首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CHILD syndrome (Congenital Hemidysplasia with Ichthyosiform erythroderma and Limb Defects) is a rare X-linked dominant ichthyotic disorder. CHILD syndrome results from loss of function mutations in the NSDHL gene, which leads to inhibition of cholesterol synthesis and accumulation of toxic metabolic intermediates in affected tissues. The CHILD syndrome skin is characterized by plaques topped by waxy scales and a variety of developmental defects in extracutaneous tissues, particularly limb hypoplasia or aplasia. Strikingly, these alterations are commonly segregated to either the right or left side of the body midline with little to no manifestations on the ipsilateral side. By understanding the underlying disease mechanism of CHILD syndrome, a pathogenesis-based therapy has been developed that successfully reverses the CHILD syndrome skin phenotype and has potential applications to the treatment of other ichthyoses. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.  相似文献   

2.
 The human Kx blood group antigen is carried by a 37 000 M r apparent molecular mass membrane polypeptide which is deficient in rare individuals with the McLeod syndrome. The X-linked human XK gene is transcribed in many tissues including adult skeletal muscle and brain, sieges of disorders observed in McLeod syndrome. We report here the cloning of the orthologous mouse XK mRNA. Comparison of XK from human and mouse revealed 80% sequence similarity at the amino acid level. The mouse XK gene is organized in two exons and is expressed in many tissues, but its expression pattern is slightly different from that of the human gene. The presence in mouse erythrocyte membrane of a 43 000 M r Kx-related protein was demonstrated by immunoblotting with a rabbit antiserum directed against the human protein. With non-reduced samples, a 140 000 M r species was detected instead of the 43 000 M r protein, suggesting that, as demonstrated in the Kx polypeptide might be complexed with another protein in mouse red cells, presumably the homologue of the human Kell protein of 93 000 M r. Received: 22 February 1999 / Revised: 8 June 1999  相似文献   

3.
Congenital hemidysplasia with ichthyosiform nevus and limb defects syndrome in humans is a genodermatosis characterized by inflammatory linear verrucous epidermal nevi (ILVEN), often showing a striking lateralization pattern. It is caused by variants in the NSDHL gene encoding a 3β‐hydroxysteroid dehydrogenase involved in the cholesterol biosynthesis pathway. In the present study, we investigated a female Chihuahua, which showed clinical and histological signs of ILVEN. We performed a candidate gene analysis in the affected animal. This analysis revealed a single missense variant in the NSDHL gene in the affected dog (XM_014111859.2:c.700G>A). The variant is predicted to cause a non‐conservative amino acid change from glycine to arginine, XP_013967334.1:p.(Gly234Arg). The mutant allele was absent from WGS data of 594 genetically diverse dogs and eight wolves. Sanger sequencing confirmed that the variant was heterozygous in the affected dog and absent from 22 control Chihuahuas. Based on the knowledge about the functional impact of NSDHL variants in dogs and other species, c.700G>A is probably pathogenic and a convincing candidate causative variant for the observed skin lesions in the affected Chihuahua.  相似文献   

4.
The plasma protein C4 and its androgen-dependent homologue Slp are encoded by genes located in the mouse major histocompatibility complex, H-2. The C4 and Slp protein levels and liver mRNA levels are influenced by non-H-2-linked regulatory genes. The allele-specific regulation of C4 expression and the androgen regulation of Slp expression are manifest only in some of the tissues where these genes are expressed. Therefore, we studied tissues in which the effects of the non-H-2 regulatory genes are apparent. We show that these genes only affect the Slp expression in tissues where it is androgen-dependent. This indicates that the non-H-2 regulatory genes most likely act through interaction with the androgen regulation of Slp expression. We also show that liver cells of mice with the Slp o allele, which do not produce Slp protein, do express Slp mRNA; this expression is also androgen-induced and regulated by non-H-2 genes. Thus, both the Slp a and Slp o alleles appear to be regulated in the same way.  相似文献   

5.
The human wildtype p53-induced phosphatase 1 (Wip1; GenBank symbol Ppm1d) gene encodes a type 2C protein phosphatase (PP2C) that is induced by ionizing radiation in a p53-dependent manner. We have cloned and sequenced the mouse Wip1 gene and its encoded mRNA. The mouse Wip1 gene is composed of six exons and spans over 36 kb of DNA. The mouse cDNA sequence predicts a 598-amino-acid protein with a molecular mass of roughly 66 kDa. Comparison of human and mouse Wip1 sequences revealed 83% overall identity at the amino acid level. The 5′-flanking region of exon 1 had promoter elements characteristic of a housekeeping gene. The Wip1 coding sequences share conserved functional regions with other PP2Cs from a diverse array of species. Expression of Wip1 mRNA was detected ubiquitously in adult and embryonic tissues, though expression in the testis was much higher than in other tissues. Wip1 has been mapped near the p53 gene on mouse chromosome 11.  相似文献   

6.
Cui W  Yu L  He H  Chu Y  Gao J  Wan B  Tang L  Zhao S 《Molecular biology reports》2001,28(3):123-138
A full-length cDNA of 3192 bp isolated from human bone marrow cDNA library was predicted an ORF encoding 298 amino acids. The deduced protein, containing seven putative transmembrane segments and sharing 75.8% amino acid identity with mouse Myadm protein, was named as human MYADM. The results of Northern blot analysis showed that MYADM was ubiquitously expressed in 15 of 16 adult tissues tested, except thymus. To determine whether the novel human gene was involved in hematopoietic differentiation process as mouse Myadm did, we examined the mRNA expressive abundance of this gene between normal bone marrow cells and peripheral blood leukocytes, and detected the expression change in NB4 cells induced by all–trans retinoic acid at different induce time by the semi-quantitative RT-PCR. The results showed that the expression of the novel gene was not only significantly higher in peripheral blood leukocytes than in bone marrow cells, but also significantly up-regulated when the NB4 cells(derived from a patient with acute promyelocytic leukemia) were induced by all-trans retinoic acid (ATRA) for 48hr. It is suggested that human MYADM was also associated with the differentiation of hematopoietic cells or acute promyelocytic leukemia cells. In addition, MYADM was mapped to human chromosome 19q13.33-q13.4 by Radiation Hybrid mapping, and it consists of 3 exons and 2 introns and spans a 7.1-Kb genomic region.  相似文献   

7.
The Fused toes (Ft) mouse mutation was created by insertional mutagenesis, resulting in the deletion of several hundred kb of genomic sequences of mouse Chromosome (Chr) 8. Mice heterozygous for the Ft mutation are characterized by partial syndactyly of forelimbs and massive thymic hyperplasia indicating that programmed cell death is affected. Homozygous Ft/Ft embryos die at midgestation and show severe malformations of craniofacial structures. Furthermore, establishment of left-right asymmetry is random. Here we report on the positional cloning of a novel gene by exon trap analysis of a genomic clone encoding wild-type sequences corresponding to parts of the deletion in Ft mutants. RT-PCR experiments demonstrated that the newly identified gene, Fatso (Fto), is expressed throughout embryonic development. Wide expression was also found in tissues of adult mice. We show that expression of Fto is completely absent in mouse embryonic fibroblasts homozygous for the Ft mutation. In addition, we isolated the full-length cDNA which encodes a putative 58-kDa protein showing no similarities to known proteins or protein motifs. The expression data of Fto define it as a candidate gene involved in processes such as programmed cell death, craniofacial development, and establishment of left-right asymmetry. Received: 5 May 1999 / Accepted: 9 June 1999  相似文献   

8.
9.
10.
The murine Xlr (X-linked, lymphocyte-regulated) gene family was originally identified by subtractive cDNA hybridization and cloning. It was found to encode two 30-kDa nuclear proteins expressed in lymphoid cells and in primary spermatocytes in a developmentally regulated manner. Our data show that, in contrast to most X-linked genes, the Xlr family is not conserved at the DNA level between mouse and human. However, using anti-Xlr antibodies, an Xlr-immunoreactive nuclear protein of Mr 30,000 was characterized in human RAJI B-lymphoblastoid cells by flow cytofluorimetry, by immunoblotting, and by immuno-cytolabeling. An Xlr-like molecule was also found to be expressed in human activated lymphocytes and in human primary spermatocytes, with a stage specificity similar to that known in the mouse. In contrast, no Xlr-immunoreactive protein was detected in a series of human tissues including brain, skeletal muscle, colon, liver, and kidney, revealing a tissue-specific expression pattern similar to that of murine Xlr. These findings most likely identify a human equivalent of Xlr. The Xlr genes belong to a small category of X-linked genes, including STS, MIC2, CSF2RA, and KAL, that diverge at the DNA level in human and in mice. Characterization of the human XLR gene(s) should now be feasible with anti-Xlr antibodies and an expression cloning system. It should provide new insights into the evolution of mammalian X Chromosome (Chr).  相似文献   

11.
12.
13.
We report the isolation of a novel human POU domain encoding gene named RDC-1. The POU domain of the RDC-1 encoded protein is highly related to the POU domain potentially encoded by the rat brain-3 sequence and to that of the Drosophila I-POU protein; outside of the POU region, RDC-1 is unrelated to any previously characterized protein. The RDC-1 gene is expressed almost exclusively in normal tissues and transformed cells of neural origin. In the developing mouse and human fetus, RDC-1 is expressed in a spatially and temporally restricted pattern that suggests a critical role in the differentiation of neuronal tissues. In addition, RDC-1 is expressed in a unique subset of tumors of the peripheral nervous system including neuroepitheliomas and Ewing's sarcomas but not neuroblastomas. Based on its unique structural characteristics and expression pattern, we discuss potential functions for the RDC-1 protein.  相似文献   

14.
The genes that regulate the formation of blood vessels in adult tissues represent promising therapeutic targets because angiogenesis plays a role in many diseases, including cancer. We wished to develop a mouse model allowing characterization of gene function in adult angiogenic vasculature while minimizing effects on embryonic vasculature or adult quiescent vasculature. Here we describe a transgenic mouse model that allows expression of proteins in the endothelial cells of newly forming blood vessels in the adult using a selective retroviral gene delivery system. We generated transgenic mouse lines that express the TVA receptor for the RCAS avian-specific retrovirus from Flk1 gene regulatory elements that drive expression in proliferating endothelial cells. Several of these Flk1-TVA lines expressed TVA mRNA in the embryonic vasculature and TVA protein in new blood vessels growing into subcutaneous extracellular matrix implants in adult mice. In a Flk1-TVA line that was crossed with the MMTV-PyMT transgenic mammary tumor model, tumor endothelial cells also expressed the TVA protein. Furthermore, endothelial cells in extracellular matrix implants and the tumors of Flk1-TVA mice were susceptible to RCAS infection, as determined by expression of green fluorescent protein encoded by the virus. The Flk1-TVA mouse model in conjunction with the RCAS gene delivery system will be useful to study molecular mechanisms underlying adult forms of angiogenesis.  相似文献   

15.
Analysis of the human repertoire of the FK506-binding protein (FKBP) family of peptidyl-prolyl cis/trans isomerases has identified an expansion of genes that code for human FKBPs in the secretory pathway. There are distinct differences in tissue distribution and expression levels of each variant. In this article we describe the characterization of human FKBP19 (Entrez Gene ID: FKBP11), an FK506-binding protein predominantly expressed in vertebrate secretory tissues. The FKBP19 sequence comprises a cleavable N-terminal signal sequence followed by a putative peptidyl-prolyl cis/trans isomerase domain with homology to FKBP12. This domain binds FK506 weakly in vitro. FKBP19 mRNA is abundant in human pancreas and other secretory tissues and high levels of FKBP19 protein are detected in the acinar cells of mouse pancreas.  相似文献   

16.
A quantitative RT-PCR approach has been used to examine the expression of a number of X-linked genes during preimplan-tation development of normal mouse embryos and in androgenetic and gynogenetic mouse embryos. The data reveal moderately reduced expression of the Prps1, Hprt, and Pdha1 mRNAs in androge-netic eight-cell and morula stage embryos, but not in androgenetic blastocysts. Pgk1 mRNA abundance was severely reduced in androgenones at the eight-cell and morula stages and remained reduced, but to a lesser degree, in androgenetic blastocysts. These data indicate that paternally inherited X chromosomes are at least partially repressed in androgenones, as they are in normal XX embryos, and that the degree of this repression is chromosome position-dependent or gene-dependent. Gynogenetic embryos expressed elevated amounts of some mRNAs at the morula and blas-tocyst stages, indicative of a delay in dosage compensation that may be chromosome position-dependent. The Xist RNA was expressed at a greater abundance in androgenones than in gynogenones at the eight-cell and morula stages, consistent with previous studies. Xist expression was observed in both and rogenones and gynogenones at the blas-tocyst stage. We conclude that the developmental arrest in early androgenones may be, in part, due to reduced expression of essential X-linked genes, particularly those near the X inactivation center, where as the developmental defects of gyno-genones and parthenogenones, by contrast, may be partially due to overexpression of X-linked genes in extraembryonic tissues, possibly those far-thest away from the X inactivation center. © 1995 Wiley-Liss, Inc.  相似文献   

17.
The embryonic poly(A)-binding protein (EPAB) functions in the translational regulation of the maternal messenger RNAs (mRNAs) required during oocyte maturation, fertilization, and early embryo development. Since there is no antibody specific to mammalian EPAB protein, all studies related to the Epab gene could be performed at the mRNA levels except for the investigations in the Xenopus. In this study, we have produced an EPAB-specific antibody. When we examined its expressional distribution in the mouse gonadal and somatic tissues, the EPAB protein was found to be expressed only in the mouse ovary and testis tissues, but it is undetectable level in the somatic tissues including stomach, liver, heart, small intestine, and kidney. Additionally, the spatial and temporal expression patterns of the EPAB and poly(A)-binding protein cytoplasmic 1 (PABPC1) proteins were analyzed in the mouse germinal vesicle (GV) and metaphase II (MII) oocytes, one-cell, and two-cell embryos. While EPAB expression gradually decreased from GV oocytes to two-cell embryos, the PABPC1 protein level progressively increased from GV oocytes to one-cell embryos and remarkably declined in the two-cell embryos ( P < 0.05). We have also described herein that the EPAB protein interacted with Epab, Pabpc1, Ccnb1, Gdf9, and Bmp15 mRNAs dependent upon the developmental stages of the mouse oocytes and early embryos. As a result, we have first produced an EPAB-specific antibody and characterized its expression patterns and interacting mRNAs in the mouse oocytes and early embryos. The findings suggest that EPAB in cooperation with PABPC1 implicate in the translational control of maternal mRNAs during oogenesis and early embryo development.  相似文献   

18.
Mutations in more than a hundred genes have been reported to cause X-linked recessive intellectual disability (ID) mainly in males. In contrast, the number of identified X-linked genes in which de novo mutations specifically cause ID in females is limited. Here, we report 17 females with de novo loss-of-function mutations in USP9X, encoding a highly conserved deubiquitinating enzyme. The females in our study have a specific phenotype that includes ID/developmental delay (DD), characteristic facial features, short stature, and distinct congenital malformations comprising choanal atresia, anal abnormalities, post-axial polydactyly, heart defects, hypomastia, cleft palate/bifid uvula, progressive scoliosis, and structural brain abnormalities. Four females from our cohort were identified by targeted genetic testing because their phenotype was suggestive for USP9X mutations. In several females, pigment changes along Blaschko lines and body asymmetry were observed, which is probably related to differential (escape from) X-inactivation between tissues. Expression studies on both mRNA and protein level in affected-female-derived fibroblasts showed significant reduction of USP9X level, confirming the loss-of-function effect of the identified mutations. Given that some features of affected females are also reported in known ciliopathy syndromes, we examined the role of USP9X in the primary cilium and found that endogenous USP9X localizes along the length of the ciliary axoneme, indicating that its loss of function could indeed disrupt cilium-regulated processes. Absence of dysregulated ciliary parameters in affected female-derived fibroblasts, however, points toward spatiotemporal specificity of ciliary USP9X (dys-)function.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号