首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two plant regeneration methods applicable to Leucaenaleucocephala were developed. In the first method, involvingorganogenesis via callus formation, cotyledon, hypocotyl and root segments wereinitiated on MS medium containing different concentrations ofN6-benzyladenine (BA), 2,4-dichlorophenoxyacetic acid (2,4-D), andnaphthaleneacetic acid (NAA). Both compact (type I) and friable (type II) calliwere obtained from the cotyledon and hypocotyl explants treated with differentconcentrations of the growth regulators. Shoots were generated only from thefriable calli formed from the cotyledon explants. The calli formed from thehypocotyl explants did not generate shoots and the root explants died withoutforming callus. Cotyledon explants from 3–4 day old seedlings showedmaximum callus induction compared to those from older seedlings. In a secondmethod involving direct organogenesis, excised cotyledons were cultured on 1/2MS medium containing 10–35 mg l–1N6-benzyladenine (BA) for 7–14 days. Transfer of thecotyledonsto regeneration medium containing low BA resulted in callus formation andsubsequent shoot regeneration from the base of the excised cotyledon explants,with up to 100% frequency. Regenerated shoots rooted best on a basal mediumcontaining no growth regulators.  相似文献   

2.
In vitro plantlet regeneration systems for the seed geranium (Pelargonium x hortorum Bailey) using cotyledon, hypocotyl and root explants were optimized by studying the influence of seedling age, growth regulators and excision orientation on organogenesis. Indole-3-acetic acid combined with zeatin yielded the highest rate of shoot production on cotyledon explants (0.2–2 shoots per explant). More shoots were produced on explants cut from the most basal region of cotyledons from 2 to 4-day-old seedlings than from older seedlings or more distal cut sites. Hypocotyl explants produced the highest number of shoots, up to 40 shoots per explant, on indole-3-acetic acid (2.8–5.6 mM) + zeatin (4.6 mM) or thidiazuron (4.5 mM). Maximum shoot formation (0.3–1.4 shoots per explant) on root explants occurred when they were cultured on medium containing zeatin. Regenerated shoots rooted best on a basal medium containing no growth regulators. There were substantial differences among cultivars in shoot formation from each of the explant systems.Abbreviations BA 6-benzylaminopurine - 2,4-d 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - NAA naphthaleneacetic acid - TDZ thidiazuron  相似文献   

3.
A high frequency shoot regeneration system for ornamental kale [Brassica oleracea L. var. acephala (D.C.) Alef.] was firstly established from seedling cotyledon and hypocotyl explants. The ability of cotyledon and hypocotyl to produce adventitious shoots varied depending upon genotype, seedling age and culture medium. The maximum shoot regeneration frequency was obtained when the explants from cv. Nagoya 4-d-old seedlings were cultured on Murashige and Skoog (MS) medium supplemented with 3 mg dm−3 6-benzylaminopurine (BA) and 0.1 mg dm−3 naphthaleneacetic acid (NAA). The frequency of shoot regeneration was 65.0 % for cotyledons, 76.1 % for hypocotyls; and the number of shoots per explant was 4.3 for cotyledons, 8.2 for hypocotyls. Hypocotyl explants were found to be more responsive for regeneration when compared with cotyledons. Among the 4 cultivars tested, Nagoya showed the best shoot regeneration response. The addition of 3.0 mg dm−3 AgNO3 was beneficial to shoot regeneration. Roots were formed on the base of the shoots when cultured on half-strength MS medium.  相似文献   

4.
Summary An efficient in vitro propagation system was developed for Arnebia euchroma, an important Chinese traditional medicinal plant. The present study utilized thidiazuron (TDZ) for the induction of shoot organogenesis on cotyledon and hypocotyl explants. The maximal number of shoots was obtained on the modified Linsmaier and Skoog (LS) medium supplemented with 1.0 mgl−1 (4.5 μM) TDZ for 12d on cotyledon explants (8.6 shoots per cotyledon explant). Other cytokinins (kinetin and 6-benzyladenine) and auxin (α-naphthaleneacetic acid) were not efficient in inducing regeneration on cotyledon explants. Browning of the basal portion of the subcultured shoots could be significantly reduced when they were cultured on the modified LS medium supplemented with 100 mgl−1 (33.3 μM) polyvinylpyrrolidone. Well-developed shoots formed roots on the same medium containing 1.0 mgl−1 (4.9 μM) indole-3-butyric acid. The efficient regeneration protocol reported here provides an important means of micropropagation of this plant. Furthermore, this protocol is essential to future genetic improvement of plants via transformation protocols.  相似文献   

5.
Callus was produced on cotyledon, shoot tip, hypocotyl and root explants of twoCorchorus species on several media. Cytokinin was necessary for callus production on cotyledon explants. BothC.olitorius genotypes produced most callus on media with zeatin and either NAA or IAA, and theC.capsularis genotype produced most callus on media with IAA and either zeatin or BA. High frequencies of regenerated shoots were obtained from shoot tip explants of both species, from the apical meristem and from callus. Media with 2.0 mg 1−1 BA were superior for both species, and media with zeatin were equally good forC.capsularis only. More regeneration was obtained for all genotypes after subculture of callus on media with 2.0 mg 1−1 zeatin. Cotyledon callus produced less regeneration, also with differences between genotypes; explants of both genotypes ofC.olitorius produced regeneration on a medium with NAA and zeatin, and theC.capsularis genotype produced regeneration on a medium with IAA and BA. Limited regeneration from root explant callus was obtained forC.capsularis only on medium with BA and IAA. Regeneration was not obtained from hypocotyl callus. Further regeneration of shoots of both species was obtained from secondary callus after subculture, and from nodal segments of regenerated shoots and of seedling shoots cultured on basic MS medium without growth hormones. Roots were produced on about 80% of all shoots after transference to medium with 0.2 mg 1−1 IBA, and rooted plantlets survived and flowered normally after transference to compost.  相似文献   

6.
In vitro regeneration of Trifolium glomeratum, a leguminous forage species, was attempted through leaf, petiole, cotyledon, hypocotyl, collar and root explants and two media combinations. Root and collar explants showed no callus induction. Medium with 0.05 mg dm−3 α-naphthaleneacetic acid (NAA) and 0.10 mg dm−3 N6-benzyladenine (BA) was more effective for hypocotyl explant whereas cotyledon and petiole explant were more responsive to 5.0 mg dm−3 NAA and 1.0 mg dm−3 BA. Friable, green calli obtained from petiole explant on this medium showed organogenetic potential. Modified root-inducing medium having 0.21 mg dm−3 indole-3-acetic acid and 2.5 % sucrose was successful for root induction and plantlets were successfully transferred to field after hardening and Rhizobium inoculation.  相似文献   

7.
An efficient plant regeneration system has been developed for figleaf gourd (Cucurbita ficifolia Bouché), which is exclusively used as a rootstock for cucumber. The protocol is based on results obtained from a series of culture experiments involving different parts of the cotyledons and various media. The culture of cotyledon explants was critical for the enhancement of shoot regeneration frequency. The lower parts of the cotyledon excised at the plumule base were found to display a markedly enhanced production of adventitious shoots compared to other cotyledon regions. Culture in silver nitrate-supplemented Murashige and Skoog (MS) medium was not beneficial for shoot regeneration and suppressed root regeneration. Efficient shoot regeneration was obtained on MS medium containing 1.0 mg l−1 zeatin and 0.1 mg l−1 indole-3-acetic acid. Regenerated shoots successfully elongated and rooted in medium containing 0.1 mg l−1 1-naphthaleneacetic acid after 10–15 days of subculturing. The plantlets were satisfactorily acclimatized in a greenhouse and grew into normal plants without any morphological alterations.  相似文献   

8.
Summary An efficient in vitro plant regeneration system from cotyledons was established in tetraploid Isatis indigotica Fort. Factors influencing shoot regeneration from cotyledons, including culture medium type, combinations of plant growth regulators, and sucrose concentrations in the medium, as well as illumination were investigated. Murashige and Skoog's (MS) medium was found to be best for promoting shoot regeneration, followed by Gamborg's B5 and White's medium. The highest shoot regeneration frequency was achieved from cotyledons cultured on MS medium supplemented with 2.0 mgl−1 (8.9 μM) 6-benzyladenine and 1.0 mgl−1 (5.4 μM) α-naphthaleneacetic acid (NAA), with 97.9% regeneration, associated with a high number of multiple shoots developed per explant (8.6 shoots per explant). A sucrose concentration of 3% present in the medium and light conditions were beneficial for shoot regeneration. The shoots developed were rooted in a half-strength MS medium supplemented with 1.0 mgl−1 (5.4 μM) NAA and successfully transplanted in soil in pots with over 85% survival. The establishment of an efficient plant regeneration procedure from cotyledons provides a basis for the rapid in vitro multiplication of tetraploid Isatis indigotica Fort., one of the most extensively used medicinal plants in China currently under great shortage.  相似文献   

9.
The goal of this study was to develop an efficient regeneration protocol to be used for genetic transformation of sesame. Published regeneration methods using benzyladenine (BA) and 1-naphthalene acetic acid (NAA) were unsuccessful for the cultivars used herein. Experiments were carried out using cotyledon and hypocotyl explants from the cultivar Mtwara-2. Later the optimised culture conditions were used to investigate the regeneration response of different genotypes. There was significant interaction between hormone treatments and macronutrients for shoot and root regeneration. Results also showed that shoot regeneration was significantly influenced by explant type. Shoots were only obtained from cotyledons whereas both cotyledons and hypocotyls could produce roots. Modified Murashige and Skoog (MS) medium with N6 macronutrients resulted in twice the shoot regeneration frequency obtained with ½MS macronutrients in the presence of thidiazuron (TDZ). The shoot regeneration frequency was significantly reduced when BA was used in place of TDZ. On shoot regeneration medium containing BA and NAA, only roots were formed. Replacing NAA with indole-3-acetic acid (IAA) greatly improved the regeneration of shoots. The optimum growth regulator combination for shoot regeneration was 20 μM TDZ together with 2.5 μM IAA, which gave a frequency of 63% and 4.4 shoots per regenerating explant for the best cultivar Ex-El. Genotypic differences were significant both for the number of explants regenerating shoots and the number of shoots produced per regenerating explant.  相似文献   

10.
Summary Regeneration of adventitious shoots was obtained in over 80% of explants, consisting of wounded cotyledonary nodes of Acacia mangium, by culturing germinated seedlings on DKW medium with combinations of N6-benzyladenine and either thidiazuron or N-(2-chloro-4-pyridyl)-N-phenylurea. Electron microscopy showed the presence of adventitious buds arising from wound tissue of the cotyledons and cotyledonary nodes. Shoot regeneration was also obtained at lower frequency in isolated cotyledon explants cultured with 6% sucrose alone (10%), or with 3% sucrose and 30.0 mg l−1 (0.1 μM) 2–4-dichlorophenoxyacetic acid (2,4-D; 16%). With 2,4-D,>60% of explants produced organized structures but these did not develop into shoots or somatic embryos. Shoot formation was not induced in either hypocotyl or root explants.  相似文献   

11.
Summary Improved in vitro tissue culture systems are needed to facilitate the application of transgene technology to the improvement of sugar beet germplasms. Several commercially important sugar beet breeding lines (SDM, 3, 5, 8, 9, 10, 11, HB 526, and CMS 22003) and commercial varieties (Roberta and Gala) were tested for their regeneration capacity through adventitious shoot organogenesis from cotyledons, hypocotyls, root/hypocotyl/shoot transition zone tissues, and leaf lamina and petiole via an intervening callus phase. Callus induction and adventitious shoot regeneration was dependent on genotype and combinations of plant growth regulators. With cotyledon or hypocotyl explants, SDM 3 and 10 showed a better response on adventitious shoot regeneration in medium containing benzyladenine (BA) and 2,3,5-triiodobenzoic acid or 1-naphthaleneacetic acid (NAA) than SDM 11, 5, and 9. Shoot regeneration was obtained from hypocytyl-root or hypocotyl-shoot transition zone tissue in SDM 9, 10, and HB 526 grown on PGo medium supplemented with BA to induce callus, and the regeneration frequency was 25%. Adventitious shoots were also regenerated from leaf explants of SDM 3 and 9 cultured on medium containing NAA for callus induction and BA and NAA to induce shoot regeneration, and in SDM 10 and CSM 22003 cultured on medium containing BA for callus induction and to induce shoot regeneration.  相似文献   

12.
Summary In vitro propagation of Quassia amara L. (Simaroubaceae) was attempted using mature and juvenile explants. Attempts to establish in vitro culture using leaf and internode explants from a plant more than 15yr old were unsuccessful due to severe phenolic exudation. Plant regeneration through direct and indirect somatic embryogenesis was established from cotyledon explants. Murashige and Skoog (MS) medium with 8.9 μM N6-benzyladenine (BA) and 11.7 μM silver nitrate induced the highest number (mean of 32.4 embryos per cotyledon) of somatic embryos. Direct somatic embryogenesis as well as callus formation was observed on medium with BA (8.9–13.3 μM). Semi-mature pale green cotyledons were superior for the induction of somatic embryos. Embryos developed from the adaxial side as well as from the point of excision of the embryonic axis. More embryos were developed on the proximal end compared to mid and distal regions of the cotyledons. Subculture of callus (developed along with the somatic embryos on medium with BA alone) onto medium containing 8.9 μM BA and 11.7 μM silver nitrate produced a mean of 17.1 somatic embryos. Primary somatic embryos cultured on MS medium with 8.9 μM BA and 11.7μM silver nitrate produced a mean of 9.4 secondary somatic embryos. Most of the embryos developed up to early cotyledonary stage. Reduced concentration of BA (2.2 or 4.4 μM) improved maturation and conversion of embryos to plantlets. Ninety percent of the embryos converted to plantlets. The optimized protocol facilitated recovery of 30 plantlets per cotyledon explant within 80d. Plantlets transferred to small cups were subsequently transferred to field conditions with a survival rate of 90%.  相似文献   

13.

Taraxacum belorussicum Val. N. Tikhom, a poorly known and obligatory apomictic species, is an attractive plant material for studying the embryological, genetic and molecular mechanisms of apomixis. This work aims to obtain an efficient protocol for Taraxacum belorussicum regeneration. Four types of explants (cotyledons, hypocotyls, meristems and roots) that were taken from 2-weeks-old seedlings were used for in vitro cultures, and a fast and efficient protocol of T. belorussicum regeneration was obtained. Various ½ MS-based media containing IAA (5.71 µM), TDZ (4.54 µM) and PSK (100 nM) were chosen to assess the morphogenetic abilities of selected T. belorussicum explants. Studies on the role of PSK were done in three independent experiments, where the most significant factors were always light and darkness. All explants produced callus by the third day of culture and adventitious shoots after 7 days, although in an asynchronous indirect manner, and with different intensities for all explant types. The most preferred medium culture for hypocotyl, cotyledon and meristem explants was ½ MS?+?TDZ, and ½ MS?+?IAA?+?TDZ?+?PSK for roots which were the only explant sensitive to PSK. A short darkness pretreatment (8 days) in PSK medium was found suitable to enhance organogenesis. Secondary organogenesis was observed for regenerated plants on meristem explants from the ½ MS?+?IAA?+?TDZ?+?PSK medium. A weak somatic embryogenesis was observed for hypocotyl and cotyledon explants from ½ MS?+?IAA?+?TDZ and ½ MS?+?IAA?+?TDZ?+?PSK media. Histological and scanning electron microscope images (SEM) of T. belorussicum confirmed indirect organogenesis and somatic embryogenesis. Plant material treated with aniline blue solution revealed the presence of callose in the cell walls of cotyledon and hypocotyl explants. The presence of extracellular matrix (ECM) and heterogenic structure of callus was also verified by scanning electron microscopy and light microscopy, confirming the high morphogenetic ability of T. belorussicum.

  相似文献   

14.
Summary Prolific shoot regeneration was achieved in mungbean Vigna radiata (L.) Wilczek from 3-d-old in vitro cotyledonary node and hypocotyl explants from seedlings derived from mature seeds on Murashige and Skoog (MS) medium supplemented with thidiazuron (TDZ) (0.9 μM). An initial exposure to TDZ for 20 d and three successive transfers to fresh medium with reduced thidiazuron levels (0.09 μM) resulted in the regeneration of 104 shoots/explant from the cotyledon and 30 shoots/explant from the hypocotyl. Thidiazuron-associated abnormalities such as short compact shoots, fasciation and leaf growth in the form of rosettes were observed in shoots regenerated from hypocotyl explants. Both axillary and adventitious shoot formation from the explants were confirmed by histology. Through repectitive cycles of regeneration in the presence of TDZ, the number of shoots that could be obtained from the two explant classes within 80 d was significantly higher than with previous reports in mungbean  相似文献   

15.
The application of modern biotechnology for improvement of chili pepper productivity requires an efficient in vitro plant regeneration protocol. In this study, a reliable protocol was developed for the in vitro regeneration of four types of chili, Capsicum annuum var. annuum (Jalapeño and Serrano), C. annuum var. glabriusculum/aviculare (Piquin), and C. chinense (Habanero) by direct organogenesis using three different explants (cotyledon, hypocotyls, and embryo) and three induction media. All evaluated culture media promoted the formation of adventitious shoots. When embryos or hypocotyls were used as explants, morphologically normal adventitious shoots developed, while culturing cotyledons resulted in nonelongating rosette-shaped shoots. The highest in vitro regeneration efficiency (14.6 shoots per explant) was achieved when Habanero chili hypocotyls were grown on Murashige and Skoog medium containing 1.7 μM indole-3-acetic acid and 22.2 μM N6-benzyladenine. This regeneration rate is higher than that obtained in previous reports. Regenerated plants were ready to be transferred to the greenhouse 13 wk after the explant culture. An evaluation carried out under greenhouse conditions showed differences in agronomic performance between in vitro regenerated plants and plants developed from seeds with the magnitude of the differences depending on the genotype being studied.  相似文献   

16.
Immature cotyledons collected at different time intervals from four genotypes of chickpea (C 235, BG 256, P 362 and P 372) were cultured adaxially on Murashige and Skoog (MS) medium supplemented with 6-benzyladenine, thidiazuron, kinetin, zeatin and dimethylallylaminopurine (2-iP), either alone or in combination with indole-3-acetic acid (IAA) or α-napthoxyacetic acid (α-NOA) for dedifferentiation and regeneration of adventitious shoots. Morphogenesis was achieved with explants cultured adaxially on MS medium with 13.68 μM zeatin, 24.6 μM 2-iP, 0.29 μM IAA and 0.27 μM α-NOA. Explants prepared from pods of 21 days after pollination, responded favourably to plant growth regulator treatment in shoot differentiation. Histological studies of the regenerating explants, revealed the initiation of meristematic activity in the sub-epidermal region during the onset of morphogenesis, which can be correlated with elevated activity of cytokinin oxidase-dehydrogenase, for cytokinin metabolism. The regenerated shoots were efficiently rooted in MS medium supplemented with 2.46 μM indole-3-butyric acid and acclimatized under culture room and glasshouse conditions for normal plant development leading to 76–80 % survival of the rooted plantlets. The immature cotyledon explants were used for Agrobacterium-mediated transformation with critical manipulation of cultural conditions like age of explant, O.D. of Agrobacterium suspension, concentration of acetosyringone, duration of sonication and co-cultivation for successful genetic transformation and expression of the reporter gene uidA (GUS). Integration of transgene was confirmed by molecular analysis. Transformation frequency up to 2.08 % was achieved in chickpea, suggesting the feasibility of using immature cotyledon explants for Agrobacterium-mediated transformation.  相似文献   

17.
Summary A characteristic phenotype of highly embryogenic explants along with the location of embryogenesis- and transformation-competent cells/tissues on immature cotyledons of soybean [Glycine max (L.) Merrill.] under hygromycin selection was identified. This highly embryogenic immature cotyledon was characterized with emergence of somatic embryos and incidence of browning/necrotic tissues along the margins and collapsed tissues in the mid-region of an explant incubated upwards on the selection medium. The influences of various parameters on induction of somatic embryogenesis on immature cotyledons following Agrobacterium tumefaciens-mediated transformation and selection were investigated. Using cotyledon explants derived from immature embryos of 5–8 mm in length, a 1∶1 (v/v; bacterial cells to liquid D40 medium) concentration of bacterial suspension and 4-wk cocultivation period significantly increased the frequency of transgenic somatic embryos. Whereas, increasing the infection period of explants or subjecting explants to either wounding or acetosyringone treatments did not increase the frequency of transformation. An optimal selection regime was identified when inoculated immature cotyledons were incubated on either 10 or 25 mgl−1 hygromycin for a 2-wk period, and then maintained on selection media containing 25 mgl−1 hygromycin in subsequent selection periods. However, somatic embryogenesis was completely inhibited when inoculated immature cotyledons were incubated on a kanamycin selection medium. These findings clearly demonstrated that the tissue culture protocols for transformation of soybean should be established under both Agrobacterium and selection conditions.  相似文献   

18.
Treatment differences were observed in the in vitro adventitious shoot regeneration response from internodal explants of three genotypes of Populus deltoides cultured on media supplemented with five concentrations each of the cytokinins 6-benzyladenine, 2-isopentyladenine, and zeatin. For each of the three genotypes, the greatest number of shoots were consistently regenerated on media containing the cytokinin zeatin. Tissue necrosis resulted when explants from any of the three genotypes were cultured on media supplemented with 6-benzyladenine. A zeatin concentration by genotype interaction was also observed. Genotypic differences in shoot regeneration were observed for 16 genotypes of Populus deltoides when cultured on medium supplemented with 0.5 mgL–1 zeatin. Six genotypes were highly recalcitrant and failed to regenerate shoots. The percent of explants regenerating was greater than 50% for four genotypes.Abbreviations WNA modified Woody Plant Media - BA N6-benzyladenine - 2-iP 2-isopentenyladenine - 2,4-D 2,4-dichlorophenoxyacetic acid - IBA indole-3-butyric acid - MS Murashige Skoog (1962) medium - NAA 1-naphthaleneacetic acid - PAR photosynthetically active radiation Journal Series No. 8938, Agricultural Research Division, University of Nebraska  相似文献   

19.
An improved protocol forAgrobacterium-mediated transformation of the tomato cultivar Moneymaker was developed by examining the effects of six different factors on the efficiency of transformation. Explant size, explant orientation, gelling agent and plate sealant were found to affect transformation efficiency. Two other factors, type of explant (hypocotyl or cotyledon) and frequency of transfer to fresh selective regeneration medium, did not have any effect on transformation efficiency. By combining the best treatments for each factor, an average transformation efficiency of 10.6% was obtained for Moneymaker.  相似文献   

20.
Summary Hypocotyl explants of melon (Cucumis melo L.) are capable of regenerating multiple shoots on Murashige and Skoog (1962) medium, augmented with 4.4 μM benzylademne. Regeneration from the hypocotyl is much more rapid than the more commonly reported regeneration from cotyledonary explants, producing shoots within 2 wk compared to more than a month required for cotyledon explants. The rapid regeneration response depends on the presence of a fragment of the cotyledon remaining attached to the hypocotyl. Controls were performed to ensure that the regeneration was not due to the presence of the shoot apical bud of the melon seedling after explant production. Scanning electron microscopy revealed that microsurgery to remove the apical bud left no excess bud material. Regeneration from the proximal part of the hypocotyl was due to production of a new shoot apical meristem, observed by histology. The apical meristem can be produced before leaf primordia in regeneration from the hypocotyl, in contrast to the regeneration process from the melon cotyledon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号