首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li A  Blow JJ 《Nature cell biology》2004,6(3):260-267
In late mitosis and G1, a complex of the essential initiation proteins Mcm2-7 are assembled onto replication origins to 'license' them for initiation. At other times licensing is inhibited by cyclin-dependent kinases (CDKs) and geminin, thus ensuring that origins fire only once per cell cycle. Here we show that, paradoxically, CDKs are also required to inactivate geminin and activate the licensing system. On exit from metaphase in Xenopus laevis egg extracts, CDK-dependent activation of the anaphase-promoting complex (APC/C) results in the transient polyubiquitination of geminin. This ubiquitination triggers geminin inactivation without requiring ubiquitin-dependent proteolysis, and is essential for replication origins to become licensed. This reveals an unexpected role for CDKs and ubiquitination in activating chromosomal DNA replication.  相似文献   

2.
Mailand N  Diffley JF 《Cell》2005,122(6):915-926
Cyclin-dependent kinases (CDKs) restrict DNA replication origin firing to once per cell cycle by preventing the assembly of prereplicative complexes (pre-RCs; licensing) outside of G1 phase. Paradoxically, under certain circumstances, CDKs such as cyclin E-cdk2 are also required to promote licensing. Here, we show that CDK phosphorylation of the essential licensing factor Cdc6 stabilizes it by preventing its association with the anaphase promoting complex/cyclosome (APC/C). APC/C-dependent Cdc6 proteolysis prevents pre-RC assembly in quiescent cells and, when cells reenter the cell cycle from quiescence, CDK-dependent Cdc6 stabilization allows Cdc6 to accumulate before the licensing inhibitors geminin and cyclin A which are also APC/C substrates. This novel mechanism for regulating protein stability establishes a window of time prior to S phase when pre-RCs can assemble which we propose represents a critical function of cyclin E.  相似文献   

3.
DNA replication is tightly controlled in eukaryotic cells to ensure that an exact copy of the genetic material is inherited by both daughter cells. Oscillating waves of cyclin-dependent kinase (CDK) and anaphase-promoting complex/cyclosome (APC/C) activities provide a binary switch that permits the replication of each chromosome exactly once per cell cycle. Work from several organisms has revealed a conserved strategy whereby inactive replication complexes are assembled onto DNA during periods of low CDK and high APC activity but are competent to execute genome duplication only when these activities are reversed. Periods of high CDK and low APC/C serve an essential function by blocking reassembly of replication complexes, thereby preventing rereplication. Higher eukaryotes have evolved additional CDK-independent mechanisms for preventing rereplication.The Eukarya include a wide spectrum of organisms, with genome sizes ranging from ∼107 bp in yeasts to ∼1012 bp in protozoa. Rapid duplication of large genomes is achieved by distribution of the genetic material across several chromosomes. Each of these chromosomes initiates replication from sites called replication origins, which must fire no more than once per cell cycle to ensure a single error-free copy of the genome. Generating replication forks from an origin more than once leads to rereplication, an event that creates multiple copies of a single genomic region within a single cell. This leads to gene amplification and promotes genome instability (Green et al. 2010), a phenomenon observed in many human cancers (Lengauer et al. 1998). The process of genome duplication is therefore under stringent control to ensure that few, if any, defects are transmitted from one generation to the next.  相似文献   

4.
Passage through mitosis is required to reset replication origins for the subsequent S phase. During mitosis, a series of biochemical reactions involving cyclin-dependent kinases (CDKs), the anaphase promoting complex or cyclosome (APC/C), and a mitotic exit network including Cdc5, 14, and 15 coordinates the proper separation and segregation of sister chromatids. Here we show that cyclin B/CDK inactivation can drive origin resetting in either early S phase or mitosis. This origin resetting occurs efficiently in the absence of APC/C function and mitotic exit network function. We conclude that CDK inactivation is the single essential event in mitosis required to allow pre-RC assembly for the next cell cycle.  相似文献   

5.
Progress through the division cycle of present day eukaryotic cells is controlled by a complex network consisting of (i) cyclin-dependent kinases (CDKs) and their associated cyclins, (ii) kinases and phosphatases that regulate CDK activity, and (iii) stoichiometric inhibitors that sequester cyclin-CDK dimers. Presumably regulation of cell division in the earliest ancestors of eukaryotes was a considerably simpler affair. Nasmyth (1995) recently proposed a mechanism for control of a putative, primordial, eukaryotic cell cycle, based on antagonistic interactions between a cyclin-CDK and the anaphase promoting complex (APC) that labels the cyclin subunit for proteolysis. We recast this idea in mathematical form and show that the model exhibits hysteretic behaviour between alternative steady states: a Gl-like state (APC on, CDK activity low, DNA unreplicated and replication complexes assembled) and an S/M-like state (APC off, CDK activity high, DNA replicated and replication complexes disassembled). In our model, the transition from G1 to S/M ('Start') is driven by cell growth, and the reverse transition ('Finish') is driven by completion of DNA synthesis and proper alignment of chromosomes on the metaphase plate. This simple and effective mechanism for coupling growth and division and for accurately copying and partitioning a genome consisting of numerous chromosomes, each with multiple origins of replication, could represent the core of the eukaryotic cell cycle. Furthermore, we show how other controls could be added to this core and speculate on the reasons why stoichiometric inhibitors and CDK inhibitory phosphorylation might have been appended to the primitive alternation between cyclin accumulation and degradation.  相似文献   

6.
Cyclin-dependent kinases (CDKs) play a crucial role in cell cycle progression by controlling the transition from G1 phase into S phase where DNA is replicated. Key to this transition is the regulation of initiation of DNA replication at replication origins. CDKs are thought to regulate origins of replication both positively and negatively by phosphorylating replication proteins at origins. Several replication proteins that are potentially negatively regulated upon CDK phosphorylation have been identified. However, the mechanism by which CDKs activate replication is currently less well understood. New observations revealing that the initiation protein Cdc6 is stabilized by CDK2-dependent phosphorylation may give more insight in this process.  相似文献   

7.
Eukaryotic replication origins are 'licensed' for replication early in the cell cycle by loading Mcm(2-7) proteins. As chromatin replicates, Mcm(2-7) are removed, thus preventing the origin from firing again. Here we report the purification of the RLF-B component of the licensing system and show that it corresponds to Cdt1. RLF-B/Cdt1 was inhibited by geminin, a protein that is degraded during late mitosis. Immunodepletion of geminin from metaphase extracts allowed them to assemble licensed replication origins. Inhibition of CDKs in metaphase stimulated origin assembly only after the depletion of geminin. These experiments suggest that geminin-mediated inhibition of RLF-B/Cdt1 is essential for repressing origin assembly late in the cell cycle of higher eukaryotes.  相似文献   

8.
9.
Origins of DNA replication must be regulated to ensure that the entire genome is replicated precisely once in each cell cycle. In human cells, this requires that tens of thousands of replication origins are activated exactly once per cell cycle. Failure to do so can lead to cell death or genome rearrangements such as those associated with cancer. Systems ensuring efficient initiation of replication, while also providing a robust block to re-initiation, play a crucial role in genome stability. In this review, I will discuss some of the strategies used by cells to ensure once per cell cycle replication and provide a quantitative framework to evaluate the relative importance and efficiency of individual pathways involved in this regulation.  相似文献   

10.
Cyclin-dependent kinases (CDKs) activate the firing of replication origins during the S phase of the cell cycle. They also block re-initiation of DNA replication within a single cell cycle, by preventing the assembly of prereplicative complexes at origins. We show here that, in budding yeast, CDKs exclude the essential prereplicative-complex component Mcm4 from the nucleus. Although origin firing can be triggered by the B-type cyclins only, both G1-phase and B-type cyclins cause exit of Mcm4 from the nucleus. These results suggest that G1 cyclins may diminish the cell's capacity to assemble prereplicative complexes before B-type cyclins trigger origin firing during S phase.  相似文献   

11.
Many replication origins that are licensed by loading MCM2-7 complexes in G1 are not normally used. Activation of these dormant origins during S phase provides a first line of defence for the genome if replication is inhibited. When replication forks fail, dormant origins are activated within regions of the genome currently engaged in replication. At the same time, DNA damage-response kinases activated by the stalled forks preferentially suppress the assembly of new replication factories, thereby ensuring that chromosomal regions experiencing replicative stress complete synthesis before new regions of the genome are replicated. Mice expressing reduced levels of MCM2-7 have fewer dormant origins, are cancer-prone and are genetically unstable, demonstrating the importance of dormant origins for preserving genome integrity. We review the function of dormant origins, the molecular mechanism of their regulation and their physiological implications.  相似文献   

12.
To ensure genomic integrity, the genome must be duplicated exactly once per cell cycle. Disruption of replication licensing mechanisms may lead to re-replication and genomic instability. Cdt1, also known as Double-parked (Dup) in Drosophila, is a key regulator of the assembly of the pre-replicative complex (pre-RC) and its activity is strictly limited to G1 by multiple mechanisms including Cul4-Ddb1 mediated proteolysis and inhibition by geminin. We assayed the genomic consequences of disregulating the replication licensing mechanisms by RNAi depletion of geminin. We found that not all origins of replication were sensitive to geminin depletion and that heterochromatic sequences were preferentially re-replicated in the absence of licensing mechanisms. The preferential re-activation of heterochromatic origins of replication was unexpected because these are typically the last sequences to be duplicated in a normal cell cycle. We found that the re-replication of heterochromatin was regulated not at the level of pre-RC activation, but rather by the formation of the pre-RC. Unlike the global assembly of the pre-RC that occurs throughout the genome in G1, in the absence of geminin, limited pre-RC assembly was restricted to the heterochromatin by elevated cyclin A-CDK activity. These results suggest that there are chromatin and cell cycle specific controls that regulate the re-assembly of the pre-RC outside of G1.  相似文献   

13.
To ensure fidelity in genome duplication, eukaryotes restrict DNA synthesis to once every cell division by a cascade of regulated steps. Central to this cascade is the periodic assembly of the hexameric MCM2-7 complex at replication origins. However, in Saccharomyces cerevisiae, only a fraction of each MCM protein is able to assemble into hexamers and associate with replication origins during M phase, suggesting that MCM complex assembly and recruitment may be regulated post-translationally. Here we show that a small fraction of Mcm3p is polyubiquitinated at the onset of MCM complex assembly. Reducing the rate of ubiquitination by uba1-165, a suppressor of mcm3-10, restored the interaction of Mcm3-10p with subunits of the MCM complex and its recruitment to the replication origin. Possible roles for ubiquitinated Mcm3p in the assembly of the MCM complex at replication origins are discussed.  相似文献   

14.
Li A  Blow JJ 《The EMBO journal》2005,24(2):395-404
In late mitosis and G1, Mcm2-7 are assembled onto replication origins to 'license' them for initiation. At other cell cycle stages, licensing is inhibited, thus ensuring that origins fire only once per cell cycle. Three additional factors--the origin recognition complex, Cdc6 and Cdt1--are required for origin licensing. We examine here how licensing is regulated in Xenopus egg extracts. We show that Cdt1 is downregulated late in the cell cycle by two different mechanisms: proteolysis, which occurs in part due to the activity of the anaphase-promoting complex (APC/C), and inhibition by a protein called geminin. If both these regulatory mechanisms are abrogated, extracts undergo uncontrolled re-licensing and re-replication. The extent of re-replication is limited by checkpoint kinases that are activated as a consequence of re-replication itself. These results allow us to build a comprehensive model of how re-replication of DNA is prevented in Xenopus, with Cdt1 regulation being the key feature. The results also explain the original experiments that led to the proposal of a replication licensing factor.  相似文献   

15.
Replication origins are licensed by loading MCM2-7 hexamers before entry into S phase. However, only ~10% of licensed origins are normally used in S phase, with the others remaining dormant. When fork progression is inhibited, dormant origins initiate nearby to ensure that all of the DNA is eventually replicated. In apparent contrast, replicative stress activates ataxia telangiectasia and rad-3-related (ATR) and Chk1 checkpoint kinases that inhibit origin firing. In this study, we show that at low levels of replication stress, ATR/Chk1 predominantly suppresses origin initiation by inhibiting the activation of new replication factories, thereby reducing the number of active factories. At the same time, inhibition of replication fork progression allows dormant origins to initiate within existing replication factories. The inhibition of new factory activation by ATR/Chk1 therefore redirects replication toward active factories where forks are inhibited and away from regions that have yet to start replication. This minimizes the deleterious consequences of fork stalling and prevents similar problems from arising in unreplicated regions of the genome.  相似文献   

16.
Only ∼10% of replication origins that are licensed by loading minichromosome maintenance 2-7 (MCM2-7) complexes are normally used, with the majority remaining dormant. If replication fork progression is inhibited, nearby dormant origins initiate to ensure that all of the chromosomal DNA is replicated. At the same time, DNA damage-response kinases are activated, which preferentially suppress the assembly of new replication factories. This diverts initiation events away from completely new areas of the genome toward regions experiencing replicative stress. Mice hypomorphic for MCM2-7, which activate fewer dormant origins in response to replication inhibition, are cancer-prone and are genetically unstable. The licensing checkpoint delays entry into S phase if an insufficient number of origins have been licensed. In contrast, humans with Meier-Gorlin syndrome have mutations in pre-RC proteins and show defects in cell proliferation that may be a consequence of chronic activation of the licensing checkpoint.Replicating the large amount of DNA in eukaryotic cells is a complex task, requiring the activation of hundreds or thousands of origins spread throughout the genome. To maintain genetic stability, it is essential that during S phase genomic DNA is precisely duplicated, with no sections of DNA left unreplicated and no section of DNA replicated more than once. To prevent re-replication, cells divide the process of DNA replication into two non-overlapping phases. Prior to S phase, origins are licensed by the binding of minichromosome maintenance 2-7 (MCM2-7) double hexamers (Gillespie et al. 2001; Blow and Dutta 2005; Arias and Walter 2007). During S phase, these are activated as the core of the CMG (Cdc45-MCM-GINS) replicative helicase (Moyer et al. 2006; Ilves et al. 2010). Prior to the onset of S phase, licensing proteins are down-regulated or inhibited, so that no more origins can be licensed (Wohlschlegel et al. 2000; Tada et al. 2001; Li et al. 2003; Li and Blow 2005). One consequence of using this mechanism for preventing re-replication of DNA is that it is imperative that enough origins are licensed prior to S-phase entry, so that no regions of the genome remain unreplicated, even if some replication forks stall or some origins fail to initiate (Blow et al. 2011). Metazoan cells employ a licensing checkpoint to monitor that sufficient origins are licensed, inhibiting S-phase entry until this is established (Shreeram et al. 2002; Blow and Gillespie 2008).Here we review recent research showing how cells ensure complete genome duplication by licensing more replication origins in G1 than are normally used during S phase. The otherwise dormant replication origins become important for ensuring the completion of DNA replication if replication forks stall or are inhibited during S phase. We also review research showing how the licensing checkpoint ensures that a large enough number of origins are licensed before cells embark on S phase.  相似文献   

17.
18.
Cell cycle regulation is characterized by alternating activities of cyclin-dependent kinases (CDKs) and of the ubiquitin ligase anaphase promoting complex/cyclosome (APC/C). During S-phase APC/C is inhibited by early mitotic inhibitor 1 (Emi1) to allow the accumulation of cyclins A and B and to prevent re-replication. Emi1 is degraded at prophase by a Plk1-dependent pathway. Recent studies in which the degradation pathway of Emi1 was disrupted have shown that APC/C is activated at mitotic entry despite stabilization of Emi1. These results suggested the possibility of additional mechanisms other than degradation of Emi1, which release APC/C from inhibition by Emi1 upon entry into mitosis. In this study we report one such mechanism, by which the ability of Emi1 to inhibit APC/C is negatively regulated by CDKs. We show that in Plk1-inhibited cells Emi1 is stabilized and phosphorylated, that Emi1 is phosphorylated by CDKs in mitotic but not S-phase cell extracts, and that Emi1 phosphorylation by mitotic cell extracts or purified CDKs markedly reduces the ability of Emi1 to bind and to inhibit APC/C. Finally, we show that the addition of extracts from S-phase cells to extracts from mitotic cells protects Emi1 from CDK-mediated inactivation.  相似文献   

19.
In eukaryotes DNA replication takes place in the S phase of the cell cycle. It initiates from hundreds to thousands of replication origins in a coordinated manner, in order to efficiently duplicate the genome. The sequence of events leading to the onset of DNA replication is conventionally divided in two interdependent processes: licensing-a process during which replication origins acquire replication competence but are kept inactive- and firing-a process during which licensed origins are activated but not re-licensed. In this review we investigate the evolutionary conservation of the molecular machinery orchestrating DNA replication initiation both in yeast and in mammalian cells, highlighting a remarkable conservation of the general architecture of this central biological mechanism. Many steps are conserved down to molecular details and are performed by orthologous proteins with high sequence conservation, while differences in molecular structure of the performing proteins and their interactions are apparent in other steps. Tight regulation of initiation of DNA replication is achieved through protein phosphorylation, exerted mostly by Cyclin-dependent kinases in order to ensure that each chromosome is fully replicated once, and only once, during each cycle, and to avoid the formation of aberrant DNA structures and incorrect chromosomal duplication, that in mammalian cells are a prerequisite for genome instability and tumorigenesis. We then consider a molecular mathematical model of DNA replication, recently proposed by our group in a collaborative project, as a frame of reference to discuss similarities and differences observed in the regulatory program controlling DNA replication initiation in yeast and in mammalian cells and discuss whether they may be dependent upon different functional constraints. We conclude that a systems biology approach, integrating molecular analysis with modeling and computational investigations, is the best choice to investigate the control of DNA replication in mammalian cells.  相似文献   

20.
《The Journal of cell biology》1993,122(5):993-1002
Xenopus egg extracts treated with the protein kinase inhibitor 6- dimethylaminopurine (6-DMAP) are unable to support the initiation of DNA replication. Nuclei assembled in 6-DMAP extracts behave as though they are in G2, and will not undergo another round of DNA replication until passage through mitosis. 6-DMAP extracts are functionally devoid of a replication factor that modifies chromatin in early G1 before nuclear envelope assembly, but which is itself incapable of crossing the nuclear envelope. This chromatin modification is capable of supporting only a single round of semiconservative replication. The behavior of this replication factor is sufficient to explain why eukaryotic DNA is replicated once and only once in each cell cycle, and conforms to the previous model of a Replication Licensing Factor. Cell cycle analysis shows that this putative Licensing Factor is inactive during metaphase, but becomes rapidly activated on exit from metaphase when it can modify chromatin before nuclear envelope assembly is complete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号