首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the major challenges of agriculture currently is to obtain higher crop yield. Environmental conditions, cultivar quality, and plant diseases greatly affect plant productivity. On the other hand, several endophytic Bacillus species have emerged as a complementary, efficient, and safe alternative to current crop management practices. The ability of Bacillus species to form spores, which resist adverse conditions, is an advantage of the genus for use in formulations. Endophytic Bacillus species provide plants with a wide range of benefits, including protection against phytopathogenic microorganisms, insects, and nematodes, eliciting resistance, and promoting plant growth, without causing damage to the environment. Bacillus thuringiensis, B. subtilis, B. amyloliquefaciens, B. velezensis, B. cereus, B. pumilus, and B. licheniformis are the most studied Bacillus species for application in agriculture, although other species within the genus have also shown great potential. Due to the increasing number of whole-genome sequenced endophytic Bacillus spp. strains, various bioactive compounds have been predicted. These data reveal endophytic Bacillus species as an underexploited source of novel molecules of biotechnological interest. In this review, we discuss how endophytic Bacillus species are a valuable multifunctional toolbox to be integrated with crop management practices for achieving higher crop yield.  相似文献   

2.
Microbial oxidation and precipitation of manganese at deep-sea hydrothermal vents are important oceanic biogeochemical processes, yet nothing is known about the types of microorganisms or mechanisms involved. Here we report isolation of a number of diverse spore-forming Mn(II)-oxidizing Bacillus species from Guaymas Basin, a deep-sea hydrothermal vent environment in the Gulf of California, where rapid microbially mediated Mn(II) oxidation was previously observed. mnxG multicopper oxidase genes involved in Mn(II) oxidation were amplified from all Mn(II)-oxidizing Bacillus spores isolated, suggesting that a copper-mediated mechanism of Mn(II) oxidation could be important at deep-sea hydrothermal vents. Phylogenetic analysis of 16S rRNA and mnxG genes revealed that while many of the deep-sea Mn(II)-oxidizing Bacillus species are very closely related to previously recognized isolates from coastal sediments, other organisms represent novel strains and clusters. The growth and Mn(II) oxidation properties of these Bacillus species suggest that in hydrothermal sediments they are likely present as spores that are active in oxidizing Mn(II) as it emerges from the seafloor.  相似文献   

3.
The isolation and characterization of the chemical constituents of different parts of Mangifera indica, sound and infected with two pathogenic fungi, viz. Aspergillus niger and Fusarium moniliformae, are described. Natural occurrence of two polyketideshikimate-derived depsides is reported for the first time. Additionally, a number of xanthones, flavonoids, triterpenes and amino acids, not encountered before in this species, are reported. The co-occurrence of mangiferin, 1,3,6,7-tetra- and 1,3,5,6,7-pentaoxygenated xanthones and the quantitative variation of the latter two compounds with the growing of the plant and during the fungal infection are biochemically significant. The protector role of the flavonoids and other C15 metabolites to M. indica from the ingress of the fungal hyphae is indicated. The two pathogenic fungi secreted a number of mycotoxins in different parts of the host species during its vegetation and flowering periods. During the elaboration of these toxic metabolites, the host-pathogen interaction played an important role. Evidence is presented for A. niger as a mycotoxin producing fungus.  相似文献   

4.
Bacillus species produce secondary metabolites that are the object of natural product chemistry studies. The wide structural variability of these compounds has attracted the curiosity of chemists and their biological activities have inspired the pharmaceutical industry to search for lead structures in microbial extracts. Screening of microbial extracts reveals the large structural diversity of natural compounds with broad biological activities, such as antimicrobial, antiviral, immunosuppressive, and antitumor activities, that enable the bacterium to survive in its natural environment. These findings widen the potential industrial importance of Bacillus spp., particularly of B. thuringiensis, beyond insecticidal usage and may help explain the role of Bacillus spp. in the soil ecosystem.  相似文献   

5.
Agricultural crops are severely damaged by root-knot nematodes causing extensive financial losses globally. Historically, agrochemicals have been the preferred method to combat these pests; however, threats to humans and the environment posed by these agrochemicals led to the need for developing new biocontrol agents. Importantly, the latter should adhere to biosafety regulations while being highly effective. Root-knot nematodes live in soil and thus the use of rhizobacteria such as Bacillus for biocontrol development have shown potential. Although various Bacillus species have been tested in this capacity, little is known about their secondary metabolites and the mechanisms of action responsible for their nematicidal activity. If these secondary metabolites can be qualitatively and quantitatively characterised, metabolic features could be synthetically engineered and used to combat root-knot nematodes. Although there is great potential for bionematicides, the commercialisation and development of such products can be difficult. This review summarises the importance of Bacillus species as natural antagonists of root-knot nematodes through the production of secondary metabolites. It provides an overview of the significance of root-knot nematodes in agriculture and the advances of chemical nematicides in recent years. The potential of Bacillus species as biocontrol agents, the known mechanisms of action responsible for the nematicidal activity demonstrated by Bacillus species, non-target effects of biocontrol agents and the commercialisation of Bacillus-based bionematicides are discussed.  相似文献   

6.
Mass spectrometry is currently one of the most versatile and sensitive instrumental methods applied to structural characterization of plant secondary metabolite mixtures isolated from biological material. Plant tissues contain thousands of natural products fulfilling different roles in plant physiology and biochemistry. These natural products have various biological activities in respect to plants synthesizing them, in their responses to different environmental stresses and are also active principles of food supplements and pharmaceuticals of plant origin. Flavonoids constitute a large group of phenolic secondary metabolites and are probably produced by all terrestrial plant species. More than 9000 glycoconjugates of flavonoids are presently known in the plant kingdom and more than 50 of them may be present in a single plant. For this reason methods of identification and analysis of this group of compounds are particularly demanded. Due to a high number of metabolites present in plant extracts, the isolation and purification of most compounds in amounts suitable for unambiguous characterization with NMR methods is often impossible. For these reasons elaboration of strategies for sufficiently precise structural characterization of compounds present in mixture samples is currently a primary task. Mass spectrometry, thanks to application of different physical phenomena for ionization, separation and detection of analyzed molecules, became the method of choice among analytical methods applied for identification, structural characterization and quantitative analysis of the natural products. Methods of analysis of differently substituted flavonoids (O- and C-glycosides, differentiation of various oligosaccharidic substituents, detection of acylated compounds) are presented in the paper. A proper application of mass spectrometric methods in well-defined and strictly controlled technical parameters of analysis permits obtaining important structural information. Among others, recording collision induced dissociation mass spectra allows identification of compounds after comparison of the registered MS spectra with these present in the existing databases.  相似文献   

7.
Root-knot nematodes are destructive phytopathogens that damage agricultural crops globally, and there is growing interest in the use of biocontrol based on rhizobacteria such as Bacillus to combat Meloidogyne species. It is hypothesized that nematicidal activity of Bacillus can be attributed to the production of secondary metabolites and hydrolytic enzymes. Yet, few studies have characterized these metabolites and their identities remain unknown. Others are speculative or fail to elaborate on how secondary metabolites were detected or distinguished from primary metabolites. Metabolites can be classified based on their origin as either intracellular or extracellular and based on their function, as either primary or secondary. Although this classification is in general use, the boundaries are not always well defined. An understanding of the secondary metabolite and hydrolytic enzyme classification of Bacillus species will facilitate investigations aimed at bionematicide development. This review summarizes the significance of Bacillus hydrolytic enzymes and secondary metabolites in bionematicide research and provides an overview of known classifications. The importance of appropriate cultivation conditions for optimum metabolite and enzyme production is also discussed. Finally, the use of metabolomics for the detection and identification of nematicidal compounds is considered.  相似文献   

8.
An endophytic fungus displaying considerable antimicrobial activity was isolated from stem tissue of an invasive plant species, Ipomoea carnea. The fungus was identified as Quambalaria sp. and confirmed by ITS rDNA sequence analysis. A BLAST search result of the sequence indicated 97 % homology with Quambalaria cyanescens. Crude metabolites of the fungus showed considerable antimicrobial activity against a panel of clinically significant microorganisms. The metabolites showed highest in vitro activity against Shigella dysenteriae followed by Escherichia coli and Candida albicans. Optimum metabolites production required neutral pH and a 15-day incubation period. Bark extracts amended with fungal media demonstrated higher antimicrobial activity. Optimum metabolites activity was recorded in Czapek Dox broth amended with leaf extracts (CDB + LE) of the host plant. The metabolites showed UV λ-max in ethyl acetate at 284.6 nm with an absorbance value of 1.093. Phylogenetic tree generated by the Maximum Parsimony method showed clustering of our isolate with Q. cyanescens with supported bootstrap of 65 %. Species of Quambalaria are pathogens to Eucalyptus and occurrence of this fungus as endophytes support it to be a latent pathogen. Sequence base analysis and RNA secondary structure study also confirmed such a relationship. Secondary structural features like two hinges and a 5’ dangling end were found to be unique to our isolate. These structural features can also be used as potential barcodes for this fungus. The findings indicate that invasive plant species can be a reliable source of novel endophytes with rich antimicrobial metabolites. The study also validates the assumption that endophytes can become parasites and share a close affinity.  相似文献   

9.
Fungal and bacterial pathogens infect a diverse range of hosts including various plant and animal species. Fungal and bacterial diseases, especially of plants and aquatic animals, such as fish, lead to significant damage to crops and aquaculture, respectively, worldwide. The present study was conducted to isolate and characterize potent Bacillus strains with significant antagonistic activity against the major plant and fish pathogenic fungi and bacteria. We randomly collected 22 isolates of Bacillus from the soil, rhizosphere, and sediment from different parts of Bangladesh. Initial characterization, based on in vitro antagonistic activity on the culture plate, resulted in the selection of four gram-positive Bacillus sp. isolates. Among these, the isolate BC01, obtained from soil demonstrated the highest broad-spectrum anti-bacterial and anti-fungal activities. We confirmed the genus of BC01 to be Bacillus by morphological and biochemical tests as well as using molecular data analysis tools, including the study of 16s rDNA, phylogenetic relationship, and evolutionary divergence scores. The isolate significantly inhibited the mycelial growth of the plant pathogen, Penicillium digitatum and fish pathogen, Aphanomyces invadans in vitro. The anti-bacterial effect of the isolate was also evaluated against Pseudomonas spp. and Xanthomonas spp., the two deadliest plant pathogens, and Aeromonas veronii, Pseudomonas fluorescens, and Streptococcus iniae, three major fish pathogens that are primarily responsible for global aquaculture loss. The results of the present study could pave the way for developing potent drugs to combat microbial infection of plants and fish.  相似文献   

10.
Trichoderma fungal species are universal soil residents that are also isolated from decaying wood, vegetables, infected mushroom and immunocompromised patients. Trichoderma species usually biosynthesize a plethora of secondary metabolites. In an attempt to explore endophytic fungi from healthy foliar tissues of the plant family Cuppressaceae, we explored Cupressus arizonica, C. sempervirens var. cereiformis, C. sempervirens var. fastigiata, C. sempervirens var. horizontalis, Juniperus excelsa, Juniperus sp. and Thuja orientalis plants and recovered several endophytic Trichoderma fungal strains from Trichoderma atroviride and Trichoderma koningii species. We found that the host plant species and biogeographical location of sampling affected the biodiversity and bioactivity of endophytic Trichoderma species. Furthermore, the bioactivity of Trichoderma isolates and the methanol extracts of their intra- and extra-cellular metabolites were assessed against a panel of pathogenic fungi and bacteria. Fungal growth inhibition, conidial cytotoxicity, minimum inhibitory concentration and minimum bactericidal concentration were evaluated and analyzed by statistical methods. Our data showed that both intra- and extracellular secondary metabolites from all endophytic isolates had significant cytotoxic and antifungal effects against the model target fungus Pyricularia oryzae and the cypress fungal phytopathogens Diplodia seriata, Phaeobotryon cupressi and Spencermartinsia viticola. Further research indicated their significant antimicrobial bioactivity against the model phytopathogenic bacteria Pseudomonas syringae, Erwinia amylovora and Bacillus sp., as well. Altogether, the above findings show for the first time the presence of T. atroviride and T. koningii as endophytic fungi in Cupressaceae plants and more importantly, the Trichoderma isolates demonstrate significant bioactivity that could be used in future for agrochemical/drug discovery and pathogen biocontrol.  相似文献   

11.
Crude extracts of 52 marine bacteria associated with sponges, which were collected from the sea near San Juan Island, Washington, USA, were screened using diatom attachment assays against Amphora sp., Nitzschia closterium, Sellaphora sp. and Stauroneis sp. to investigate their antidiatom activities. Among these samples, five expressed strong anti-adhesion effects on all four tested diatoms. There was no negative effect observed from those five active samples on the growth of Amphora sp. Those five active samples were prepared from respective isolates, which all belonged to the genus Bacillus based on 16S rRNA gene sequencing analysis. The results of present study indicate that Bacillus may play important roles for sponges’ chemical defence against biofouling of diatoms and that the metabolites of Bacillus may be a potential source of natural antifouling compounds.  相似文献   

12.
13.
Increasing concerns over limited petroleum resources and associated environmental problems are motivating the development of efficient cell factories to produce chemicals, fuels, and materials from renewable resources in an environmentally sustainable economical manner. Bacillus spp., the best characterized Gram-positive bacteria, possesses unique advantages as a host for producing microbial enzymes and industrially important biochemicals. With appropriate modifications to heterologous protein expression and metabolic engineering, Bacillus species are favorable industrial candidates for efficiently converting renewable resources to microbial enzymes, fine chemicals, bulk chemicals, and fuels. Here, we summarize the recent advances in developing Bacillus spp. as a cell factory. We review the available genetic tools, engineering strategies, genome sequence, genome-scale structure models, proteome, and secretion pathways, and we list successful examples of enzymes and industrially important biochemicals produced by Bacillus spp. Furthermore, we highlight the limitations and challenges in developing Bacillus spp. as a robust and efficient production host, and we discuss in the context of systems and synthetic biology the emerging opportunities and future research prospects in developing Bacillus spp. as a microbial cell factory.  相似文献   

14.
Bacillus and Pseudomonas are the dominant groups of bacteria known for their antagonistic potential against many plant and animal pathogens. Presently, exploration of these genera with antagonistic property for disease management of aquaculture system is gaining more importance to overcome the use of antibiotics and related resistance issues. Rapid screening and identification of these genera from diverse bacterial populations by conventional methods is laborious, cost-intensive, and time-consuming. To overcome these limiting factors, in the present study, a colony multiplex PCR (cmPCR) method was developed and evaluated for the rapid detection of Bacillus and Pseudomonas. The technique amplifies the partial 16S rRNA gene of Bacillus and Pseudomonas with a product size of ~1,100 and ~375 bp, respectively, using single forward (BSF2) and two reverse primers (PAGSR and BK1R). Reliability of the cmPCR method was confirmed by screening 472 isolates obtained from ten different eco-stations, of which 133 isolates belonged to Bacillus and 32 to Pseudomonas. The cmPCR method also helped to identify six different Pseudomonas spp. and 14 different Bacillus spp. from environmental samples. Of the total 472 isolates studied, 46 showed antagonistic activity, among which 63 % were Bacillus and 17.4 % were Pseudomonas. Thus, the newly developed molecular approach provides a quick, sensitive, and potential screening tool to detect novel, antagonistically important Bacillus and Pseudomonas genera for their use in aquaculture. Further, it can also act as a taxonomic tool to understand the distribution of these genera from wide ecological niches and their exploitation for diverse biotechnological applications.  相似文献   

15.
The proximity of a biological control agent and its associated anti-microbial metabolites to pathogens on plant surfaces can determine the outcome of disease control. In this study we investigated whether deficiencies in inoculum deposition and localization could explain the inability of the biological control agent Bacillus amyloliquefaciens strain TrigoCor to consistently control Fusarium head blight in the field, despite producing effective and consistent disease control in greenhouse settings. Using epifluorescent stereomicroscopy and confocal laser scanning microscopy, we visualized the coverage of wheat spike surfaces by Bacillus post-application in greenhouse and field environments, and determined that there are large unprotected areas on wheat spikes sprayed with commercial-scale field equipment, as compared to typical greenhouse applications. Additionally, we found that in conditions of low relative humidity, antifungal compounds produced by Bacillus were not able to diffuse across wheat surfaces in biologically relevant amounts, further suggesting that the inadequate coverage of wheat surfaces by Bacillus could be directly limiting disease control. Bacillus cells were easily rinsed off wheat surfaces within 8 h of application, indicating that rainfastness might be an additional limitation of biological control in field settings. Finally, we observed the inhibition of Fusarium graminearum spore germination by TrigoCor inoculum on wheat surfaces, confirming this as a mode of action for TrigoCor biocontrol. Future optimization efforts for biological control agents applied to above-ground plant parts should focus on enhancing the rainfastness, quantity, and spatial coverage of the inoculum on plant surfaces.  相似文献   

16.
The presented work describes good quality DNA isolation method from mature leaves of some medicinally important plant species, viz. Asparagus racemosus, Withania somnifera, Abrus precatorius, Commiphora wightii and Carissa carandas. These plants hold immense medicinal values due to presence of certain secondary metabolites like polyphenols, terpenes, flavonoids, alkaloids, gums, resins, etc. Although these metabolites are accountable for important medicinal properties and authorize these plants to precedence over others, the same compounds disappoint the researcher while isolating high quality DNA. To overcome this problem, we propose a simple method in which DNA is adroitly bounded to diatomaceous earth in a solution of different chaotropic agent and alienated from intrusive compounds. Presented method affirms that secondary products, along with polysaccharides and proteins, can be perceptibly reduced by using silica matrix along with chaotropic agents. The described method is fast, simple and highly reliable for the isolation of DNA from obstinate plant species.  相似文献   

17.
Biological control of insect, plant pathogens and weeds is the only major alternative to the use of pesticides in agriculture and forestry. A double-layer technique was used for isolation of antagonistic bacteria from rhizosphere against plant pathogenic fungi. Four potential rhizobacteria was selected in dual culture plate method based on their antifungal activity against several soil-borne fungal plant pathogens. The selected rhizobacteria, identified based on their morphological, biochemical and molecular traits, belong to the species of fluorescentPseudomonas (SAB8, GM4) andBacillus (A555, GF23). The active antifungal metabolites produced by these strains in culture filtrates were tested for the growth inhibition ofFusarium semitectum used as test fungus. The active fraction of antifungal metabolite/(s) from fluorescentPseudomonas (SAB8, GM4) and their effects on hyphal growth were observed under microscope. Two kinds of alterations were detected: inhibition of hyphal tip elongation and an extensive branching of hyphae with closer septa.  相似文献   

18.
《Aquatic Botany》2007,86(3):243-252
Reeds may play important role in the self-purification of aquatic habitats due to the filtration capacity and their periphyton communities developing on the underwater plant surfaces. The efficiency of this process and the transformation of organic substances can be influenced by the species composition and activity of microbial communities, including Bacillus and related species. For cultivation based bacteriological examinations reed periphyton samples were collected from 30 cm beneath the water surface of Lake Velencei and the Soroksár Danube branch (Hungary). After a primary selection 40 Bacillus and related strains were investigated by traditional morphological, biochemical tests, API 20E, API 50CHB and BIOLOG GP2 systems, and identified by 16S rDNA sequence comparison. The isolated strains were characterized by wide biochemical activity spectrum (i.e., the metabolism of carbohydrates and biopolymers) as well as widespread ecological tolerance based on their NaCl and pH range investigations. Species with facultative alkaliphilic features (Marinibacillus marinus, Bacillus firmus) were detected only from the reed biofilm of Lake Velencei, while alkalitolerant Bacillus and related species from both sampling sites. 22 endospore-forming strains were identified as members of species B. cereus, B. firmus, B. flexus, B. licheniformis, B. megaterium, B. muralis, B. pumilus, B. subtilis and Marinibacillus marinus. Only one species, with 95–96% sequence similarities to B. pumilus was found to be common among the strains from Lake Velencei and the Soroksár Danube branch. Altogether, 18 strains could not be identified as known species of Bacillus, Brevibacillus and Paenibacillus, hence they may represent new bacterial taxa.  相似文献   

19.
The mprBi gene from Bacillus intermedius 3-19 encoding a novel secreted metalloproteinase was identified. The mpriBi gene was expressed in an extracellular proteinase-deficient Bacillus subtilis BG 2036 strain and the corresponding protein was characterized biochemically. The 19 kDa MprBi protein was purified to homogeneity and sequenced by mass spectroscopy and Edman degradation methods. Amino acid sequence analysis of MprBi identified an active site motif HEYGHNFGLPHD and a conserved structural component Met-turn, both of which are unique features of the metzincin clan. Furthermore, MprBi harbors a number of distinct sequence elements characteristic of proteinase domains in eukaryotic adamalysins. We conclude that MprBi and similar proteins from other Bacillus species form a novel group of metzincin metalloproteinases in prokaryotes.  相似文献   

20.
As part of an ongoing effort to catalog spore-forming bacterial populations in environments conducive to interplanetary transfer by natural impacts or by human spaceflight activities, spores of Bacillus spp. were isolated and characterized from the interior of near-subsurface granite rock collected from the Santa Catalina Mountains, AZ. Granite was found to contain ~500 cultivable Bacillus spores and ~104 total cultivable bacteria per gram. Many of the Bacillus isolates produced a previously unreported diffusible blue fluorescent compound. Two strains of eight tested exhibited increased spore UV resistance relative to a standard Bacillus subtilis UV biodosimetry strain. Fifty-six isolates were identified by repetitive extragenic palindromic PCR (rep-PCR) and 16S rRNA gene analysis as most closely related to B. megaterium (15 isolates), B. simplex (23 isolates), B. drentensis (6 isolates), B. niacini (7 isolates), and, likely, a new species related to B. barbaricus (5 isolates). Granite isolates were very closely related to a limited number of Bacillus spp. previously found to inhabit (i) globally distributed endolithic sites such as biodeteriorated murals, stone tombs, underground caverns, and rock concretions and (ii) extreme environments such as Antarctic soils, deep sea floor sediments, and spacecraft assembly facilities. Thus, it appears that the occurrence of Bacillus spp. in endolithic or extreme environments is not accidental but that these environments create unique niches excluding most Bacillus spp. but to which a limited number of Bacillus spp. are specifically adapted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号