首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1. Competition is considered a key factor structuring many communities, and has been described as the 'hallmark' of ant ecology. Dominant species are thought to play a key role structuring local ant assemblages through competitive exclusion. 2. However, while there have been many studies demonstrating competitive exclusion and consequently reduced richness at baits, it is not clear whether such regulation of 'momentary' diversity at clumped food resources can scale up to the regulation of richness at the site or assemblage level. 3. In this study, ant assemblages were sampled in three different savanna habitats in South Africa using both baiting and pitfall trapping. 4. As has been found in previous studies, there was a unimodal relationship between dominant ants and species richness at baits, with high abundances of dominant ants regulating species richness through competitive exclusion. Analysis of pitfall samples revealed strong convergence in pattern, and results from null model co-occurrence analyses supported the findings. 5. The importance of competition in structuring local ant assemblages was, however, only apparent at one of the three savanna habitats suggesting that a full range of extreme environments is needed to produce the full unimodal relationship at the assemblage level. 6. Although the relative importance of competition varied with habitat type, the study demonstrated that in some habitats, dominant ants can control species richness at the assemblage level.  相似文献   

2.
1. Interspecific competition is a major structuring principle in ecological communities. Despite their prevalence, the outcome of competitive interactions is hard to predict, highly context-dependent, and multiple factors can modulate such interactions. 2. We tested predictions concerning how competitive interactions are modified by anthropogenic habitat disturbance in ground-foraging ant assemblages inhabiting fragmented Inter-Andean tropical dry forests in southwestern Colombia, and investigated ant assemblages recruiting to baits in 10 forest fragments exposed to varying level of human disturbance. 3. Specifically, we evaluated how different components of competitive interactions (patterns of species co-occurrence, resource partitioning, numerical dominance, and interspecific trade-offs between discovery and dominance competition) varied with level of habitat disturbance in a human-dominated ecosystem. 4. Multiple lines of evidence suggest that the role of competitive interactions in structuring ground-foraging ant communities at baits varied with respect to habitat disturbance. As disturbance increased, community structure was more likely to exhibit random co-occurrence patterns, higher levels of monopolization of food resources by dominant ants, and disproportionate dominance of a single species, the little fire ant (Wasmannia auropunctata). At a regional scale, we found evidence for a trade-off between dominance and discovery abilities of the 15 most common species at baits. 5. Together, these results suggest that human disturbance modifies the outcome of competitive interactions in ground-foraging ant assemblages and may promote dominant species that reduce diversity and coexistence in tropical ecosystems.  相似文献   

3.
David A. Holway 《Oecologia》1998,116(1-2):252-258
Although the Argentine ant (Linepithema humile) is a widespread invasive species that displaces native ants throughout its introduced range, the effects of these invasions on arthropods other than ants remain poorly known. This study documents the consequences of Argentine ant invasions on ants and other ground-dwelling arthropods in northern California riparian woodlands. Baits and unbaited pitfall traps were used to sample different components of the arthropod communities at five pairs of uninvaded and invaded sites. Sites occupied by Argentine ants supported almost no native epigeic ants except for the winter-active Prenolepis imparis. Sites with Argentine ants averaged four to ten times more ant workers than did sites with native ants, but ant worker biomass did not differ between uninvaded and invaded sites. Argentine ants recruited to baits in invaded areas, on average, in less than half the time of native ants in uninvaded areas. Despite the loss of epigeic native ants, higher Argentine ant worker abundance, and faster recruitment by Argentine ants at invaded sites, pitfall trap samples from uninvaded and invaded areas contained similar abundances and diversities of non-ant arthropods. These findings suggest that Argentine ants and the native ants they displace interact with the ground-dwelling arthropods of these habitats in a similar manner. Received: 24 February 1997 / Accepted: 9 November 1997  相似文献   

4.
Despite the widespread impacts invasive species can have in introduced populations, little is known about competitive mechanisms and dominance hierarchies between invaders and similar taxa in their native range. This study examines interactions between the red imported fire ant, Solenopsis invicta, and other above-ground foraging ants in two habitats in northeastern Argentina. A combination of pitfall traps and baits was used to characterize the ant communities, their dominance relationships, and to evaluate the effect of phorid flies on the interactions. Twenty-eight ant species coexisted with S. invicta in a gallery forest gap, whereas only ten coexisted with S. invicta in a xerophytic forest grassland. S. invicta was the most numerically dominant species in the richest and complex habitat (gallery forest); however it performed better as discoverer and dominator in the simpler habitat. S. invicta was active during day and night. In spite of its poor capacity to discover resources, S. invicta showed the highest ecological dominance and the second-best behavioral dominance after Camponotus blandus. S. invicta won 78% of the interactions with other ants, mostly against its most frequent competitor, Pheidole cf. obscurithorax, dominating baits via mass recruitment and chemical aggression. P. cf. obscurithorax was the best food discoverer. S. invicta won 80% of the scarce interactions with Linepithema humile. Crematogaster quadriformis was one of the fastest foragers and the only ant that won an equal number of contests against S. invicta. The low presence of phorid flies affected the foraging rate of S. invicta, but not the outcome of interspecific interactions. This study revealed that the red imported fire ant ecologically dominated other terrestrial ants in its native range; however, other species were able to be numerically dominant or co-dominant in its presence.  相似文献   

5.
The super‐abundance of Lepisiota incisa (Forel) in settlement areas of Kruger National Park, South Africa has raised concerns that it might be exotic and could negatively impact on natural ecosystems. We documented the current distribution of this ant species around the main settlement in Kruger, assessed how ant diversity varies across habitats, and investigated potential mechanisms facilitating dominance by L. incisa. Around the main camp of Skukuza, pitfall traps were set in five habitats differing in anthropogenic influence. Baiting trails were conducted to determine whether L. incisa and native ants differed in numerical and behavioural dominance. Aggression assays were performed on L. incisa to provide information on colony structure. Although L. incisa was found in all habitats, it had a significantly higher abundance in gardens and appears confined to human‐disturbed areas. It was numerically dominant recruiting more workers to food baits than all other ant species combined. Aggression levels were low between most nests of L. incisa indicating a potential supercolony structure. More information is urgently needed on the genetics, physiology and origins of L. incisa, and monitoring of its current distribution is recommended. This species warrants attention because there may be significant potential for overseas invasion.  相似文献   

6.
We investigated the response of ant species to landscape and geomorphologic parameters of a long‐term (7–11 years) restoration project in the Jequitinhonha River (Northern State of Minas Gerais, Brazil) margins, previously dredged by a diamond mining company. Geomorphological changes from the dredging were severe and the area is unlikely to be adequately restored, mainly due to the negative effects of flooding. Our hypothesis is that ant species assemblages bioindicate successional stages and soil characteristics. We studied the association of effects from the river's flooding zone, the native vegetation, and sedimentary grain size with that of ant species diversity, abundance, and composition. An ant sampling program was conducted in April 2005, using three methods: baits, pitfall traps, and direct collection. Grain size was measured by sieving. In total, 10,784 ants were sampled, belonging to 7 subfamilies, 24 genera and 45 morphospecies. Ant species richness was greater in the undisturbed savanna area than in the restored habitats, and equivalently greater in the ecotone and intermediate zone habitats than on the river bank, the poorest habitat. Atta sexdens rubropilosa indicated a condition related to small forest remnants having well‐structured soil. On the other hand, ants with a body length of under 0.5 cm (Dorymyrmex pyramicus and Pheidole fallax) predominated in sandy areas, where the majority of the granules were the finest. The lack of organic matter and soil structure for constructing suitable nests may prevent large ants from colonizing such areas, and thus inhibit the advance of natural succession.  相似文献   

7.
Exotic ant species are a primary threat to ant biological diversity, posing a negative impact to native ant communities. In this study, we examine species richness of ants (family Formicidae) in Acadia National Park, ME, as a fundamental step toward understanding the present impact of the exotic species Myrmica rubra on native ant species. Twelve habitat types were sampled, along six transects, with pitfall traps, visual searching, bait traps, and leaf litter extraction, and the aid of 34 volunteers. We report 42 species of ants in Acadia National Park, comprising five subfamilies (Amblyoponinae, Dolichoderinae, Formicinae, Myrmicinae, and Ponerinae) and 15 genera; the cataloged species represents 75% of the species originally recorded in the area by Procter (1946). Our findings suggest M. rubra is currently not a dominant species throughout the entire island. However, where this species has invaded locally, few competing native species coexist. The species Lasius alienus, Formica subsericea, Myrmica detritinodis, Camponotus herculeanus, Formica argentea, Formica aserva, and Tapinoma sessile occurred most often in our survey. We report the ant species Amblyopone pallipes and Dolichoderus mariae as two new records for the state of Maine.  相似文献   

8.
Meat ants (Iridomyrmex purpureus and allies) are perceived to be dominant members of Australian ant communities because of their great abundance, high rates of activity, and extreme aggressiveness. Here we describe the first experimental test of their influence on other ant species, and one of the first experimental studies of the influence of a dominant species on any diverse ant community. The study was conducted at a 0.4 ha savanna woodland site in the seasonal tropics of northern Australia, where the northern meat ant (I. sanguineus) represented 41% of pitfall catches and 73% of all ants at tuna baits, despite a total of 74 species being recorded. Meat ants were fenced out of experimental plots in order to test their influence on the foraging success of other species, as measured by access to tuna baits. The numbers of all other ants and ant species at baits in exclusion plots were approximately double those in controls (controlling for both the fences and for meat ant abundance), and returned rapidly to control levels when fences were removed after 7 weeks. Individual species differend markedly in their response to the fencing treatment, with species of Camponotus and Monomorium showing the strongest responses. Fencing had no effect on pitfall catches of species other than the meat ant, indicating that the effect of meat ants at baits was directly due to interference with foraging workers, and not regulation of general forager abundance. Such interference by meat ants has important implications for the sizes and densities of colonies of other ant species, and ultimately on overall ant community structure.  相似文献   

9.
Invasions by introduced ant species can be ecologically destructive and affect a wide range of taxa, particularly native ants. Invasive ant species often numerically dominate ant communities and outperform native ant species in effective resource acquisition. Here, we describe interactions between the invasive ant Anoplolepis gracilipes (Smith) and resident ant species in disturbed habitats in NE Borneo. We measured interference competition abilities of A. gracilipes by performing arena bioassays between two A. gracilipes colonies and seven local ant species, and measured its effective resource competition at baits within supercolonies and at supercolony boundaries. Furthermore, we compared ant species diversity and composition at baits among (A) core areas of A. gracilipes supercolonies, (B) supercolony boundaries and (C) outside supercolonies. Anoplolepis gracilipes was behaviorally dominant over most ant species except Oecophylla smaragdina. Within supercolonies, A. gracilipes discovered all food baits first, and monopolized the vast majority throughout the course of the experiment. At supercolony boundaries, A. gracilipes discovered baits later than resident ant species, but subsequently monopolized half of the baits. Furthermore, the activity and diversity of the ant community within A. gracilipes supercolonies was lower than at its boundaries and outside supercolonies, and the ant communities differed significantly between infested and noninfested areas. Our study supports the hypothesis that successful establishment of A. gracilipes in anthropogenically disturbed habitats may negatively affect resident ant communities through high levels of direct interspecific aggression and almost complete monopolization of resources within high‐density supercolonies.  相似文献   

10.
In this paper we test the influence of temperature and interference competition by dominant species on the foraging of subordinate species in Mediterranean ant communities. We have analyzed the changes in resource use by subordinate species in plots with different abundances of dominant ants, and in different periods of the day and the year, i.e., at different temperatures. The expected effects of competition by dominant species on foraging of subordinates were only detected for two species in the number of baits occupied per day, and for one species in the number of foragers at pitfall traps. In all three cases, subordinate species were less represented at baits or in traps in plots with a high density of dominants than in plots with a medium or low density of dominants. The number of workers per bait, and the foraging efficiency of subordinate species did not differ in plots differing in dominant abundance. Daily activity rhythms and curves of temperature versus foraging activity of subordinate species were also similar in plots with different abundance of dominant species, indicating no effect of dominants on the foraging times of subordinates. Instead, temperature had a considerable effect on the foraging of subordinate species. A significant relationship was found between maximum daily temperature and several variables related to foraging (the number of foragers at pitfall traps, the number of baits occupied per day, and the number of workers per bait) of a number subordinate species, both in summer and autumn. These results suggest that the foraging of subordinate ant species in open Mediterranean habitats is influenced more by temperature than by competition of dominants, although an effect of dominants on subordinates has been shown in a few cases. In ant communities living in these severe and variable environments, thermal tolerance reduces the importance of competition, and the mutual exclusion usually found between dominant and subordinate species appears to be the result of physiological specialization to different temperature ranges. Received: 8 May 1998 / Accepted: 30 July 1998  相似文献   

11.
The Brazilian savanna is the second largest ecosystem in Brazil. It is also one of the most endangered, with only 20% of its habitat remaining unchanged. Agriculture and livestock have been indicated as the main agents of destruction of the Brazilian savanna. Brazilian livestock, for example, is the main reason for cultivation of exotic grasses such as Urochloa spp. (from Africa). Dung beetles are widely used in ecological assessment, mainly because they are recognized as bioindicators of environmental changes. Therefore, efficient sampling is required for any research involving the biodiversity of this group. In order to mitigate the lack of information on efficiency of the attractiveness of baits in the endangered Brazilian savanna and in exotic pasturelands, we sampled dung beetles in four native patches of the Brazilian savanna and in four areas of pastures with Urochloa spp. Dung beetles were captured with pitfall traps baited with carcass, cattle dung, human feces and pig dung, with a total sampling effort of 384 traps. We sampled 7544 individuals belonging to 43 species and 18 genera of dung beetles. Thirty‐eight species were collected in the Brazilian savanna and 24 species in exotic pastureland. In both ecosystems traps baited with human feces sampled greater abundance and species richness of dung beetles when compared with the other three baits used. Our results showed that human feces is a reliable, easy and inexpensive bait to sample greater abundance and species richness of generalist dung beetles in both native and exotic habitats, with clear structural differences.  相似文献   

12.
Feener Jr.  Donald H.  Schupp  Eugene W. 《Oecologia》1998,116(1-2):191-201
Natural formation of treefall gaps plays an integral role in the ecological and evolutionary dynamics of many tropical forests, affecting the spatiotemporal distribution of plants and the animals that interact with them. This study examines the impact of treefall gaps on the spatial and temporal patchiness of ant assemblages in a moist lowland forest in Panama. Using pitfall traps and honey baits, we compared ant assemblages in five 1 to 2-year-old treefall gaps (ca 100 m2) and five adjacent plots (ca 100 m2) in undisturbed forest understory at three different times of year (late wet season, late dry season, and early wet season). We found little evidence that ant assemblages respond dramatically to the formation of treefall gaps and the differences in habitat qualities they produce. Ant abundance, species richness, species composition, and rates of resource discovery did not differ between gaps and forest understory. However, we did find significant differences in numerical abundance related to forest stratum (ground vs vegetation) and resource type in pitfall traps (oil-cockroach vs honey), and significant differences in ant species richness and rates of resource discovery across seasons. While habitat effects by themselves were never statistically significant, habitat and seasonal differences in species richness interacted significantly to produce complex, season-dependent differences among gap and forest habitats. These results suggest that the formation of natural treefall gaps has less of an effect on Neotropical ant assemblages compared to other groups of organisms (e.g., plants, birds) or other causes of patchiness (e.g., ant mosaics, moisture availability, army ant predation). The results of our study also have important implications for the underlying causes of habitat differences in the distribution of ant-defended plants. Received: 3 February 1998 / Accepted: 7 April 1998  相似文献   

13.
In tropical ecosystems, ants represent a substantial portion of the animal biomass and contribute to various ecosystem services, including pest regulation and pollination. Dominant ant species are known to determine the structure of ant communities by interfering in the foraging of other ant species. Using bait and pitfall trapping experiments, we performed a pattern analysis at a fine spatial scale of an ant community in a very simplified and homogeneous agroecosystem, that is, a single‐crop banana field in Martinique (French West Indies). We found that the community structure was driven by three dominant species (Solenopsis geminata, Nylanderia guatemalensis, and Monomorium ebeninum) and two subdominant species (Pheidole fallax and Brachymyrmex patagonicus). Our results showed that dominant and subdominant species generally maintained numerical dominance at baits across time, although S. geminata, M. ebeninum, and B. patagonicus displayed better abilities to maintain dominance than P. fallax and N. guatemalensis. Almost all interspecific correlations between species abundances, except those between B. patagonicus and N. guatemalensis, were symmetrically negative, suggesting that interference competition prevails in this ground‐dwelling ant community. However, we observed variations in the diurnal and nocturnal foraging activity and in the daily occurrence at baits, which may mitigate the effect of interference competition through the induction of spatial and temporal niche partitioning. This may explain the coexistence of dominant, subdominant, and subordinate species in this very simplified agroecosystem, limited in habitat structure and diversity.  相似文献   

14.
Ants have been shown as particularly affected by land disturbance through deforestation and conversion of forest to agriculture. The effect of land use change on ant diversity in the Congo Basin is not well known. We conducted intensive sampling along a gradient of increasing vegetation disturbance to test the effect of habitat disturbance on ant diversity and Functional Groups composition. Sampling was conducted in 30 plots (5 study sites × 3 habitat × 2 plots/habitat), replicated six times in 1 year. In each plot, ants were monitored with pitfall traps, quadrats and baits. We recorded 237 ant morphospecies grouped in 10 subfamilies and 43 genera. Myrmicaria opaciventris was the most abundant species followed by Anoplolepis tenella. Forest had greater ant diversity compared with fallows and mixed‐crop fields. Functional groups were dominated by Opportunists, followed by Omnivorous Arboreal Dominants and Generalized Mymicinae. Their composition was not affected by the disturbance, but occurrence of Specialist Predators decreased with increasing disturbance. Occurrence of Generalized Myrmicinae, Opportunists and Subordinate Camponotini increased with disturbance. These results indicate that forest conversion into mixed‐crop fields reduce ant diversity. It can also increase abundance of species with generalized diet that predominates where stress and disturbance limits other ants.  相似文献   

15.
Pheidole megacephala is an exotic ant species that has severely affected native invertebrate biodiversity throughout the tropics. Its impacts have been documented extensively in relatively depauperate invertebrate communities, but not in species-rich habitats such as tropical rain forests. Here we describe the local distribution of P. megacephala and its impacts on native invertebrate assemblages in and around a rain forest patch at Howard Springs, in Australia's monsoonal tropics. P. megacephala was found to be confined to a single area of approximately 25 ha, with its distribution centered on drainage lines and the rain forest. Significant but weak correlations were found between its abundance and vegetative canopy cover (positive) and distance from the rain forest (negative). In the most heavily infested area within the rain forest, the abundance of P. megacephala was 37–110 times that of total native ant abundance found within uninfested plots, as measured by pitfall traps. The abundance and richness of native ants and other invertebrates were significantly reduced in litter samples, pitfall catches and foliage beats where P. megacephala was present, inversely relative to the abundance of P. megacephala. Only two individuals of a single native ant species were found within the most infested plot, with native ant richness being reduced to about half in the least infested plot. The most persistent functional groups of native ants in infested plots were Cryptic species, which forage primarily within soil and leaf litter, and Opportunists, which exhibit highly generalised foraging behaviour. The highest abundance of P. megacephala corresponded with a 42–85% decrease in the abundance of other native invertebrates. Insect larvae were totally absent from foliage beats collected at the most heavily infested plot. P. megacephala was found overall to be expanding its range, averaging 12 m range expansion in the dry season and contracting 7 m in the wet season. It is able to spread into surrounding savanna habitats by occupying relatively sheltered microsites, such as beneath logs and at the bases of trees. However, it is unlikely to attain high population densities in open savanna habitats because of its relative intolerance of desiccation, and the prevalence of behaviourally dominant native ant species. Howard Springs is currently the only rain forest patch in monsoonal Australia known to be infested by P. megacephala, but clearly this ant is a serious potential threat to the region's rain forest invertebrate fauna. Received: 19 August 1998 / Accepted: 12 May 1999  相似文献   

16.
Abstract This study reports on preliminary findings of habitat‐contingent temporal variability in ant assemblages in Purnululu National Park in northern Australia's semiarid tropics, by sampling at the end of the dry season (October 2004) and the end of the wet season (April 2005). Six grids of 15 pitfall traps were established in each of the spinifex, sandplain and gorge habitats. Community composition was dominated by behaviourally dominant ants (Iridomyrmex spp.) and climate specialists (Melophorus and Meranoplus spp.). Ant activity was higher in the wet season sampling period, with greater species richness and abundance. Interestingly, temporal variation in ant assemblage richness, abundance and composition varied markedly with habitat type. While there were large differences between sampling periods for the spinifex and sandplain habitat, this was not the case in the gorges. These temporal changes in ant assemblages are postulated to be linked with major environmental differences between the two sampling periods, driven by seasonal climatic conditions. It is likely that these changes influenced the ant assemblages through species differences in physiological tolerance levels, ecological requirements and competitive ability. This study demonstrates the need, in highly seasonal environments, to consider the temporal context of studies in relation to habitat type, particularly when undertaking biodiversity surveys and monitoring.  相似文献   

17.
Representative sampling of ant communities is time-consuming and laborious. Due to their manifold habitat requirements and sociobiological attributes, a suite of sampling methods is necessary to detect nearly all ant species in a given habitat. We analysed how well different combinations and intensities of sampling methods are suited to assess ant species richness and community patterns. Sampling occurred at 24 sites in mountain and floodplain habitats in Austria using pitfall traps, Winkler litter extraction, hand sampling of foragers, and colony sampling. Of these, pitfall traps delivered the largest species numbers. We drew 19 subsets of sampling approaches and compared these to the complete data. Many subsets that allowed for substantial reduction of work effort nonetheless reflected well the beta diversity patterns of the whole dataset. In contrast, alpha diversity assessment was more sensitive to reduced sampling effort. Pitfall traps turned out to be indispensable to collect ant species for biodiversity studies, but the optimal combination of sampling methods varied between habitat types. In rugged montane habitats pitfalls should be complemented at least by colony sampling. In floodplain forests the number of pitfall trap replicates can be reduced, but inclusion of Winkler samples is advisable.  相似文献   

18.
In this study, the composition of ant communities was compared in four adjacent phytophysiognomies in Morro dos Conventos Restinga, Brazil. We tested our hypothesis that the ant community composition differs between habitats across a gradient from sea to inland continent. Ant species were sampled with pitfall traps. Overall, 71 ant species were collected. Ant species composition differed between phytophysiognomies. Our results suggest that environments were more similar in the adjacent than in the more distant phytophysiognomies, a pattern similar to the vegetation zonation and gradient sea–inland Restinga. Thirteen species determined more than 50% of the dissimilarity between phytophysiognomies. Solenopsis saevissima was the species that contributed more to ant species composition distinction between phytophysiognomies, followed by Pheidole and Camponotus species. The type of vegetation is one of the main factors affecting the composition of ant communities in Restinga. The role of plants is linked to the availability of resources and conditions and they may determine ant assemblage composition and different interactions occurring in Restinga.  相似文献   

19.
Abstract The expansion of urban areas and adjacent farming land into natural landscapes modifies habitats and produces small isolated pockets of native vegetation. This fragmentation of the natural habitat subdivides animal communities, reduces population sizes and increases vulnerability to extinction. In this paper we investigate whether fragmentation decreases lizard species richness, composition, overall abundance and abundance at the species level. Urban remnants consisting of five small (< 10 ha) and four large (> 10 ha) fragments of natural bushland were paired with continuous bushland areas located near Hobart, Tasmania, Australia. These remnants were surveyed six times, using pitfall traps, from November 2001 to March 2002. Lizard species richness and abundance were not significantly influenced by habitat fragmentation or fragment size. Egernia whitii was the only lizard species significantly influenced by fragment size, and was only present in large fragments and continuous bush. Vegetation type and structure as well as environmental variables (geology and aspect) influenced the structure of reptile communities. Lizard species that were able to use a number of different habitat types were found to persist at most sites, irrespective of fragment size. Edge environment did not significantly influence lizard species richness or abundance in remnant areas. Lizard species richness was significantly lower in sites that had a high ratio of exotic to native plant species. Therefore, if remnants continue to be invaded by exotic plants, lizard species that require native plant communities will become increasingly vulnerable to local extinction. Our results suggest that lizard species requiring specialized habitats, such as E. whitii, may persist in large urban remnants rather than small urban remnants because large reserves are more likely to encompass rare habitats, such as rocky outcrops. Habitat heterogeneity, rather than size, may be the key to their persistence.  相似文献   

20.
Studies on ant communities in agroecosystems have contributed to the knowledge of the effect of agricultural activities on biological communities. The aim of this study is to explain the effect of soil use on ant communities. We tested the hypothesis that there was a decrease in ant species richness and a change in the species composition at habitats with more intense soil use. We collected ants using sardine baits, subterranean traps and direct sampling at four habitats with different soil use (secundary forest, Acacia forestry, initial stage of succession and mixed crops). The ant species richness did not decrease with intensity of soil use. In successional habitat the species numbers collected using sardine baits and subterranean traps were significantly different. Species composition of communities had a pronounced variation, with the epigaeic and hypogaeic ant faunas of the habitat with high intense soil use (mixed crops) had low similarity with ant communities of the three other habitats. The predator species were restricted to habitats with low intensity of soil use. Then, species composition could better reflect the functional changes on ant communities than species richness. Our data can help to choose the component of ant community that better reflect the response of biodiversity to agricultural impacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号