首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim was to determine the effect of substituting pumpkin seed cake (PSC) or extruded linseed (ELS) for soya bean meal in goats’ diets on milk yield, milk composition and fatty acids profile of milk fat. In total, 28 dairy goats were divided into three groups. They were fed with concentrate mixtures containing soya bean meal (Control; n=9), ELS (n=10) or PSC (n=9) as main protein sources in the trial lasting 75 days. Addition of ELS or PSC did not influence milk yield and milk gross composition in contrast to fatty acid profile compared with Control. Supplementation of ELS resulted in greater branched-chain fatty acids (BCFA) and total n-3 fatty acids compared with Control and PSC (P<0.05). Total n-3 fatty acids were accompanied by increased α-linolenic acid (ALA, C18:3n-3; 0.56 g/100 g fatty acids) and EPA (C20:5n-3; 0.12 g/100 g fatty acids) proportions in milk of the ELS group. In contrast, ELS and PSC resulted in lower linoleic acid (LA, C18:2n-6; 2.10 and 2.28 g/100 g fatty acids, respectively) proportions compared with Control (2.80 g/100 g fatty acids; P<0.05). Abovementioned resulted in lower LA/ALA ratio (3.81 v. 7.44 or 6.92, respectively; P<0.05) with supplementation of ELS compared with Control or PSC. The PSC diet decreased total n-6 fatty acids compared with the Control (2.96 v. 3.54 g/100 g fatty acids, P<0.05). Oleic acid (c9-C18:1), CLA (c9,t11-18:2) and t10-,t11-C18:1 did not differ between treatments (P⩾0.08), although stearic acid (C18:0) increased in ELS diets compared with Control (12.7 v. 10.2 g/100 g fatty acids, P<0.05). Partially substituted soya bean meal with ELS in hay-based diets may increase beneficial n-3 fatty acids and BCFA accompanied by lowering LA/ALA ratio and increased C18:0. Pumpkin seed cake completely substituted soya bean meal in the diet of dairy goats without any decrease in milk production or sharp changes in fatty acid profile that may have a commercial or a human health relevancy.  相似文献   

2.
The effect of dietary fatty acids on uterine fatty acid composition was studied in rats fed control diet or semi-synthetic diet supplemented with 1.5 microliter/g/day evening primrose oil (EPO) or fish oil (FO). Diet-related changes in uterine lipid were detected within 21 days. Changes of 2- to 20-fold were detected in the uterine n-6 and n-3 essential fatty acids (EFA) and in certain saturated and monounsaturated fatty acids. The FO diet was associated with higher uterine C20 and C22 n-3, and the EPO diet, with higher uterine n-6 fatty acid. High uterine C18:2 n-6 was detected in neutral lipid (NL) of rats fed high concentrations of this fatty acid, but there was little evidence of selective incorporation or retention of C18:2 n-6 by uterine NL. The incorporation of EFA into uterine phospholipids (PL) was greater than NL EFA incorporation, and uterine PL n-3/n-6 ratios showed greater diet dependence. Tissue/diet fatty acid ratios in NL and PL also indicated preferential incorporation/synthesis of C16:1 n-9, and C16:0, and there was greater incorporation of C12:0 and C14:0 into uteri of rats fed EPO and FO. Replacement of 50-60% of arachidonate with n-3 EFA in uterine PL may inhibit n-6 EFA metabolism necessary for uterine function at parturition.  相似文献   

3.
Our hypothesis that the trans fatty acids in hydrogenated fat inhibited the synthesis of polyunsaturated fatty acids in the phospholipid of arterial cells was tested with five groups each with six pregnant porcine fed from d 35 of gestation and during lactation. The basal diet contained 2% corn oil (control). The other four diets included the control + 10% butter or 10% hydrogenated fat plus two levels of Mg. Plasma, milk and aortic phospholipid fatty acids, phospholipid composition and calcium content of the aorta from the piglets were determined. At 48 +/- 2 d of age, the aorta phospholipid of piglets from porcine fed hydrogenated fat contained a significantly higher concentration of linoleic acid, less arachidonic acid, and less long chain polyunsaturated fatty acid (PUFA) than did piglets from porcine fed either butterfat or the control diet. Mg had no effect. These changes in composition in piglets from porcine fed hydrogenated fat indicate that trans fat inhibits the metabolic conversion of linoleic acid to arachidonic acid and to other n-6 PUFA. The aortic calcium content data showed a significant interaction of calcium concentration with age. We concluded: 1) that dietary trans fat perturbed essential fatty acid (EFA) metabolism which led to changes in the phospholipid fatty acid composition in the aorta, the target tissue of atherogenesis, 2) this inhibition of EFA to PUFA by the isomeric fatty acids in hydrogenated fat is a risk factor in the development of coronary heart disease.  相似文献   

4.
Studies in mice using germfree animals as controls for microbial colonization have shown that the gut microbiome mediates diet-induced obesity. Such studies use diets rich in saturated fat, however, Western diets in the United States America are enriched in soybean oil, composed of unsaturated fatty acids, either linoleic or oleic acid. Here, we addressed whether the microbiome is a variable in fat metabolism in mice on a soybean oil diet. We used conventionally-raised, low-germ, and germfree mice fed for 10 weeks diets either high or low in high-linoleic-acid soybean oil as the sole source of fat. Conventional and germfree mice gained relative fat weight and all mice consumed more calories on the high fat vs. low fat soybean oil diet. Plasma fatty acid levels were generally dependent on diet, with microbial colonization status affecting iso-C18:0, C20:3n-6, C14:0, and C15:0 levels. Colonization status, but not diet, impacted levels of liver sphingolipids including ceramides, sphingomyelins, and sphinganine. Our results confirm that absorbed fatty acids are mainly a reflection of the diet and that microbial colonization influences liver sphingolipid pools regardless of diet.  相似文献   

5.
Wistar rats were fed for three generations with a semisynthetic diet containing either 1.5% sunflower oil (940 mg% of C18:2n-6, 6 mg% of C18:3n-3) or 1.9% soya oil (940 mg% of C18:2n-6, 130 mg% of C18:3n-3). At 60 days of age, the male offspring of the third generation were killed. The fatty acyl composition of isolated capillaries and choroid plexus was determined. The major changes noted in the fatty acid profile of isolated capillaries were a reduction (threefold) in the level of docosahexaenoic acid and, consequently, a fourfold increase in docosapentaenoic acid in sunflower oil-fed animals. The total percentage of polyunsaturated fatty acids was close to that in the soya oil-fed rats, but the ratio of n-3/n-6 fatty acids was reduced by threefold. In the choroid plexus, the C22:6n-3 content was also reduced, but by 2.6-fold, whereas the C22:5n-6 content was increased by 2.3-fold and the ratio of n-3/n-6 fatty acids was reduced by 2.4-fold. When the diet of sunflower oil-fed rats was replaced with a diet containing soya oil at 60 days of age, the recovery in content of n-6 and n-3 fatty acids started immediately after diet substitution; it progressed slowly to reach normal values after 2 months for C22:6n-5 and 2.5 months for C22:6n-3. The recovery in altered fatty acids of choroid plexus was also immediate and very fast. Recovery in content of C22:5n-6 and C22:6n-3 was complete by 46 days after diet substitution.  相似文献   

6.
A completely randomized design study with a 3 × 2 factorial arrangement was conducted to evaluate the effects of three different fat sources (soybean oil, tallow, and poultry fat) with or without emulsifier supplementation on performance, coefficient of total tract apparent digestibility (CTTAD) of fatty acids, and apparent metabolizable energy (AME) content in broiler chickens. Two hundred and fifty-two one-day-old male Arbor Acres broiler chickens were randomly divided into 6 different treatments: (T1) basal diet containing soybean oil without lysophosphatidylcholine (LPC) supplementation, (T2) basal diet containing soybean oil with LPC supplementation, (T3) basal diet containing tallow without LPC supplementation, (T4) basal diet containing tallow with LPC supplementation, (T5) basal diet containing poultry fat without LPC supplementation, and (T6) basal diet containing poultry fat with LPC supplementation. Body weight gains from broiler chicks fed diets containing tallow were lower (P<0.05) than the body weight gains from chicks that were fed diets containing soybean oil or poultry fat in both the starter and grower periods. Birds fed diets containing tallow had the highest FCR (P<0.05), followed by the birds that were fed diets containing poultry fat, and soybean oil. The CTTAD of C16:0, C18:2, and C18:3n3 was greater (P<0.05) for broilers fed diets containing soybean oil than for those fed diets containing tallow or poultry fat in the starter period. The addition of LPC increased (P<0.05) body weight gain of broiler chickens in the starter period and the AME of the diets in the grower period, and tended to reduce FCR (P=0.072) in the starter period. LPC supplementation increased (P<0.05) the CTTAD of C16:0, C18:1n7 and C18:1n9 in the starter period, and of C18:2, and C18:3n3 in the grower period (P<0.05). There were no significant interactions between fat sources and the addition of LPC. These data indicated that LPC supplementation can improve body weight gain of broiler chickens in the starter period. This effect may be associated with an increase of CTTAD of FA due to LPC activity.  相似文献   

7.
Lipoprotein lipase (LPL) releases fatty acids from triglyceride-rich lipoproteins for use in cellular metabolic reactions. How this hydrolysis, which occurs at the vascular endothelium, is regulated is poorly understood. A fatty acid feedback system has been proposed by which accumulation of fatty acids impedes LPL-catalyzed hydrolysis and dissociates the enzyme from its endothelial binding sites. We examined this hypothesis in humans who were subjected to an oral fat tolerance test of a mixed-meal type. Plasma triglycerides, free fatty acids, and LPL activity were measured before and repeatedly during a 12-h period after intake of the fat load. Since soybean oil with a high content of linoleic fatty acid was the source of triglycerides, a distinction could be made between endogenous free fatty acids (FFA) and FFA derived directly from lipolysis of postprandial triglyceride-rich lipoproteins. Mean LPL activity was almost doubled (P less than 0.01) 6 h after intake of the oral fat load. The rise in LPL activity was accompanied by an increase of plasma triglycerides and linoleic free fatty acids (18:2 FFA), but not of total plasma FFA, which instead displayed a heterogeneous pattern with essentially unchanged mean levels. The postprandial response of LPL activity largely paralleled the postprandial responses of 18:2 FFA and triglycerides. The highest degree of parallelism was seen between postprandial 18:2 FFA and LPL activity levels. Furthermore, the integrated response (area under the curve, AUC) for plasma measurements of LPL correlated with the AUC for 18:2 FFA (r = 0.40, P less than 0.05), but not with the AUC for plasma triglycerides (r = 0.21, ns). The high degree of parallelism and significant correlation between postprandial plasma LPL activity and 18:2 FFA support the hypothesis of fatty acid control of endothelial LPL during physiological conditions in humans.  相似文献   

8.
Abstract: Rats were fed through four generations with a semisynthetic diet containing 1.0% sunflower oil (6.7 mg/ g n-6 fatty acids, 0.04 mg/g n-3 fatty acids). Ten days before mating, half of the animals received a diet in which sunflower was replaced by soya oil (6.6 mg/g n-6 fatty acids, 0.8 mg/g n-3 fatty acids) and analyses were performed on their pups. Fatty acid analysis in isolated cellular and subcellular material from sunflower-fed animals showed that the total amount of unsaturated fatty acids was not reduced in any cellular or subcellular fraction (except in 60-day-old rat neurons). All material from animals fed with sunflower oil showed an important reduction in the docosahexaenoic acid content, compensated (except in 60-day-old rat neurons) by an increase in the n-6 fatty acids (mainly C22:5 n-6). When comparing 60-day-old animals fed with soya oil or sunflower oil, the n-3/n-6 fatty acid ratio was reduced 16-fold in oligodendrocytes, 12-fold in myelin, twofold in neurons, sixfold in synaptosomes, and threefold in astrocytes. No trienes were detected. Saturated and monounsaturated fatty acids were hardly affected. This study provides data on the fatty acid composition of isolated brain cells.  相似文献   

9.
Guinea fowl production is increasing in developing countries and has a crucial role in the fight against poverty. However, the feed cost is very high, especially the soya bean meal cost, and farmers cannot afford to buy commercial feed. Consequently, animals do not receive feed adapted to their nutritional needs and they exhibit poor performance. The aim of this paper is to partially substitute soya bean meal by local by-products, discarded, in abundant supply and not used in human nutrition. French Galor guinea fowl (Numida meleagris) and local African guinea fowl (150 birds per breed) were reared for 16 weeks and fed the same starter diet for the initial 4 weeks. From 4 weeks of age, experimental birds from each breed were randomly assigned to three grower isoproteic and isolipidic dietary treatments, each containing five replications (floor pens); each replication included 10 birds of the same breed. The guinea fowl of each breed were fed either control grower diet using soya bean meal as the protein supplement GS, or trial grower diet GN (soya bean meal supplement partially substituted by 15% cashew nut (Anacardium occidentale) meal) or trial grower diet GH (soya bean meal supplement partially substituted by 15% hevea seed (Hevea brasiliensis) meal). The results indicated that hevea seed meal contained a high content of n-3 polyunsaturated fatty acids (PUFAs) (21.2% of total fatty acids (FAs)). The use of hevea seed meal in guinea fowl grower diet was found to exert no adverse effect on growth performance and carcass yield. However, the use of cashew nut meal led to negative effects on performance like daily weight gain and feed conversion ratio. Therefore, cashew nut meal cannot be considered as a suitable partial substitute for soya bean meal in diets. The use of hevea seed meal led to a very low abdominal fat proportion and low blood triglyceride and cholesterol content. Additionally, inclusion of dietary hevea seed meal resulted in guinea fowl meat enriched in PUFAs, especially n-3 FAs, thereby significantly improving the nutritional value.  相似文献   

10.
Long-chain polyunsaturated fatty acids, notably arachidonic (AA) and docosahexaenoic (DHA) acids are abundant in brain and may be conditionally essential in fetal life. We investigated umbilical artery (UA) and vein (UV) fatty acid compositions and early neonatal neurological condition in 317 term infants. Neurological condition was summarized as a clinical classification and a 'neurological optimality score' (NOS). Neurologically abnormal infants (n=27) had lower UV DHA and essential fatty acid (EFA) status. NOS correlated positively with AA (UV), and EFA (UV) and DHA status (UV and UA) and negatively with 18:2omega6 and omega9 (UV), and 20:3omega9, omega7 and C18 trans fatty acids (UV and UA). UV DHA, AA, saturated fatty acids, gestational age and obstetrical optimality score explained 16.2% of the NOS variance. Early postnatal neurological condition seems negatively influenced by lower fetal DHA, AA and EFA status. C18 trans fatty acids and 18:2omega6 may exert negative effects by impairment of LCP status.  相似文献   

11.
We investigated the changes in adiposity, cardiovascular and liver structure and function, and tissue fatty acid compositions in response to oleic acid-rich macadamia oil, linoleic acid-rich safflower oil and α-linolenic acid-rich flaxseed oil (C18 unsaturated fatty acids) in rats fed either a diet high in simple sugars and mainly saturated fats or a diet high in polysaccharides (cornstarch) and low in fat. The fatty acids induced lipid redistribution away from the abdomen, more pronounced with increasing unsaturation; only oleic acid increased whole-body adiposity. Oleic acid decreased plasma total cholesterol without changing triglycerides and nonesterified fatty acids, whereas linoleic and α-linolenic acids decreased plasma triglycerides and nonesterified fatty acids but not cholesterol. α-Linolenic acid improved left ventricular structure and function, diastolic stiffness and systolic blood pressure. Neither oleic nor linoleic acid changed the left ventricular remodeling induced by high-carbohydrate, high-fat diet, but both induced dilation of the left ventricle and functional deterioration in low fat-diet-fed rats. α-Linolenic acid improved glucose tolerance, while oleic and linoleic acids increased basal plasma glucose concentrations. Oleic and α-linolenic acids, but not linoleic acid, normalized systolic blood pressure. Only oleic acid reduced plasma markers of liver damage. The C18 unsaturated fatty acids reduced trans fatty acids in the heart, liver and skeletal muscle with lowered stearoyl-CoA desaturase-1 activity index; linoleic and α-linolenic acids increased accumulation of their C22 elongated products. These results demonstrate different physiological and biochemical responses to primary C18 unsaturated fatty acids in a rat model of human metabolic syndrome.  相似文献   

12.
Although medium chain triglyceride (MCT) is less calorically dense than long chain triglyceride (LCT), it produces a greater thermic effect following ingestion. We hypothesized that the previously observed high rate of thermogenesis produced by MCT overfeeding was due to hepatic de novo synthesis of long chain fatty acids (LCFA) from the excess medium chain fatty acids (MCFA). To study this, we compared the effects of overfeeding MCT- and LCT-containing diets on blood lipid profiles. Ten in-patient, nonobese males were overfed (150% of estimated energy requirements) two formula diets for 6 days each, in a randomized crossover design. Diets differed only in the composition of the fat and contained either 40% of energy as MCT or LCT (soybean oil). The major differences between diets in the resulting pattern of blood lipids were: 1) a reduction in fasting serum total cholesterol concentrations with the LCT, but not the MCT diet; and 2) a threefold increase in fasting serum triglyceride concentrations with MCT, but not LCT, diet. Moreover, 10% of the fasting triglyceride fatty acids were medium chain and 40% were 16:0 with the MCT diet. This compared to 1% and 20% for medium chain and 16:0, respectively, with the LCT diet. In addition, there were increases in 16:1, 18:0, and 18:1 in the triglycerides during MCT feeding. The changes in fatty acids in triglycerides with MCT feeding are consistent with the hypothesis that excess dietary MCT cause a significant increase in the hepatic synthesis of these fatty acids from MCFA through de novo synthesis and/or chain elongation and desaturation. These processes could account for the higher rate of postprandial thermogenesis with MCT as compared to LCT.  相似文献   

13.
Attempts at a better understanding of the cell membrane organization and functioning need to assess the physical properties which partly depend (i) on the positional distribution of the fatty acids in the membrane phospholipids (PLs) and (ii) on the way by which the PL molecular species are affected by exogenous fatty acids. To do that, the effects of essential (polyunsaturated) fatty acid (EFA) deficiency and enrichment were studied in the liver microsomes of piglets feeding on either an EFA-deficient diet or an EFA-enriched diet containing hydrogenated coconut oil or a mixture of soya + corn oils, respectively. After derivatization, the diacylated forms of choline and ethanolamine PLs were analyzed using a combination of chromatographic techniques and fast-atom bombardment-mass spectrometry. The dinitrobenzoyl-diacylglycerol derivatives corresponding to the molecular species of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were identified. It appears that three factors brought about a marked apparent relative retention: the nature of (i) the base of the polar head, (ii) fatty acids at the sn-1 position and (iii) fatty acids at the sn-2 position. The highest apparent relative retentions were displayed by the 18:0-20:5(n-3)-PE and 16:0-22:6(n-3)-PE. It is noteworthy that the behavior of 20:3 n-9--which is synthesized during the EFA-deficient diet by the same bioconversion system as 20:4 n-6--was very similar to that of 20:4 n-6 during the formation of PC and PE molecular species and that the molecular species of PE containing 20:4(n-6) and 20:3(n-9), gathered together as metabolical homologues, were also apparently retained, particularly in association with 16:0. Present observations are consistent with some others showing retention or preferential distribution of EFA in PE and suggest that specific acyltransferase(s), ethanolamine phosphotransferase and methyltransferase would be mainly involved for PE and PC formation in liver endoplasmic reticulum. Fast-atom bombardment-mass spectrometry of intact phospholipids enables us to show that there is no very long chain dipolyunsaturated phospholipid in liver endoplasmic reticulum.  相似文献   

14.
Long chain n-3 fatty acids present in fish oils have been shown to reduce fasting plasma triglyceride and very low density lipoprotein levels in normal and hyperlipidemic human subjects. The present studies were designed to examine whether dietary n-3 fatty acids influence chylomicron formation and metabolism in healthy volunteers. In the first study seven subjects were fed either saturated fat, vegetable oil, or fish oil-based diets for 4 weeks each, and test meals containing 50 g of the background fat were administered after the second week of each diet. The postprandial rise in triglyceride levels was significantly lower following the fish oil test meal as compared to the saturated fat or vegetable oil test meals. In the second study, six subjects eating their usual home diets were given two fat tolerance tests. The first contained saturated fat and the second, given 1 week later, contained fish oil. There was no difference in the postprandial triglyceride response between the fish oil and the saturated fat meals. A third study was then conducted with eight volunteers in which saturated fat and fish oil test meals were administered during saturated fat and fish oil background diets in a crossover design. The presence of fish oil in the background diet reduced postprandial lipemia regardless of the type of fat in the test meal. Although there was no effect of the fish oil diet on the lipoprotein lipase and hepatic lipase activity of postheparin plasma measured in vitro, stimulation of in vivo lipolysis was not ruled out. Our results suggest that chronic (but not acute) intake of fish oil may inhibit the synthesis or secretion of chylomicrons from the gut. However, accelerated clearance due to decreased VLDL competition cannot be excluded.  相似文献   

15.
Rainbow trout (Oncorhynchus mykiss) were fed either a control diet containing fish oil or an essential fatty acid (EFA) deficient diet containing only hydrogenated coconut oil and palmitic acid as lipid source (93.4% saturated fatty acids) for 14 weeks and the fatty acid compositions of individual phospholipid classes from skin and opercular membrane (OM) determined. The permeability of skin and OM to water and the production of eicosanoids in skin and gills challenged with the Ca2+ ionophore A23187 were also measured. Phospholipid (PL) fatty acid compositions were substantially modified in EFA-deficient fish, with increased saturated fatty acids and decreased polyunsaturated fatty acids (PUFA), especially arachidonic acid (AA) and eicosapentaenoic acid (EPA), while docosahexaenoic acid (DHA) was largely retained. The onset of EFA deficiency was shown by the appearance of n-9 PUFA, particularly 20:3n-9. The main effects of EFA deficiency on phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were to increase saturated fatty acids and monoenes, especially 16:1 and 18:1, and to decrease EPA and DHA. The content of DHA in phosphatidylserine (PS) was high in control animals (40% in skin and 35% in opercular membrane) and was mostly retained in EFA deficient animals. Arachidonic acid (AA) was the most abundant PUFA esterified to phosphatidylinositol (PI) and was significantly reduced in EFA deficient animals (from 31% to 13% in skin), where a large amount of 20:3n-9 (9% in skin) was also present. Influxes and effluxes of water through skin and opercular membrane were measured in vitro. No differences were detected between rainbow trout fed the control or the EFA deficient diet. 12-Hydroxyeicosatetraenoic acid (12-HETE), 12-hydroxyeicosapentaenoic acid (12-HEPE) and 14-hydroxydocosahexaenoic acid (14-HDHE) could not be detected in skin from control or EFA deficient fish. There was no difference between control and EFA deficient trout in the levels of leukotriene C4 (LTC4) and leukotriene C5 (LTC5) in skin cells challenged with the calcium ionophore A23187, and of prostaglandin F (PGF), 12-HETE and 12-HEPE in gill cells challenged similarly. Prostaglandin F (PGF) production by ionophore stimulated gill cells was significantly reduced in fish fed the EFA-deficient diet. 14-HDHE produced by gill cells was 3.3 fold higher in EFA deficient fish compared to controls.  相似文献   

16.
Anti-thrombotic effects of omega-3 (n-3) fatty acids are believed to be due to their ability to reduce arachidonic acid levels. Therefore, weanling rats were fed n-3 acids in the form of linseed oil (18:3n-3) or fish oil (containing 20:5n-3 and 22:6n-3) in diets containing high levels of either saturated fatty acids (hydrogenated beef tallow) or high levels of linoleic acid (safflower oil) for 4 weeks. The effect of diet on the rate-limiting enzyme of arachidonic acid biosynthesis (delta 6-desaturase) and on the lipid composition of hepatic microsomal membrane was determined. Both linseed oil- or fish oil-containing diets inhibited conversion of linoleic acid to gamma-linolenic acid. Inhibition was greater with fish oil than with linseed oil, only when fed with saturated fat. delta 6-Desaturase activity was not affected when n-3 fatty acids were fed with high levels of n-6 fatty acids. Arachidonic acid content of serum lipids and hepatic microsomal phospholipids was lower when n-3 fatty acids were fed in combination with beef tallow but not when fed with safflower oil. Similarly, n-3 fatty acids (18:3n-3, 20:5n-3, 22:5n-3, and 22:6n-3) accumulated to a greater extent when n-3 fatty acids were fed with beef tallow than with safflower oil. These observations indicate that the efficacy of n-3 fatty acids in reducing arachidonic acid level is dependent on the linoleic acid to saturated fatty acid ratio of the diet consumed.  相似文献   

17.
Rats were maintained on nutritionally complete diets enriched in unsaturated (menhaden fish oil) or saturated (butter fat) triacylglycerols. After 4 weeks, the animals were killed, proximal small intestinal brush-border membranes were prepared, and examined and compared with respect to their lipid composition, molecular species of phosphatidylcholine, lipid fluidity and sodium-dependent D-glucose transport. Membranes prepared from the two dietary groups were found to possess similar ratios of cholesterol/phospholipid (mol/mol), sphingomyelin/phosphatidylcholine (mol/mol), and protein/lipid (w/w). In contrast to these findings, however, striking differences were noted in the total fatty acid compositions of these membranes. Plasma membranes prepared from animals fed the fish oil diet possessed higher percentages of saturated fatty acids as well as (n - 3) unsaturated fatty acids and lower percentages of monounsaturated and (n - 6) unsaturated fatty acids than those prepared from animals fed the butter fat diet. Analysis of the molecular species of phosphatidylcholine by HPLC, moreover, revealed that membranes from rats fed fish oil had higher levels of 16:0-20:5, 16:0-22:6 and 18:0-20:5 and lower levels of 18:0-18:2 and 16:0-18:1 than their butter fat counterparts. As assessed by steady-state fluorescence polarization, differential polarized phase fluorometric and excimer/monomer fluorescence intensity techniques using various fluorophores, the lipid fluidity of membranes from rats fed fish oil was also found to be significantly lower compared to membranes from rats fed butter fat. Finally, comparison of the kinetic parameters of Na+-dependent D-glucose transport revealed that fish oil-membrane vesicles had a higher maximum velocity (Vmax) than butter fat membrane vesicles but a similar Km for glucose.  相似文献   

18.
Changing the dietary ratio of the essential fatty acids (EFA), 18:2n6 and 18:3n3, while keeping the amounts of other fatty acids in the diet constant can rapidly and specifically alter the proportions of n6 and n3 22-carbon fatty acids in the brain of the weanling rat. A dietary 18:2n6/18:3n3 ratio of 165 versus 1.8 caused higher n6 and lower n3 22-carbon fatty acid levels, without changing total 22-carbon fatty acid levels, in phosphatidylethanolamine and phosphatidylcholine from several neural membrane fractions. This was apparent after only 2 weeks and showed no sign of plateauing after 12 weeks. Other neural fatty acids were essentially unaffected. The three most abundant 22-carbon fatty acids responded somewhat differently to increments in the dietary 18:2n6/18:3n3 ratio (1.8, 9, 36, and 165). Levels of 22:4n6 increased by similar absolute amounts for each four-fold increase in dietary 18:2n6/18:3n3 ratio; in contrast, the largest absolute changes in 22:5n6 and 22:6n3 levels occurred as the 18:2n6/18:3n3 ratio increased from 36 to 165. This study shows that the 18:2n6/18:3n3 ratio of diets high in fat (40% of energy) and adequate in EFA, both typical of diets in developed countries, can substantially and relatively quickly affect the 22-carbon fatty acids in the brain, even after the rapid accumulation of these fatty acids during neural growth has ceased.  相似文献   

19.
A feeding trial was carried out to examine the effect of supplementary protein on the performance of pigs, when swede dry matter replaced 40% of the dry matter supplied by barley in two diets providing different amounts of protein. One hundred and twenty pigs of about 60 kg initial live weight were given one of four diets, each of which provided a constant amount of dry matter daily for 42 days, after which the pigs were slaughtered at about 90 kg live weight. The two basal diets were, on a dry matter basis; barley 2.0 kg plus either 0.2 or 0.4 kg soya bean meal. A mineral and vitamin supplement was given with each diet. There was no significant interaction between the effects of the inclusion of swedes or additional soya bean meal in the diet. The averaged results for pairs of diets showed that the use of swedes decreased carcass-weight gain from 0.62 to 0.51 kg/day and that the increment of soya bean meal increased it from 0.54 to 0.59 kg/day (P < 0.001 for both). It is suggested that the failure of swede dry matter to give an equivalent response to that of barley is not due to the nutritional value of its crude protein component per se but to other physical and chemical factors which may affect its utilization as an energy feed-source for pigs.  相似文献   

20.
Soya bean (Glycine max (L.) Merr.) is sought after for both its oil and protein components. Genetic approaches to add value to either component are ongoing efforts in soya bean breeding and molecular biology programmes. The former is the primary vegetable oil consumed in the world. Hence, its primary usage is in direct human consumption. As a means to increase its utility in feed applications, thereby expanding the market of soya bean coproducts, we investigated the simultaneous displacement of marine ingredients in aquafeeds with soya bean‐based protein and a high Omega‐3 fatty acid soya bean oil, enriched with alpha‐linolenic and stearidonic acids, in both steelhead trout (Oncorhynchus mykiss) and Kampachi (Seriola rivoliana). Communicated herein are aquafeed formulations with major reduction in marine ingredients that translates to more total Omega‐3 fatty acids in harvested flesh. Building off of these findings, subsequent efforts were directed towards a genetic strategy that would translate to a prototype design of an optimal identity‐preserved soya bean‐based feedstock for aquaculture, whereby a multigene stack approach for the targeted synthesis of two value‐added output traits, eicosapentaenoic acid and the ketocarotenoid, astaxanthin, were introduced into the crop. To this end, the systematic introduction of seven transgenic cassettes into soya bean, and the molecular and phenotypic evaluation of the derived novel events are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号