首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
BACKGROUND: The microfabricated impedance spectroscopy flow cytometer used in this study permits rapid dielectric characterization of a cell population with a simple microfluidic channel. Impedance measurements over a wide frequency range provide information on cell size, membrane capacitance, and cytoplasm conductivity as a function of frequency. The amplitude, opacity, and phase information can be used for discrimination between different cell populations without the use of cell markers. METHODS: Polystyrene beads, red blood cells (RBCs), ghosts, and RBCs fixed in glutaraldehyde were passed through a microfabricated flow cytometer and measured individually by using two simultaneously applied discrete frequencies. The cells were characterized at 1,000 per minute in the frequency range of 350 kHz to 20 MHz. RESULTS: Cell size was easily measured with submicron accuracy. Polystyrene beads and RBCs were differentiated using opacity. RBCs and ghosts were differentiated using phase information, whereas RBCs and fixed RBCs were differentiated using opacity. RBCs fixed using increasing concentrations of glutaraldehyde showed increasing opacity. This increased opacity was linked to decreased cytoplasm conductivity and decreased membrane capacitance, both resulting from protein cross-linking. CONCLUSIONS: This work presents label-free differentiation of cells in an on-chip flow cytometer based on impedance spectroscopy, which will be a powerful tool for cell characterization.  相似文献   

2.
A biological microelectromechanical system (BioMEMS) device was designed to study complementary mitochondrial parameters important in mitochondrial dysfunction studies. Mitochondrial dysfunction has been linked to many diseases, including diabetes, obesity, heart failure and aging, as these organelles play a critical role in energy generation, cell signaling and apoptosis. The synthesis of ATP is driven by the electrical potential across the inner mitochondrial membrane and by the pH difference due to proton flux across it. We have developed a tool to study the ionic activity of the mitochondria in parallel with dielectric measurements (impedance spectroscopy) to gain a better understanding of the properties of the mitochondrial membrane. This BioMEMS chip includes: 1) electrodes for impedance studies of mitochondria designed as two- and four-probe structures for optimized operation over a wide frequency range and 2) ion-sensitive field effect transistors for proton studies of the electron transport chain and for possible monitoring other ions such as sodium, potassium and calcium. We have used uncouplers to depolarize the mitochondrial membrane and disrupt the ionic balance. Dielectric spectroscopy responded with a corresponding increase in impedance values pointing at changes in mitochondrial membrane potential. An electrical model was used to describe mitochondrial sample’s complex impedance frequency dependencies and the contribution of the membrane to overall impedance changes. The results prove that dielectric spectroscopy can be used as a tool for membrane potential studies. It can be concluded that studies of the electrochemical parameters associated with mitochondrial bioenergetics may render significant information on various abnormalities attributable to these organelles.  相似文献   

3.
Electrical impedance spectroscopy was used to characterize the cell environment of multilayered cell cultures (MCCs), a culture system in which cells are grown on a permeable support membrane to form a thick disc of cells with tumor-like properties. Cultures were grown using SiHa tumor cells as well as V79 wild-type cells and V79/DOX cells cultivated to exhibit multidrug resistance. Electrical impedance measurements were made on MCCs over a frequency range of 0. 1 kHz to 1 MHz. Data analysis using a simple electrical model for the cell environment yielded estimates for parameters related to the intra- and extracellular resistance and net membrane capacitance, which were then related to MCC thickness. The extracellular fraction and tortuosity of the MCCs were determined in separate experiments where the rate of diffusion and the equilibrium level of C14-inulin, which does not penetrate the cell membrane, was measured within MCCs. Impedance measurements predicted the barrier to diffusion posed by the extracellular space of MCCs to be roughly two times greater than that inferred from the C14-inulin experiments. However, the relative ranking of the three cell types used to grow MCCs was similar for the two methods. Results indicate that impedance spectroscopy is well suited for use in characterizing the MCC cell environment, offering a fast, nondestructive method for monitoring cell culture growth and integrity.  相似文献   

4.
A flow-system technique has been developed that detects the high-frequency resistance and capacitance changes in a sensing orifice due to the passage of cells through the orifice. The resistance and capacitance changes are related to cell properties such as size, plasma membrane capacitance, and electrical resistivity of the cell interior. The relationship between measured impedances and cellular properties is discussed, and the prototype instrument for making such measurements is described. The instrument can simultaneously detect the dc Coulter volume and two ac parameters related to the complex ac impedance change. Some initial tests of the instrument using plastic microspheres and Chinese hamster ovary cells are described.  相似文献   

5.
6.
Passive and label-free isolation of viable target cells based on intrinsic biophysical cellular properties would allow for cost savings in applications where molecular biomarkers are known as well as potentially enable the separation of cells with little-to-no known molecular biomarkers. We have demonstrated the purification of adrenal cortical progenitor cells from digestions of murine adrenal glands utilizing hydrodynamic inertial lift forces that single cells and multicellular clusters differentially experience as they flow through a microchannel. Fluorescence staining, along with gene expression measurements, confirmed that populations of cells collected in different outlets were distinct from one another. Furthermore, primary murine cells processed through the device remained highly viable and could be cultured for 10 days in vitro. The proposed target cell isolation technique can provide a practical means to collect significant quantities of viable intact cells required to translate stem cell biology to regenerative medicine in a simple label-free manner.  相似文献   

7.
《IRBM》2020,41(1):23-30
BackgroundBiological constituents have unique dielectric properties by virtue of which these can be analyzed both quantitatively and qualitatively by employing bio-dielectric measurement techniques and electrical impedance spectroscopy exhibits immense potential in this context.MethodsIn this study, an analytical impedimetric model has been developed to describe bio-dielectric behavior of the lymphocyte suspensions with different cell counts. Emphasis has been given to incorporate the effect of dielectric anisotropy which is apparent between the cell and nuclear membranes and measured in the low frequency range. The relatively low frequency range is chosen to probe the strong dependence of complex membrane behavior provided by the cells. Such dielectric anisotropy originates from the flow dynamics of ions through the hydrophobic interior of polar lipid-bilayer membrane. Successive models have been developed and compared with the relevant experimental data for formulating the system capacitance in a most generalized approach.ResultsThe capacitance values have been observed to decrease with both the increase of measuring frequency and cell count, however, its impedance decreases with frequency and increases with cell count. Such nature is attributed to the localization of polar response in the membrane-base solution interfaces.ConclusionThe work demonstrates a rapid and deterministic approach to estimate lymphocyte count which will augment the existing prediction techniques for relevant physiological disorders.  相似文献   

8.
We report measurements of the electrical impedance of human erythrocytes in the frequency range from 1 Hz to 10 MHz, and for temperatures from 4 to 40 degrees C. In order to achieve high sensitivity in this frequency range, we embedded the cells in the pores of a filter, which constrains the current to pass through the cells in the pores. Based on the geometry of the cells embedded in the filter a circuit model is proposed for the cell-filter saline system. A constant phase angle (CPA) element, i.e., an impedance of the form Z = A/(j omega)alpha, where A is a constant, j = square root of -1, omega is angular frequency, and 0 less than alpha less than 1 has been used to describe the ac response of the interface between the cell surface and the electrolyte solution, i.e., the electrical double layer. The CPA and other elements of the circuit model are determined by a complex nonlinear least squares (CNLS) fit, which simultaneously fits the real and imaginary parts of the experimental data to the circuit model. The specific membrane capacitance is determined to be 0.901 +/- 0.036 microF/cm2, and the specific cytoplasm conductivity to be 0.413 +/- 0.031 S/m at 26 degrees C. The temperature dependence of the cytoplasm conductivity, membrane capacitance, and CPA element has been obtained. The membrane capacitance increases markedly at approximately 37 degrees C, which suggests a phase transition in the cell membrane.  相似文献   

9.
Many brain-related disorders have neuronal cell death involved in their pathophysiology. Improved in vitro models to study neuroprotective or neurotoxic effects of drugs and downstream pathways involved would help gain insight into the molecular mechanisms of neuroprotection/neurotoxicity and could potentially facilitate drug development. However, many existing in vitro toxicity assays have major limitations – most assess neurotoxicity and neuroprotection at a single time point, not allowing to observe the time-course and kinetics of the effect. Furthermore, the opportunity to collect information about downstream signaling pathways involved in neuroprotection in real-time would be of great importance. In the current protocol we describe the use of a real-time impedance-based cell analyzer to determine neuroprotective effects of serotonin 2A (5-HT2A) receptor agonists in a neuronal cell line under label-free and real-time conditions using impedance measurements. Furthermore, we demonstrate that inhibitors of second messenger pathways can be used to delineate downstream molecules involved in the neuroprotective effect. We also describe the utility of this technique to determine whether an effect on cell proliferation contributes to an observed neuroprotective effect. The system utilizes special microelectronic plates referred to as E-Plates which contain alternating gold microelectrode arrays on the bottom surface of the wells, serving as cell sensors. The impedance readout is modified by the number of adherent cells, cell viability, morphology, and adhesion. A dimensionless parameter called Cell Index is derived from the electrical impedance measurements and is used to represent the cell status. Overall, the real-time impedance-based cell analyzer allows for real-time, label-free assessment of neuroprotection and neurotoxicity, and the evaluation of second messenger pathways involvement, contributing to more detailed and high-throughput assessment of potential neuroprotective compounds in vitro, for selecting therapeutic candidates.  相似文献   

10.
11.
Micro hole-based cell chip with impedance spectroscopy   总被引:1,自引:0,他引:1  
Electric fields can be used for the characterisation and manipulation of single biological cells. One approach to avoid the effect of electrode polarisation is to position cells on micro holes and to apply the electrical fields via the micro holes. For a correct characterisation and optimal manipulation, the electrical properties of the micro hole/cell interface must be understood. In this article, the electrical characteristics of a micro hole-based cell chip were investigated. By FEM simulation, it was estimated that the impedance measurement with micro hole-based chip is most dependent on the cell adhesion/spread rather than the intra-cellular space (contribution of intra-cellular space to the total impedance: 0.07% at 1 kHz, 0.3% at 1 MHz). The effective frequency range in which the impedance related with cell state on the hole considerably influences total measured impedance was below several kiloHertz. From the experiments, it was shown that the impedance of cell cultured on the hole at the low frequency range is increased during the increase of cultivation period, but is sensitively decreased after applying only several nanolitres of culture medium including 5% dimethlysulfoxide. This micro hole-based chip has a potential for monitoring the cell growth and the membrane integrity of even single cell without any labelling.  相似文献   

12.
J Wang  U Zimmermann    R Benz 《Biophysical journal》1994,67(4):1582-1593
The cell membrane of Valonia utricularis contains an electrogenic carrier system for chloride (Wang et al., Biophys J. 59:235-248 (1991)). The electrical impedance of V. utricularis was measured in the frequency range between 1 Hz and 50 kHz. The analysis of the impedance spectra from V. utricularis and its comparison with equivalent circuit models showed that the transport system created a characteristic contribution to the impedance in the frequency range between 10 Hz and 5 kHz. The fit of the impedance spectra with the formalism derived from the theory of carrier-mediated transport allowed the determination of the kinetic parameters of chloride transport through the cell membrane of V. utricularis, and its passive electrical properties. Simultaneous measurements of the kinetic parameters with the charge pulse method demonstrated the equivalence of both experimental approaches with respect to the evaluation of the translocation rate constants of the free and the charged carriers and the total density of carriers within the membrane. Moreover, the impedance spectra of the protonophor-mediated proton transport by FCCP (carbonylcyanide p-trifluoromethoxyphenyl-hydrazone) were measured in model membranes. The carrier system made a substantial contribution to the impedance of the artificial membranes. The analysis of the spectra in terms of a simple carrier system (Benz and McLaughlin, 1983, Biophys. J. 41:381-398) allowed the evaluation of the kinetic and equilibrium parameters of the FCCP-mediated proton transport. The possible application of the measurement of impedance spectra for the study of biological transport systems is discussed.  相似文献   

13.
14.
Assessment of cytotoxicity by impedance spectroscopy   总被引:1,自引:0,他引:1  
This paper describes a simple and convenient method to monitor on-line cell adhesion by electrical impedance measurements. Immortalized mouse fibroblasts, BALB/3T3, were cultured onto interdigitated electrode structures integrated into the bottom of an in-house fabricated device. Impedance modulus, phase, real and imaginary parts were considered separately and plotted as function of frequency and time to better understand and select the component giving more information on cell adhesion changes. For cytotoxicity assessment, the cells were treated with different concentrations of sodium arsenite used as model toxicant and their responses were monitored on-line. The half inhibition concentration, the required concentration to achieve 50% inhibition, derived from the measurements fall between the results obtained using standard 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test and colony forming efficiency assay confirming the good sensitivity of the system. In term of impedance signal, the modulus results was found to be the most sensitive of the considered components for cytotoxicity testing of chemicals.  相似文献   

15.
目的 基于生物阻抗谱(bioelectrical impedance spectroscopy,BIS)技术,提出一种免标记的生物细胞活性实时检测方法。该方法依据不同浓度、生理、病理状态下细胞组织的电学特性差异来判断细胞是否具有活性,以协助医师在临床手术中快速精准定位患者烫伤组织并实现有效切除。方法 使用具有活性的斑马鱼胚胎干细胞来模拟人体烫伤组织,采用生物阻抗谱技术来鉴别细胞组织的生理状态。结果 在不同状态下,细胞的阻抗幅值变化有显著的差异,可以从中发现同等浓度下活性细胞的阻抗幅值比死亡细胞平均高出17.25%,活性细胞发生弛豫频率的时间也比死亡细胞早25%。结论 实验数据表明,生物阻抗谱法能有效区分胚胎干细胞的两类生理状态;从聚类区域中可以看出,BIS检测法具有明显的细胞活性及浓度区分能力,理论上能够快速地协助医师完成对患者烫伤组织检测。  相似文献   

16.
Ion channels control the electrical properties of neurons and other excitable cell types by selectively allowing ion to flow through the plasma membrane. To regulate neuronal excitability, the biophysical properties of ion channels are modified by signaling proteins and molecules, which often bind to the channels themselves to form a heteromeric channel complex. Traditional assays examining the interaction between channels and regulatory proteins generally provide little information on the time-course of interactions in living cells. We have now used a novel label-free technology to detect changes in the distribution of mass close to the plasma membrane following modulation of potassium channels by G protein-coupled receptors (GPCRs). This technology uses optical sensors embedded in microplates to detect changes in the refractive index at the surface of cells. Although the activation of GPCRs has been studied with this system, protein-protein interactions due to modulation of ion channels have not yet been characterized. Here we present data that the characteristic pattern of mass distribution following GPCR activation is significantly modified by the presence of a sodium-activated potassium channel, Slack-B, a channel that is known to be potently modulated by activation of these receptors.  相似文献   

17.
Cancer cells have distinctive electrochemical properties. This work sheds light on the system design aspects and key challenges that should be considered when experimentally analyzing and extracting the electrical characteristics of a tumor cell line. In this study, we developed a cellularbased functional microfabricated device using lithography technology. This device was used to investigate the electrochemical parameters of cultured cancer cells at the single-cell level. Using impedance spectroscopy analyses, we determined the average specific capacitance and resistance of the membrane of the cancer cell line B16-F10 to be 1.154 ± 0.29 μF/cm2, and 3.9 ± 1.15 KΩ.cm2 (mean ± SEM, n =14 cells), respectively. The consistency of our findings via different trails manifests the legitimacy of our experimental procedure. Furthermore, the data were compared with a proposed constructed analytical-circuit model. The results of this work may greatly assist researchers in defining an optimal procedure while extracting electrical properties of cancer cells. Detecting electrical signals at the single cell level could lead to the development of novel approaches for analysis of malignant cells in human tissues and biopsies.  相似文献   

18.
The changes in the alternating current impedance which occur during activity of cells of the fresh water plant Nitella have been measured with the current flow normal to the cell axis, at eight frequencies from 0.05 to 20 kilocycles per second, and with simultaneous records of the action potential under the impedance electrodes. At each frequency the resting cell was balanced in a Wheatstone bridge with a cathode ray oscillograph, and after electrical stimulation at one end of the cell, the changes in the complex impedance were determined from the bridge unbalance recorded by motion pictures of the oscillograph figure. An extension of the previous technique of interpretation of the transverse impedance shows that the normal membrane capacity of 0.9 µf./cm.2 decreases about 15 per cent without change of phase angle, while the membrane resistance decreases from 105 ohm cm.2 to about 500 ohm cm.2 during the passage of the excitation wave. This membrane change occurs during the latter part of the rising phase of the action potential, and it is shown that the membrane electromotive force remains unchanged until nearly the same time. The part of the action potential preceding these membrane changes is probably a passive fall of potential ahead of a partial short circuit.  相似文献   

19.
The apparent cytoplasmic resistivity of two different giant cells has been measured using an extension of a previously developed single microelectrode technique. Each cell is penetrated by a metal microelectrode whose complex impedance is measured as a function of frequency between 500 kHz and 5.7 MHz. By plotting the measured impedance data on the complex Z plane and extrapolating the data to infinite frequency, the substantial effects of electrode polarization can be overcome. For Aplysia giant neurons and muscle fibers of the giant barnacle, the extrapolated cytoplasmic specific resistivities are 40 and 74 omega-cm, respectively, at infinite frequency. The barnacle data are in excellent agreement with sarcoplasmic resistivity values derived from the measured cable properties of other marine organisms, and from high frequency conductivity cell measurements in intact barnacle muscle tissue. In the Aplysia neurons, the frequency-dependent part of the electrode impedance is larger when the electrode is in a cell than when it is in an electrolyte solution with the same specific resistivity as the aqueous cytoplasm; however, the phase angle of the frequency-dependent component of the electrode impedance is the same in both cases. This suggests that the high apparent values of cytoplasmic resistivity found using the single microelectrode technique at lower frequencies probably reflect an artifact caused by reduction of the effective surface area of the electrode by intracellular membranes, with a corresponding increase in its polarization impedance.  相似文献   

20.
An efficient adaptive immune response should prevent pathogen infections and tumor growth without causing significant damage to host constituents. A crucial event determining the balance between tolerance and immunity is antigen recognition by T cells on the surface of antigen presenting cells (APC). Several molecular contacts at the interface between T cells and APCs contribute to define the nature of the adaptive immune response against a particular antigen. Upon TCR engagement by a peptide-MHC complex (pMHC) on the surface of an APC, a specialized supra-molecular structure known as immunological synapse (IS) assembles at the interface between these two cells. This structure involves massive re-distribution of membrane proteins, including TCR and pMHC complexes, as well as co-stimulatory and adhesion molecules. Furthermore, IS assembly leads to several important intracellular events necessary for T cell activation, such as recruitment of signaling molecules and cytoskeleton rearrangements. Because IS assembly leads to major consequences on the function of T cells, several studies have attempted to identify both soluble and membrane-bound molecules that could contribute to modulate the IS function. Here we describe recent literature on the regulation of IS assembly and modulation by TCR/pMHC binding kinetics, chemokines and cytokines focusing on their role at controlling the balance between adaptive immunity and tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号