首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Molecular filtration for recovery of waterborne viruses of fish.   总被引:1,自引:1,他引:0       下载免费PDF全文
The effectiveness of tangential flow filtration (TFF) for the recovery of infectious hematopoietic necrosis virus (IHNV) and infectious pancreatic necrosis virus (IPNV) from large volumes of water was evaluated. In laboratory studies, virus recovery from IHNV-seeded water following concentration by TFF was approximately 13%. However, the addition of 0.1 and 1% fetal bovine serum to deionized water stabilized the virus, increasing virus recoveries to 95%. The addition of 0.03 and 0.3% beef extract resulted in IHNV recoveries of 80 and 61%, respectively. Similar results were obtained with IPNV-seeded water. Field studies using the TFF procedure were conducted with water from areas where IHNV is endemic. IHNV was detected in effluent from an adult steelhead trout (Salmo gairdneri) holding pond at an estimated concentration of 1 PFU/5 ml of water. It was also detected at levels of 1 PFU/50 ml in water from a 2-m-diameter circular tank containing IHNV-infected steelhead trout fry. IHNV isolated in samples taken from the Metolius River was detected by TFF at estimated levels of 1 PFU/3 liters.  相似文献   

2.
A staphylococcal coagglutination test was developed for the rapid detection of infectious hematopoietic necrosis virus (IHNV) in cell cultures and infected fish. The test could be completed in 15 min but required a minimum IHNV titer of 10(6) PFU/ml to obtain a positive reaction. All IHNV isolates, representing the five electropherotypes taken from a wide variety of species and different geographic ranges, caused coagglutination of Staphylococcus aureus cells sensitized with rabbit polyclonal serum against the Round Butte IHNV isolate. The coagglutination reaction was blocked by preincubation of IHNV with homologous antiserum, and IHNV did not cause coagglutination of S. aureus cells sensitized with normal rabbit serum. In specificity tests, cells sensitized with rabbit anti-IHNV serum or normal serum did not coagglutinate in the presence of infectious pancreatic necrosis virus, viral hemorrhagic septicemia virus, cell culture medium components, or media from cultures of cell lines of salmonid and nonsalmonid origin. Most importantly, the coagglutination test was able to detect and identify IHNV directly from experimentally infected rainbow trout fry, the organs of naturally infected adult kokanee salmon and winter steelhead trout, and ovarian fluids of the winter steelhead trout. The coagglutination test is very suitable for field use, since it is inexpensive, simple to interpret, sensitive, and rapid and requires no specialized equipment.  相似文献   

3.
A staphylococcal coagglutination test was developed for the rapid detection of infectious hematopoietic necrosis virus (IHNV) in cell cultures and infected fish. The test could be completed in 15 min but required a minimum IHNV titer of 10(6) PFU/ml to obtain a positive reaction. All IHNV isolates, representing the five electropherotypes taken from a wide variety of species and different geographic ranges, caused coagglutination of Staphylococcus aureus cells sensitized with rabbit polyclonal serum against the Round Butte IHNV isolate. The coagglutination reaction was blocked by preincubation of IHNV with homologous antiserum, and IHNV did not cause coagglutination of S. aureus cells sensitized with normal rabbit serum. In specificity tests, cells sensitized with rabbit anti-IHNV serum or normal serum did not coagglutinate in the presence of infectious pancreatic necrosis virus, viral hemorrhagic septicemia virus, cell culture medium components, or media from cultures of cell lines of salmonid and nonsalmonid origin. Most importantly, the coagglutination test was able to detect and identify IHNV directly from experimentally infected rainbow trout fry, the organs of naturally infected adult kokanee salmon and winter steelhead trout, and ovarian fluids of the winter steelhead trout. The coagglutination test is very suitable for field use, since it is inexpensive, simple to interpret, sensitive, and rapid and requires no specialized equipment.  相似文献   

4.
The fish rhabdovirus infectious hematopoietic necrosis virus (IHNV) was rapidly inactivated by extremely low concentrations of iodine in water. A 99.9% virus reduction was obtained in 7.5 s when virus (105 PFU/ml) and iodine (0.1 mg/liter, final concentration) were combined in distilled-deionized or hatchery water. Iodine efficacy decreased at pHs greater than 7.5 or when proteinaceous material was added to the water. Bovine serum albumin blocked iodine inactivation of the virus more effectively than did equal concentrations of fetal bovine serum or river sediment. Sodium thiosulfate effectively neutralized free iodine. Powder, iodophor, and crystalline iodine solutions inactivated IHNV equally. Iodine rapidly inactivated IHNV isolates representing each of the five electropherotypes. Under the conditions used in this study, inactivation was not affected by temperature, salinity, or water hardness. When Dworshak National Fish Hatchery water was continuously treated to provide a free iodine concentration of 0.14 mg/liter, a 7.5-s exposure to iodine was sufficient to inactivate 99.9% of the IHNV. Iodine added to water that contained IHNV prevented infection of rainbow trout (Oncorhynchus mykiss) fry. These results suggest that the waterborne route of IHNV transmission can be blocked by adding low iodine concentrations to the water supplies of hatcheries.  相似文献   

5.
The virulence of 5 European and 1 North American isolate of infectious haematopoietic necrosis virus (IHNV) was compared by infecting female sibling rainbow trout ('Isle of Man' strain) of different weights and ages (2, 20 and 50 g). The fish were exposed to 10(4) TCID50 IHNV per ml of water by immersion, and the mortality was recorded for 28 d. Two new IHNV isolates from Germany were included in the investigation. One was isolated from European eels kept at 23 degrees C (+/- 2 degrees C) and the other was not detectable by immunofluorescence with commercially available monoclonal antibodies recognising the viral G protein. The results showed that IHNV isolates of high or low virulence persisted in rainbow trout of all ages/weights for 28 d, with the exception of fish over 15 g in the eel IHNV (DF [diagnostic fish] 13/98)-infected groups from which the virus could not be reisolated on Day 28. The smallest fish were most susceptible to an infection with any of the IHNV isolates. The lowest cumulative mortality (18%) was observed in fingerlings infected with the North American isolate HAG (obtained from Hagerman Valley), and the highest mortality (100%) in DF 04/99 infected fish. The DF 04/99 and O-13/95 viruses caused mortality in fish independent of their weight or age. The isolates FR-32/87 and I-4008 were virulent in fish up to a weight of 20 g and caused no mortality in larger fish. In the IHNV HAG- and DF 13/98 (eel)-infected rainbow trout, no signs of disease were observed in fish weighing between 15 and 50 g. An age/weight related susceptibility of rainbow trout was demonstrated under the defined conditions for all IHNV isolates tested.  相似文献   

6.
Infectious hematopoietic necrosis virus (IHNV) is a rhabdovirus which causes devastating epizootics of trout and salmon fry in hatcheries around the world. In laboratory and field studies, epizootic survivors are negative for infectious virus by plaque assay at about 50 days postexposure. Survivors are considered virus free with no sequelae and, thus, are subsequently released into the wild. When adults return to spawn, infectious virus can again be isolated. Two hypotheses have been proposed to account for the source of virus in these adults. One hypothesis contends that virus in the epizootic survivors is cleared and that the adults are reinfected with IHNV from a secondary source during their migration upstream. The second hypothesis contends that IHNV persists in a subclinical or latent form and the virus is reactivated during the stress of spawning. Numerous studies have been carried out to test these hypotheses and, after 20 years, questions still remain regarding the maintenance of IHNV in salmonid fish populations. In the study reported here, IHNV-specific lesions in the hematopoietic tissues of rainbow trout survivors, reared in specific-pathogen-free water, were detected 1 year after the epizootic. The fish did not produce infectious virus. The presence of viral protein detected by immunohistochemistry, in viral RNA by PCR amplification, and in IHNV-truncated particles by immunogold electron microscopy confirmed the presence of IHNV in the survivors and provided the first evidence for subclinical persistence of virus in the tissues of IHNV survivors.  相似文献   

7.
The resistance of rainbow trout (Oncorhynchus mykiss) to an infectious haematopoietic necrosis virus (IHNV) challenge following a preceding non-lethal infection with infectious pancreatic necrosis virus (IPNV) was investigated through experimental dual infections. Trout initially infected with IPNV were inoculated 14 days later with IHNV. Single infections of trout with 1 of the 2 viruses or with cell culture supernatant were also carried out and constituted control groups. No mortality was noted in fish after a single infection with IPNV. This virus had no influence on the head kidney leucocyte phagocytic activity and plasma haemolytic complement activity. IHNV induced a high mortality (72%) and reduced the macrophage phagocytic activity and complement haemolytic activity. It also induced a late production of anti-IHNV antibodies which occurred after clearance of the virus in the fish. In trout co-infected with both viruses, a mortality rate of 2% occurred and the immune parameters were similar to those observed in the fish infected with IPNV only, demonstrating that in co-infected trout IPNV inhibits the effects of IHNV. The studied parameters did not allow us to define the mechanism of interference occurring between these 2 viruses, but some hypothesis are put forward to explain the interference between the 2 viruses.  相似文献   

8.
This is the first comprehensive region wide, spatially explicit epidemiologic analysis of surveillance data of the aquatic viral pathogen infectious hematopoietic necrosis virus (IHNV) infecting native salmonid fish. The pathogen has been documented in the freshwater ecosystem of the Pacific Northwest of North America since the 1950s, and the current report describes the disease ecology of IHNV during 2000–2012. Prevalence of IHNV infection in monitored salmonid host cohorts ranged from 8% to 30%, with the highest levels observed in juvenile steelhead trout. The spatial distribution of all IHNV‐infected cohorts was concentrated in two sub‐regions of the study area, where historic burden of the viral disease has been high. During the study period, prevalence levels fluctuated with a temporal peak in 2002. Virologic and genetic surveillance data were analyzed for evidence of three separate but not mutually exclusive transmission routes hypothesized to be maintaining IHNV in the freshwater ecosystem. Transmission between year classes of juvenile fish at individual sites (route 1) was supported at varying levels of certainty in 10%–55% of candidate cases, transmission between neighboring juvenile cohorts (route 2) was supported in 31%–78% of candidate cases, and transmission from adult fish returning to the same site as an infected juvenile cohort was supported in 26%–74% of candidate cases. The results of this study indicate that multiple specific transmission routes are acting to maintain IHNV in juvenile fish, providing concrete evidence that can be used to improve resource management. Furthermore, these results demonstrate that more sophisticated analysis of available spatio‐temporal and genetic data is likely to yield greater insight in future studies.  相似文献   

9.
10.
A recombinant infectious hematopoietic necrosis virus (IHNV) glycoprotein (G protein), produced in Spodoptera frugiperda (Sf9) cells following infection with a baculovirus vector containing the full-length (1.6 kb) glycoprotein gene, provided very limited protection in rainbow trout Oncorhynchus mykiss challenged with IHNV. Fish were injected intraperitoneally (i.p.) with Sf9 cells grown at 20 degrees C (RecGlow) or 27 degrees C (RecGhigh) expressing the glycoprotein gene. Various antigen (Ag) preparations were administered to adult rainbow trout or rainbow trout fry. Sera collected from adult fish were evaluated for IHNV neutralization activity by a complement-dependent neutralization assay. Anti-IHNV neutralizing activity was observed in sera, but the percent of fish responding was significantly lower (p < 0.05) in comparison to fish immunized with a low virulence strain of IHNV (LV-IHNV). A small number of fish immunized with RecGlow or RecGhigh possessed IHNV G protein specific antibodies (Abs) in their serum. Cumulative mortality (CM) of rainbow trout fry (mean weight, 1 g) vaccinated by i.p. injection of freeze/thawed Sf9 cells producing RecGlow was 18% in initial trials following IHNV challenge. This level of protection was significant (p < 0.05) but was not long lasting, and neutralizing Abs were not detected in pooled serum samples. When trout fry (mean weight, 0.6 g) were vaccinated with supernatant collected from sonicated Sf9 cells, Sf9 cells producing RecGlow, or Sf9 cells producing RecGhigh, CM averaged 46%. Protection was enhanced over negative controls, but not the positive controls (2% CM), suggesting that in the first trial soluble cellular proteins may have provided some level of non-specific protection, regardless of recombinant protein expression. Although some immunity was elicited in fish, and RecGlow provided short-term protection from IHNV, Ab-mediated protection could not be demonstrated. The results suggest that recombinant G proteins produced in insect cells lack the immunogenicity associated with vaccination of fish with an attenuated strain of IHNV.  相似文献   

11.
Three interferon-inducible Mx genes have been identified in rainbow trout Oncorhynchus mykiss and their roles in virus resistance have yet to be determined. In mice, expression of the Mx1 protein is associated with resistance to influenza virus. We report a study to determine whether there was a correlation between the expression of Mx in rainbow trout and resistance to a fish rhabdovirus, infectious hematopoietic necrosis virus (IHNV). A comparison of Mx mRNA expression was made between different families of cultured rainbow trout selected for resistance or for susceptibility to IHNV. A trout-specific Mx cDNA gene probe was used to determine whether there was a correlation between Mx mRNA expression and resistance to the lethal effects of IHNV infection. Approximately 99% of trout injected with a highly virulent strain of the fish rhabdovirus, IHNV, were able to express full length Mx mRNA at 48 h post infection. This is markedly different from the expression of truncated, non-functional Mx mRNA found in most laboratory strains of mice, and the ability of only 25% of wild mice to express functional Mx protein. A restriction fragment length polymorphism (RFLP) assay was developed to compare the Mx locus between individual fish and between rainbow trout genetic crosses bred for IHNV resistance or susceptibility. The assay was able to discriminate 7 distinct RFLP patterns in the rainbow trout crosses. One cross was identified that showed a correlation between homozygosity at the Mx locus and greater susceptibility to IHN-caused mortality.  相似文献   

12.
The DNA vaccine, pIHNVw-G, contains the gene for the glycoprotein (G) of the rhabdovirus infectious hematopoietic necrosis virus (IHNV), a major pathogen of salmon and trout. The relative efficacy of various routes of immunisation with pIHNVw-G was evaluated using 1.8 g rainbow trout fry vaccinated via intramuscular injection, scarification of the skin, intraperitoneal injection, intrabuccal administration, cutaneous particle bombardment using a gene gun, or immersion in water containing DNA vaccine-coated beads. Twenty-seven days after vaccination neutralising antibody titres were determined, and 2 days later groups of vaccinated and control unvaccinated fish were subjected to an IHNV immersion challenge. Results of the virus challenge showed that the intramuscular injection and the gene gun immunisation induced protective immunity in fry, while intraperitoneal injection provided partial protection. Neutralising antibodies were not detected in sera of vaccinated fish regardless of the route of immunisation used, suggesting that cell mediated immunity may be at least partially responsible for the observed protection.  相似文献   

13.
Naked DNA vaccination of Atlantic salmon Salmo salar against IHNV   总被引:7,自引:0,他引:7  
A naked plasmid DNA encoding the glycoprotein (pCMV4-G) of a 1976 isolate of infectious hematopoietic necrosis virus (IHNV) obtained from steelhead Oncorhynchus mykiss was used to vaccinate Atlantic salmon Salmo salar against IHNV. Eight weeks post-vaccination the fish were challenged with a strain of IHNV originally isolated from farmed Atlantic salmon undergoing an epizootic. Fish injected with the glycoprotein-encoding plasmid were significantly (p < 0.05) protected against IHNV by both immersion and cohabitation challenge. Survivors of the first challenges were pooled and re-challenged by immersion 12 wk after the initial challenge. Significant (p < 0.05) protection was observed in all of the previously challenged groups including those receiving the complete vaccine. Fish injected with the glycoprotein-encoding plasmid produced low levels of virus-neutralizing antibodies prior to the first challenge. Neutralizing antibodies increased in all groups after exposure to the IHNV. Passive transfer of pooled sera from pCMV4-G vaccinates and IHN survivors provided relative survivals of 40 to 100% compared to fish injected with sera collected from fish immunized with control vaccines or left unhandled. In this study, DNA vaccination effectively protected Atlantic salmon smolts against challenges with IHNV.  相似文献   

14.
To better understand the role of vector transmission of aquatic viruses, we established an in vivo virus-parasite challenge specifically to address (1) whether Lepeophtheirus salmonis can acquire infectious haematopoietic necrosis virus (IHNV) after water bath exposure or via parasitizing infected Atlantic salmon Salmo salar and if so, define the duration of this association and (2) whether L. salmonis can transmit IHNV to naive Atlantic salmon and whether this transmission requires attachment to the host. Salmon lice which were water bath-exposed to 1 x 10(5) plaque-forming units (pfu) ml(-1) of IHNV for 1 h acquired the virus (2.1 x 10(4) pfu g(-1)) and remained IHNV-positive for 24 h post exposure. After parasitizing IHNV-infected hosts (viral titer in fish mucus 3.3 x 10(4) pfu ml(-1)) salmon lice acquired IHNV (3.4 x 10(3) pfu g(-1)) and remained virus-positive for 12 h. IHNV-positive salmon lice generated through water bath exposure or after parasitizing infected Atlantic salmon successfully transmitted IHNV, resulting in 76.5 and 86.6% of the exposed Atlantic salmon testing positive for IHNV, respectively. In a second experiment, only salmon lice that became IHNV-positive through water bath exposure transmitted IHNV to 20% of the naive fish, and no virus was transmitted when IHNV-infected salmon lice were cohabitated but restrained from attaching to naive fish. Under laboratory conditions, adult L. salmonis can acquire IHNV and transmit it to naive Atlantic salmon through parasitism. However, the ephemeral association of IHNV with L. salmonis indicates that the salmon louse act as a mechanical rather than a biological vector or reservoir.  相似文献   

15.
The level of protective immunity was determined for Chinook Oncorhynchus tshawytscha and sockeye/kokanee salmon (anadromous and landlocked) O. nerka following intramuscular vaccination with a DNA vaccine against the aquatic rhabdovirus, infectious hematopoietic necrosis virus (IHNV). A DNA vaccine containing the glycoprotein gene of IHNV protected Chinook and sockeye/kokanee salmon against waterborne or injection challenge with IHNV, and relative percent survival (RPS) values of 23 to 86% were obtained under a variety of lethal challenge conditions. Although this is significant protection, it is less than RPS values obtained in previous studies with rainbow trout (O. mykiss). In addition to the variability in the severity of the challenge and inherent host susceptibility differences, it appears that use of a cross-genogroup challenge virus strain may lead to reduced efficacy of the DNA vaccine. Neutralizing antibody titers were detected in both Chinook and sockeye that had been vaccinated with 1.0 and 0.1 pg doses of the DNA vaccine, and vaccinated fish responded to viral challenges with higher antibody titers than mock-vaccinated control fish.  相似文献   

16.
Sexually mature female Chinook salmon Oncorhynchus tshawytscha with no prior history of exposure to infectious hematopoietic necrosis virus (IHNV) were susceptible to experimental infection induced by additions of virus to the water. The resulting infections resembled those observed among naturally infected hatchery and wild populations of Chinook salmon. Virus was detected as early as 4 d post-exposure (p.e.) and subsequently in all virus-exposed fish that died or that were examined at 14 d p.e. when the study was terminated. The greatest concentrations of virus, up to 10(8) plaque-forming units (pfu) ml(-1), were found in the ovarian fluid at 13 to 14 d p.e., but the virus was also found in high concentrations in the gill, kidney/spleen and plasma. In contrast, the virus was not recovered from unexposed control adult salmon that died or were sampled at the end of the study. Despite detecting concentrations of IHNV in excess of 10(7) pfu g(-1) of tissue, no specific microscopic lesions were found in IHNV-exposed compared to unexposed control salmon. The results of this initial study suggest that virus in the spawning environment, either from adult salmon or other sources, may contribute to its rapid spread among adult Chinook salmon, thereby considerably increasing the prevalence of IHNV infection in both wild and hatchery populations of adult Chinook salmon.  相似文献   

17.
Eleven European National Reference Laboratories participated in an inter-laboratory comparison of the susceptibility of 5 selected cell lines to 3 fish pathogenic viruses. The test included viral hemorrhagic septicaemia virus (VHSV); infectious hematopoietic necrosis virus (IHNV) and infectious pancreatic necrosis virus (IPNV), and the cell lines derived from bluegill fry (BF-2), chinook salmon embryo (CHSE-214), epithelioma papulosum cyprini (EPC), fathead minnow (FHM) and rainbow trout gonad (RTG-2). The results showed that for isolation of VHSV, BF-2 and RTG-2 cells performed equally well and had higher sensitivity compared to the other cell lines. For IHNV, EPC and FHM cells gave the best results, and for IPNV it was BF-2 and CHSE-214 cells. FHM cells showed the largest variability among laboratories, whereas EPC was the cell line showing the smallest variability.  相似文献   

18.
Steelhead trout (Oncorhynchus mykiss) are anadromous and iteroparous, but repeat-spawning rates are generally low. Like other anadromous salmonids, steelhead trout fast during freshwater spawning migrations, but little is known about the changes that occur in vital organs and tissues. We hypothesized that fish capable of repeat-spawning would not undergo the same irreversible degeneration and cellular necrosis documented in semelparous salmon. Using Snake River steelhead trout as a model we used histological analysis to assess the cellular architecture in the pyloric stomach, ovary, liver, and spleen in sexually mature and kelt steelhead trout. We observed 38 % of emigrating kelts with food or fecal material in the gastrointestinal tract. Evidence of feeding was more likely in good condition kelts, and feeding was associated with a significant renewal of villi in the pyloric stomach. No vitellogenic oocytes were observed in sections of kelt ovaries, but perinucleolar and early/late stage cortical alveolus oocytes were present suggesting iteroparity was possible. We documented a negative correlation between the quantity of perinucleolar oocytes in ovarian tissues and fork length of kelts suggesting that larger steelhead trout may invest more into a single spawning event. Liver and spleen tissues of both mature and kelt steelhead trout had minimal cellular necroses. Our findings indicate that the physiological processes causing rapid senescence and death in semelparous salmon are not evident in steelhead trout, and recovery begins in fresh water. Future management efforts to increase iteroparity in steelhead trout and Atlantic salmon must consider the physiological processes that influence post-spawning recovery.  相似文献   

19.
Infectious hematopoietic necrosis virus (IHNV) is a rhabdovirus which infects salmon and trout and may cause disease with up to 90% mortality. In the Hagerman Valley of Idaho, IHNV is endemic or epidemic among numerous fish farms and resource mitigation hatcheries. A previous study characterizing the genetic diversity among 84 IHNV isolates at 4 virus-endemic rainbow trout farms indicated that multiple lineages of relatively high diversity co-circulated at these facilities (Troyer et al. 2000 J Gen Virol. 81:2823-2832). We tested the hypothesis that high IHNV genetic diversity and co-circulating lineages are present in aquaculture facilities throughout this region. In this study, 73 virus isolates from 14 rainbow trout farms and 3 state hatcheries in the Hagerman Valley, isolated between 1978 and 1999, were genetically characterized by sequence analysis of a 303 nucleotide region of the glycoprotein gene. Phylogenetic and epidemiological analyses showed that multiple IHNV lineages co-circulate in a complex pattern throughout private trout farms and state hatcheries in the valley. IHNV maintained within the valley appears to have evolved significantly over the 22 yr study period.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号