the non-CS sounds in normal conditioning group. These results suggest that integration of different sensory modalities in the auditory cortex was established by fear conditioning.  相似文献   

2.
3.

Background

Paired associative stimulation (PAS) consisting of repeated application of transcranial magnetic stimulation (TMS) pulses and contingent exteroceptive stimuli has been shown to induce neuroplastic effects in the motor and somatosensory system. The objective was to investigate whether the auditory system can be modulated by PAS.

Methods

Acoustic stimuli (4 kHz) were paired with TMS of the auditory cortex with intervals of either 45 ms (PAS(45 ms)) or 10 ms (PAS(10 ms)). Two-hundred paired stimuli were applied at 0.1 Hz and effects were compared with low frequency repetitive TMS (rTMS) at 0.1 Hz (200 stimuli) and 1 Hz (1000 stimuli) in eleven healthy students. Auditory cortex excitability was measured before and after the interventions by long latency auditory evoked potentials (AEPs) for the tone (4 kHz) used in the pairing, and a control tone (1 kHz) in a within subjects design.

Results

Amplitudes of the N1-P2 complex were reduced for the 4 kHz tone after both PAS(45 ms) and PAS(10 ms), but not after the 0.1 Hz and 1 Hz rTMS protocols with more pronounced effects for PAS(45 ms). Similar, but less pronounced effects were observed for the 1 kHz control tone.

Conclusion

These findings indicate that paired associative stimulation may induce tonotopically specific and also tone unspecific human auditory cortex plasticity.  相似文献   

4.
In fear-conditioned Wistar rats freezing was induced by the delivery of a series of footshocks paired to tones (CS) in a specific conditioning chamber (context). CS and contextual fear were acquired in the same single conditioning session without preexposition to the conditioning chamber (day 1). Different groups of animals were conditioned employing three increasing US (footshock) intensities (0.25, 0.5, 0.75 mA). During the retention sessions context and CS conditioned freezing (fear response) were measured using a paradigm that fulfilled the following conditions: i) CS freezing retention was measured in a context different from the conditioning one; ii) CS and context freezing were measured at increased delays after the training session (days 3 and 4, 14 and 15, 28 and 29). The results show that there are significant differences between CS and context freezing retention, which are clearly related to delay after the initial session and to US intensity. In particular: 1) conditioned freezing to a discrete tone is better retained than conditioned freezing to context (irrespective of US intensity); 2) context freezing is directly related to US intensity much more than to tone freezing; 3) context freezing is easier to extinguish than tone freezing. The results are discussed in relation to previous ones and to their relevance to freezing genesis neural correlates.  相似文献   

5.
Johansen JP  Cain CK  Ostroff LE  LeDoux JE 《Cell》2011,147(3):509-524
Pavlovian fear conditioning is a particularly useful behavioral paradigm for exploring the molecular mechanisms of learning and memory because a well-defined response to a specific environmental stimulus is produced through associative learning processes. Synaptic plasticity in the lateral nucleus of the amygdala (LA) underlies this form of associative learning. Here, we summarize the molecular mechanisms that contribute to this synaptic plasticity in the context of auditory fear conditioning, the form of fear conditioning best understood at the molecular level. We discuss the neurotransmitter systems and signaling cascades that contribute to three phases of auditory fear conditioning: acquisition, consolidation, and reconsolidation. These studies suggest that multiple intracellular signaling pathways, including those triggered by activation of Hebbian processes and neuromodulatory receptors, interact to produce neural plasticity in the LA and behavioral fear conditioning. Collectively, this body of research illustrates the power of fear conditioning as a model system for characterizing the mechanisms of learning and memory in mammals and potentially for understanding fear-related disorders, such as PTSD and phobias.  相似文献   

6.
Experience-induced plastic changes in the cerebral cortex are accompanied by alterations in excitatory and inhibitory transmission. Increased excitatory drive, necessary for plasticity, precedes the occurrence of plastic change, while decreased inhibitory signaling often facilitates plasticity. However, an increase of inhibitory interactions was noted in some instances of experience-dependent changes. We previously reported an increase in the number of inhibitory markers in the barrel cortex of mice after fear conditioning engaging vibrissae, observed concurrently with enlargement of the cortical representational area of the row of vibrissae receiving conditioned stimulus (CS). We also observed that an increase of GABA level accompanied the conditioning. Here, to find whether unaltered GABAergic signaling is necessary for learning-dependent rewiring in the murine barrel cortex, we locally decreased GABA production in the barrel cortex or reduced transmission through GABAA receptors (GABAARs) at the time of the conditioning. Injections of 3-mercaptopropionic acid (3-MPA), an inhibitor of glutamic acid decarboxylase (GAD), into the barrel cortex prevented learning-induced enlargement of the conditioned vibrissae representation. A similar effect was observed after injection of gabazine, an antagonist of GABAARs. At the behavioral level, consistent conditioned response (cessation of head movements in response to CS) was impaired. These results show that appropriate functioning of the GABAergic system is required for both manifestation of functional cortical representation plasticity and for the development of a conditioned response.  相似文献   

7.
In this experiment we present a technique to measure learning and memory. In the trace fear conditioning protocol presented here there are five pairings between a neutral stimulus and an unconditioned stimulus. There is a 20 sec trace period that separates each conditioning trial. On the following day freezing is measured during presentation of the conditioned stimulus (CS) and trace period. On the third day there is an 8 min test to measure contextual memory. The representative results are from mice that were presented with the aversive unconditioned stimulus (shock) compared to mice that received the tone presentations without the unconditioned stimulus. Trace fear conditioning has been successfully used to detect subtle learning and memory deficits and enhancements in mice that are not found with other fear conditioning methods. This type of fear conditioning is believed to be dependent upon connections between the medial prefrontal cortex and the hippocampus. One current controversy is whether this method is believed to be amygdala-independent. Therefore, other fear conditioning testing is needed to examine amygdala-dependent learning and memory effects, such as through the delay fear conditioning.  相似文献   

8.
Mapping and decoding brain activity patterns underlying learning and memory represents both great interest and immense challenge. At present, very little is known regarding many of the very basic questions regarding the neural codes of memory: are fear memories retrieved during the freezing state or non-freezing state of the animals? How do individual memory traces give arise to a holistic, real-time associative memory engram? How are memory codes regulated by synaptic plasticity? Here, by applying high-density electrode arrays and dimensionality-reduction decoding algorithms, we investigate hippocampal CA1 activity patterns of trace fear conditioning memory code in inducible NMDA receptor knockout mice and their control littermates. Our analyses showed that the conditioned tone (CS) and unconditioned foot-shock (US) can evoke hippocampal ensemble responses in control and mutant mice. Yet, temporal formats and contents of CA1 fear memory engrams differ significantly between the genotypes. The mutant mice with disabled NMDA receptor plasticity failed to generate CS-to-US or US-to-CS associative memory traces. Moreover, the mutant CA1 region lacked memory traces for “what at when” information that predicts the timing relationship between the conditioned tone and the foot shock. The degraded associative fear memory engram is further manifested in its lack of intertwined and alternating temporal association between CS and US memory traces that are characteristic to the holistic memory recall in the wild-type animals. Therefore, our study has decoded real-time memory contents, timing relationship between CS and US, and temporal organizing patterns of fear memory engrams and demonstrated how hippocampal memory codes are regulated by NMDA receptor synaptic plasticity.  相似文献   

9.

Background

Understanding the time course of how listeners reconstruct a missing fundamental component in an auditory stimulus remains elusive. We report MEG evidence that the missing fundamental component of a complex auditory stimulus is recovered in auditory cortex within 100 ms post stimulus onset.

Methodology

Two outside tones of four-tone complex stimuli were held constant (1200 Hz and 2400 Hz), while two inside tones were systematically modulated (between 1300 Hz and 2300 Hz), such that the restored fundamental (also knows as “virtual pitch”) changed from 100 Hz to 600 Hz. Constructing the auditory stimuli in this manner controls for a number of spectral properties known to modulate the neuromagnetic signal. The tone complex stimuli only diverged on the value of the missing fundamental component.

Principal Findings

We compared the M100 latencies of these tone complexes to the M100 latencies elicited by their respective pure tone (spectral pitch) counterparts. The M100 latencies for the tone complexes matched their pure sinusoid counterparts, while also replicating the M100 temporal latency response curve found in previous studies.

Conclusions

Our findings suggest that listeners are reconstructing the inferred pitch by roughly 100 ms after stimulus onset and are consistent with previous electrophysiological research suggesting that the inferential pitch is perceived in early auditory cortex.  相似文献   

10.

Introduction

Studies suggest that sleep plays a role in traumatic memories and that treatment of sleep disorders may help alleviate symptoms of posttraumatic stress disorder. Fear-conditioning paradigms in rodents are used to investigate causal mechanisms of fear acquisition and the relationship between sleep and posttraumatic behaviors. We developed a novel conditioning stimulus (CS) that evoked fear and was subsequently used to study re-exposure to the CS during sleep.

Methods

Experiment 1 assessed physiological responses to a conditioned stimulus (mild transient hypercapnia, mtHC; 3.0% CO2; n = 17)+footshock for the purpose of establishing a novel CS in male FVB/J mice. Responses to the novel CS were compared to tone+footshock (n = 18) and control groups of tone alone (n = 17) and mild transient hypercapnia alone (n = 10). A second proof of principle experiment re-exposed animals during sleep to mild transient hypercapnia or air (control) to study sleep processes related to the CS.

Results

Footshock elicited a response of acute tachycardia (30–40 bpm) and increased plasma epinephrine. When tone predicted footshock it elicited mild hypertension (1–2 mmHg) and a three-fold increase in plasma epinephrine. When mtHC predicted footshock it also induced mild hypertension, but additionally elicited a conditioned bradycardia and a smaller increase in plasma epinephrine. The overall mean 24 hour sleep–wake profile was unaffected immediately after fear conditioning.

Discussion

Our study demonstrates the efficacy of mtHC as a conditioning stimulus that is perceptible but innocuous (relative to tone) and applicable during sleep. This novel model will allow future studies to explore sleep-dependent mechanisms underlying maladaptive fear responses, as well as elucidate the moderators of the relationship between fear responses and sleep.  相似文献   

11.
Previous studies have shown that deep cerebellar nuclei (DCN)-lesioned mice develop conditioned responses (CR) on delay eyeblink conditioning when a salient tone conditioned stimulus (CS) is used, which suggests that the cerebellum potentially plays a role in more complicated cognitive functions. In the present study, we examined the role of DCN in tone frequency discrimination in the delay eyeblink-conditioning paradigm. In the first experiment, DCN-lesioned and sham-operated mice were subjected to standard simple eyeblink conditioning under low-frequency tone CS (LCS: 1 kHz, 80 dB) or high-frequency tone CS (HCS: 10 kHz, 70 dB) conditions. DCN-lesioned mice developed CR in both CS conditions as well as sham-operated mice. In the second experiment, DCN-lesioned and sham-operated mice were subjected to two-tone discrimination tasks, with LCS+ (or HCS+) paired with unconditioned stimulus (US), and HCS− (or LCS−) without US. CR% in sham-operated mice increased in LCS+ (or HCS+) trials, regardless of tone frequency of CS, but not in HCS− (or LCS−) trials. The results indicate that sham-operated mice can discriminate between LCS+ and HCS− (or HCS+ and LCS−). In contrast, DCN-lesioned mice showed high CR% in not only LCS+ (or HCS+) trials but also HCS− (or LCS−) trials. The results indicate that DCN lesions impair the discrimination between tone frequency in eyeblink conditioning. Our results suggest that the cerebellum plays a pivotal role in the discrimination of tone frequency.  相似文献   

12.
Thiel CM  Friston KJ  Dolan RJ 《Neuron》2002,35(3):567-574
The factors that influence experience-dependent plasticity in the human brain are unknown. We used event-related functional magnetic resonance imaging (fMRI) and a pharmacological manipulation to measure cholinergic modulation of experience-dependent plasticity in human auditory cortex. In a differential aversive conditioning paradigm, subjects were presented with high (1600 Hz) and low tones (400 Hz), one of which was conditioned by pairing with an electrical shock. Prior to presentation, subjects were given either a placebo or an anticholinergic drug (0.4 mg iv scopolamine). Experience-dependent plasticity, expressed as a conditioning-specific enhanced BOLD response, was evident in auditory cortex in the placebo group, but not with scopolamine. This study provides in vivo evidence that experience-dependent plasticity, evident in hemodynamic changes in human auditory cortex, is modulated by acetylcholine.  相似文献   

13.
The basolateral amygdala complex (BLA), including the lateral (LA), basal (BA) and accessory basal (AB) nuclei, is involved in acquisition of contextual and auditory fear conditioning. The BA is one of the main targets for hippocampal information, a brain structure critical for contextual learning, which integrates several discrete stimuli into a single configural representation. Congruent with the hodology, selective neurotoxic damage to the BA results in impairments in contextual, but not auditory, fear conditioning, similarly to the behavioral impairments found after hippocampal damage. This study evaluated the effects of muscimol-induced reversible inactivation of the BA during a simultaneous contextual and auditory fear conditioning training on later fear responses to both the context and the tone, tested separately, without muscimol administration. As compared to control rats micro-infused with vehicle, subjects micro-infused with muscimol before training exhibited, during testing without muscimol, significant reduction of freezing responses to the conditioned context, but not to the conditioned tone. Therefore, reversible inactivation of the BA during training impaired contextual, but not auditory fear conditioning, thus confirming and extending similar behavioral observations following selective neurotoxic damage to the BA and, in addition, revealing that this effect is not related to the lack of a functional BA during testing.  相似文献   

14.
Hearing loss, presbycusis, is one of the most common sensory declines in the ageing population. Presbycusis is characterised by a deterioration in the processing of temporal sound features as well as a decline in speech perception, thus indicating a possible central component. With the aim to explore the central component of presbycusis, we studied the function of the auditory cortex by functional MRI in two groups of elderly subjects (>65 years) and compared the results with young subjects (<lt;30 years). The elderly group with expressed presbycusis (EP) differed from the elderly group with mild presbycusis (MP) in hearing thresholds measured by pure tone audiometry, presence and amplitudes of transient otoacoustic emissions (TEOAE) and distortion-product oto-acoustic emissions (DPOAE), as well as in speech-understanding under noisy conditions. Acoustically evoked activity (pink noise centered around 350 Hz, 700 Hz, 1.5 kHz, 3 kHz, 8 kHz), recorded by BOLD fMRI from an area centered on Heschl’s gyrus, was used to determine age-related changes at the level of the auditory cortex. The fMRI showed only minimal activation in response to the 8 kHz stimulation, despite the fact that all subjects heard the stimulus. Both elderly groups showed greater activation in response to acoustical stimuli in the temporal lobes in comparison with young subjects. In addition, activation in the right temporal lobe was more expressed than in the left temporal lobe in both elderly groups, whereas in the young control subjects (YC) leftward lateralization was present. No statistically significant differences in activation of the auditory cortex were found between the MP and EP groups. The greater extent of cortical activation in elderly subjects in comparison with young subjects, with an asymmetry towards the right side, may serve as a compensatory mechanism for the impaired processing of auditory information appearing as a consequence of ageing.  相似文献   

15.
Summary Tonotopical organization and frequency representation in the auditory cortex of Greater Horseshoe Bats was studied using multi-unit recordings.The auditory responsive cortical area can be divided into a primary and a secondary region on the basis of response characteristics forming a core/belt structure.In the primary area units with best frequencies in the range of echolocation signals are strongly overrepresented (Figs. 6–8). There are two separate large areas concerned with the processing of the two components of the echolocation signals. In one area frequencies between the individual resting frequency and about 2 kHz above are represented, which normally occur in the constant frequency (CF) part of the echoes (CF-area), in a second one best frequencies between resting frequency and about 8 kHz below are found (FM-area).In the CF-area tonotopical organization differs from the usual mammalian scheme of dorso-ventral isofrequency slabs. Here isofrequency contours are arranged in a semicircular pattern.The representation of the cochlear partition (cochleotopic organization) was calculated. In the inferior colliculus and auditory cortex there is a disproportionate representation of the basilar membrane. This finding is in contradiction to the current opinion that frequency representation in the auditory system of Horseshoe Bats is only determined by the mechanical tuning properties of the basilar membrane.Response characteristics for single units were studied using pure tone stimuli. Most units showed transient responses. In 25% of units response characteristics depended on the combination of frequency and sound pressure level used.Frequency selectivity of units with best frequencies in the range of echolocation sounds is very high. Q-10dB values of up to 400 were found in a small frequency band just above resting frequency.Abbreviations BF best frequency - CF constant frequency - FM frequency modulated - MT minimal threshold  相似文献   

16.
Three days of fear conditioning that combines tactile stimulation of a row of facial vibrissae (conditioned stimulus, CS) with a tail shock (unconditioned stimulus, UCS) expands the representation of “trained” vibrissae, which can be demonstrated by labeling with 2-deoxyglucose in layer IV of the barrel cortex. We have also shown that functional reorganization of the primary somatosensory cortex (S1) increases GABAergic markers in the hollows of “trained” barrels of the adult mouse. This study investigated how whisker-shock conditioning (CS+UCS) affected the expression of puncta of a high-affinity GABA plasma membrane transporter GAT-1 in the barrel cortex of mice 24 h after associative learning paradigm. We found that whisker-shock conditioning (CS+UCS) led to increase expression of neuronal and astroglial GAT-1 puncta in the “trained” row compared to controls: Pseudoconditioned, CS-only, UCS-only and Naïve animals. These findings suggest that fear conditioning specifically induces activation of systems regulating cellular levels of the inhibitory neurotransmitter GABA.  相似文献   

17.
The non‐linearity and fear hypothesis predicts that certain non‐linear sounds are one way to evoke antipredator responses in both birds and mammals. This hypothesis, however, has not been studied in non‐vocal species or in reptiles. Such a study would be important because if non‐linear sounds are evocative even in a species that does not produce sounds, then there may be generally salient cues of risk in these sounds. We asked whether non‐vocal lizards, white‐bellied copper‐striped skinks (Emoia cyanura), respond to experimentally broadcast non‐linearities. This species is ideal to ask the question in because prior research has shown that they respond to predator sounds and alarm calls of other species even though they are not vocal. We conducted playback experiments with three computer‐generated simulated non‐linearities to assess whether or not skinks increased antipredator behavior after hearing them. We controlled for novelty by broadcasting a 3‐kHz, 500‐ms pure tone and tropical kingbird (Tyrannus melancholicus) song. Our treatments consisted of a 3‐kHz, 400‐ms pure tone followed by a frequency shift up to 5‐kHz for 100‐ms, a 3‐kHz, 400‐ms pure tone to frequency shift down to 1‐kHz for 100‐ms, and a pure tone followed by 100‐ms of white noise. Following a total of 222 playbacks, we categorized responses into looking, locomotion, and high locomotion, focusing on how skinks changed their rates of time allocation from baseline. We examined 95% confidence intervals to identify whether skinks responded to playbacks and fitted general linear models followed by pairwise comparisons to ask whether skinks discriminated between broadcast stimuli. We found that skinks were especially responsive to frequency downshifts: They significantly increased looking and locomotion, consistent with our predictions based on the non‐linearity and fear hypothesis. Surprisingly, they decreased rates of looking behavior after hearing frequency upshifts, possibly suggesting an increase in relaxed behavior. While skinks responded to noise by increasing their rate of locomotion, this response was not significantly different from controls. We conclude that skinks increase antipredator behavior after hearing downshifts more than any other type of non‐linearity. This provides some support for the non‐linearity and fear hypothesis; even non‐vocal species may respond fearfully to specific types of non‐linear sounds.  相似文献   

18.
Hong I  Kim J  Lee J  Park S  Song B  Kim J  An B  Park K  Lee HW  Lee S  Kim H  Park SH  Eom KD  Lee S  Choi S 《PloS one》2011,6(9):e24260
It is generally believed that after memory consolidation, memory-encoding synaptic circuits are persistently modified and become less plastic. This, however, may hinder the remaining capacity of information storage in a given neural circuit. Here we consider the hypothesis that memory-encoding synaptic circuits still retain reversible plasticity even after memory consolidation. To test this, we employed a protocol of auditory fear conditioning which recruited the vast majority of the thalamic input synaptic circuit to the lateral amygdala (T-LA synaptic circuit; a storage site for fear memory) with fear conditioning-induced synaptic plasticity. Subsequently the fear memory-encoding synaptic circuits were challenged with fear extinction and re-conditioning to determine whether these circuits exhibit reversible plasticity. We found that fear memory-encoding T-LA synaptic circuit exhibited dynamic efficacy changes in tight correlation with fear memory strength even after fear memory consolidation. Initial conditioning or re-conditioning brought T-LA synaptic circuit near the ceiling of their modification range (occluding LTP and enhancing depotentiation in brain slices prepared from conditioned or re-conditioned rats), while extinction reversed this change (reinstating LTP and occluding depotentiation in brain slices prepared from extinguished rats). Consistently, fear conditioning-induced synaptic potentiation at T-LA synapses was functionally reversed by extinction and reinstated by subsequent re-conditioning. These results suggest reversible plasticity of fear memory-encoding circuits even after fear memory consolidation. This reversible plasticity of memory-encoding synapses may be involved in updating the contents of original memory even after memory consolidation.  相似文献   

19.
Fear‐potentiated acoustic startle paradigms have been used to investigate phasic and sustained components of conditioned fear in rats and humans. This study describes a novel training protocol to assess phasic and sustained fear in freely behaving C57BL/6J mice, using freezing and/or fear‐potentiated startle as measures of fear, thereby, if needed, allowing in vivo application of various techniques, such as optogenetics, electrophysiology and pharmacological intervention, in freely behaving animals. An auditory Pavlovian fear conditioning paradigm, with pseudo‐randomized conditioned–unconditioned stimulus presentations at various durations, is combined with repetitive brief auditory white noise burst presentations during fear memory retrieval 24 h after fear conditioning. Major findings are that (1) a motion sensitive platform built on mechano‐electrical transducers enables measurement of startle responses in freely behaving mice, (2) absence or presence of startle stimuli during retrieval as well as unpredictability of a given threat determine phasic and sustained fear response profiles and (3) both freezing and startle responses indicate phasic and sustained components of behavioral fear, with sustained freezing reflecting unpredictability of conditioned stimulus (CS)/unconditioned stimulus (US) pairings. This paradigm and available genetically modified mouse lines will pave the way for investigation of the molecular and neural mechanisms relating to the transition from phasic to sustained fear.  相似文献   

20.
Moita MA  Rosis S  Zhou Y  LeDoux JE  Blair HT 《Neuron》2003,37(3):485-497
We recorded neurons from the hippocampus of freely behaving rats during an auditory fear conditioning task. Rats received either paired or unpaired presentations of an auditory conditioned stimulus (CS) and an electric shock unconditioned stimulus (US). Hippocampal neurons (place and theta cells) acquired responses to the auditory CS in the paired but not in the unpaired group. After CS-US pairing, rhythmic firing of theta cells became synchronized to the onset of the CS. Conditioned responses of place cells were gated by their location-specific firing, so that after CS-US pairing, place cells responded to the CS only when the rat was within the cell's place field. These findings may help to elucidate how the hippocampus contributes to context-specific memory formation during associative learning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号