共查询到20条相似文献,搜索用时 15 毫秒
1.
Immunogenic Properties of Peptides Mimicking a HIV-1 gp41 Epitope Recognized by Virus-Neutralizing Antibodies 2F5 总被引:1,自引:0,他引:1
Tumanova O. Yu. Kuvshinov V. N. Orlovskaya I. A. Pronyaeva T. R. Pokrovskii A. G. Il'ichev A. A. Sandakhchiev L. S. 《Molecular Biology》2003,37(3):473-476
Phage display was used to obtain peptides mimicking a HIV-1 gp41 conserved epitope recognized by virus-neutralizing monoclonal antibodies (mAb) 2F5. Rabbits and mice were immunized with the peptides exposed on the surface of filamentous bacteriophages. Antibodies to gp41 were detected in the sera of immunized animals. The virus-neutralizing activity of the sera was examined. 相似文献
2.
Tumanova O. Yu. Kuvshinov V. N. Il'ichev A. A. Nekrasov B. G. Ivanisenko V. A. Kozlov A. P. Sandakhchiev L. S. 《Molecular Biology》2002,36(4):517-521
A phage peptide library was used to select peptides interacting with virus-neutralizing monoclonal antibodies (mAb) 2G12 which recognize a discontinuous surface epitope of HIV-1 gp120. With the published X-ray data, gp120 regions involved in the antigenic determinant were predicted. Binding with mAb 2G12 was ascribed to Thr297, Phe383, Tyr384, Arg419, Ile240, Thr415, Leu416, Pro417, Lys421, and Trp112. Though distant in the gp120 sequence, these residues are close in space and form the 2G12 epitope on the gp120 surface. 相似文献
3.
The HIV-1 gp41 core, a six-helix bundle formed between the N- and C-terminal heptad repeats, plays a critical role in fusion between the viral and target cell membranes. Using N36(L8)C34 as a model of the gp41 core to screen phage display peptide libraries, we identified a common motif, HXXNPF (X is any of the 20 natural amino acid residues). A selected positive phage clone L7.8 specifically bound to N36(L8)C34 and this binding could be blocked by a gp41 core-specific monoclonal antibody (NC-1). JCH-4, a peptide containing HXXNPF motif, effectively inhibited HIV-1 envelope glycoprotein-mediated syncytium-formation. The epitope of JCH-4 was proven to be linear and might locate in the NHR regions of the gp41 core. These data suggest that HXXNPF motif may be a gp41 core-binding sequence and HXXNPF motif-containing molecules can be used as probes for studying the role of the HIV-1 gp41 core in membrane fusion process. 相似文献
4.
目的:筛选1型人免疫缺陷病毒(HIV-1)中国流行株中包膜蛋白gp41的优势抗原片段,构建具有区域流行代表性的HIV-1 gp41重组抗原,为改进现有HIV-1初筛试剂盒中使用的同类抗原奠定基础。方法:利用免疫斑点杂交和生物信息学方法,从收集自重庆、广州、上海的区域代表性150份HIV-1感染者血清标本中筛选gp41抗原性强的候选样本,利用RT-PCR及巢式PCR方法扩增包含重要抗原表位决定蔟的gp41基因片段,与原核表达载体pQE30连接,转化大肠杆菌M15构建gp41重组抗原表达菌株,表达后经亲和层析纯化、SDS-PAGE和Western印迹鉴定。结果:兔源HRP标记的gp41多抗能识别标本中gp41抗原性差异,得到候选样本,扩增包含gp41主要抗原表位片段;构建了包含gp41抗原表达簇的重组原核表达质粒,表达、纯化后经His标签抗体Western印迹鉴定为阳性。结论:高纯度的重组优势gp41抗原的构建和鉴定,为进一步改进现有HIV初筛诊断奠定了基础。 相似文献
5.
以His标签检测蛋白的表达, 利用酿酒酵母表面展示系统, 成功地将HIV-1 gp41片段锚定在酵母表面, 并检测到gp41的活性。以pMD18T-gp41为模板, 通过PCR技术克隆了gp41基因, 将gp41基因通过双酶切连接到载体pICAS-His上,构建了gp41酵母表面展示载体, 并将其转化至酿酒酵母(Saccharomyces cerevisiae)MT8-1中。重组菌经培养, 利用免疫荧光染色方法进行染色, 显微镜观察发现重组酵母细胞表面有绿色荧光, 流式细胞仪结果进一步证实gp41正确折叠展示于酵母细胞表面。采用不同浓度的葡萄糖培养基进行表达优化。当葡萄糖浓度为1%时, 82.46%的酵母细胞表达了gp41抗原; 随着葡萄糖浓度升高, 蛋白表达受到抑制。 相似文献
6.
以His标签检测蛋白的表达, 利用酿酒酵母表面展示系统, 成功地将HIV-1 gp41片段锚定在酵母表面, 并检测到gp41的活性。以pMD18T-gp41为模板, 通过PCR技术克隆了gp41基因, 将gp41基因通过双酶切连接到载体pICAS-His上,构建了gp41酵母表面展示载体, 并将其转化至酿酒酵母(Saccharomyces cerevisiae)MT8-1中。重组菌经培养, 利用免疫荧光染色方法进行染色, 显微镜观察发现重组酵母细胞表面有绿色荧光, 流式细胞仪结果进一步证实gp41正确折叠展示于酵母细胞表面。采用不同浓度的葡萄糖培养基进行表达优化。当葡萄糖浓度为1%时, 82.46%的酵母细胞表达了gp41抗原; 随着葡萄糖浓度升高, 蛋白表达受到抑制。 相似文献
7.
Rachel P. J. Lai Miriam Hock Jens Radzimanowski Paul Tonks David Lutje Hulsik Gregory Effantin David J. Seilly Hanna Dreja Alexander Kliche Ralf Wagner Susan W. Barnett Nancy Tumba Lynn Morris Celia C. LaBranche David C. Montefiori Michael S. Seaman Jonathan L. Heeney Winfried Weissenhorn 《The Journal of biological chemistry》2014,289(43):29912-29926
The membrane-proximal external region (MPER) of the human immunodeficiency virus, type 1 (HIV-1) envelope glycoprotein subunit gp41 is targeted by potent broadly neutralizing antibodies 2F5, 4E10, and 10E8. These antibodies recognize linear epitopes and have been suggested to target the fusion intermediate conformation of gp41 that bridges viral and cellular membranes. Anti-MPER antibodies exert different degrees of membrane interaction, which is considered to be the limiting factor for the generation of such antibodies by immunization. Here we characterize a fusion intermediate conformation of gp41 (gp41int-Cys) and show that it folds into an elongated ∼12-nm-long extended structure based on small angle x-ray scattering data. Gp41int-Cys was covalently linked to liposomes via its C-terminal cysteine and used as immunogen. The gp41int-Cys proteoliposomes were administered alone or in prime-boost regimen with trimeric envelope gp140CA018 in guinea pigs and elicited high anti-gp41 IgG titers. The sera interacted with a peptide spanning the MPER region, demonstrated competition with broadly neutralizing antibodies 2F5 and 4E10, and exerted modest lipid binding, indicating the presence of MPER-specific antibodies. Although the neutralization potency generated solely by gp140CA018 was higher than that induced by gp41int-Cys, the majority of animals immunized with gp41int-Cys proteoliposomes induced modest breadth and potency in neutralizing tier 1 pseudoviruses and replication-competent simian/human immunodeficiency viruses in the TZM-bl assay as well as responses against tier 2 HIV-1 in the A3R5 neutralization assay. Our data thus demonstrate that liposomal gp41 MPER formulation can induce neutralization activity, and the strategy serves to improve breadth and potency of such antibodies by improved vaccination protocols. 相似文献
8.
Miguel R. Moreno 《生物化学与生物物理学报:生物膜》2004,1661(1):97-105
The identification of membrane-active regions of the ectodomain of the HIV-1 envelope glycoprotein gp41 has been made by determining the effect on membrane integrity of a 15-mer gp41-derived peptide library. By monitoring the effect of this peptide library on membrane leakage, we have identified three regions on the gp41 ectodomain with membrane-interacting capabilities: Region 1, which would roughly correspond to the polar sequence which follows the fusion domain and extends to the N-terminal heptad repeat region; Region 2, which would correspond to the immunodominant loop; and Region 3, which would correspond to the pre-transmembrane region of gp41. The identification of these three regions supports their direct role in membrane fusion as well as facilitating the future development of HIV-1 entry inhibitors. 相似文献
9.
目的:建立检测HIV-1gp41抗原的双抗体夹心ELISA,并探讨其临床应用的可行性。方法:用饱和硫酸铵(SAS)纯化抗HIV-1gp41-5单克隆抗体(mAb),用HRP标记后建立双抗体夹心ELISA法,对其灵敏度及特异性进行检测,并用该方法对40份HIV-1阳性血清进行了检测。结果:用mAbE12(5μg/mL)为包被抗体,2H6为酶标记抗体(1∶900)建立了双抗体夹心ELISA法,检测gp41-5多肽的灵敏度是100pg/mL。对HIV-1阳性血清中gp41抗原的检出率为67.5%(27/40)。结论:建立了特异性强、灵敏度良好的检测HIV-1gp41抗原的双抗体夹心ELISA法。 相似文献
10.
To determine whether the gp41 of HIV-1 could adhere to the interleukin (IL)-2 receptor at the surface of target cells in vitro, we analysed in vitro the possible functional competition between various forms of the HIV-1 gp41 molecule (i.e. peptides, trimeric or primary structures) and IL-2. This competition has been analysed in a test involving the proliferation of an IL-2-dependent cell line (CTLL2). The putative interaction between the IL-2 molecule and HIV-1 has also been assayed on MT4 cells (CD4+ T lymphocytes) in culture. The gp41 trimeric molecule and an HIV-1 gp41 peptide (578–590 aminoacid sequence) dramatically inhibited CTLL2 cell proliferation, despite the presence of IL-2. The addition of serum, containing anti-gp41 antibodies, from HIV-1 patients resulted in a significant abolition of this inhibition. The concomitant incubation of IL-2 and HIV-1 with MT4 cells resulted in a strong decrease (70%) in HIV-1 p24 release. These data suggest that the gp41 of HIV-1 can use the IL-2 receptor during the process of HIV-1 infection and that there is some functional mimesis between gp41 and IL-2. 相似文献
11.
The Human immunodeficiency virus type 1(HIV-1) gp41 membrane proximal external region(MPER) is targeted by broadly neutralizing antibodies(e.g. 2F5, 4E10, Z13 e and m66.6), which makes this region a promising target for vaccine design. One strategy to elicit neutralizing antibodies against the MPER epitope is to design peptide immunogens mimicking neutralization structures. To probe 2F5-like neutralizing antibodies, two yeast-displayed antibody libraries from peripheral blood mononuclear cells from a HIV-1 patient were screened against the 2F5 epitope peptide SP62. Two 2F5-like antibodies were identified that specifically recognized SP62. However,these antibodies only weakly neutralized HIV-1 primary isolates. The epitopes recognized by these two 2F5-like antibodies include not only the 2F5 epitope(amino acids(aa) 662–667 in the MPER)but also several other residues(aa 652–655) locating at the N-terminus in SP62. Experimental results suggest that residues of SP62 adjacent to the 2F5 epitope influence the response of broadly neutralizing 2F5-like antibodies in vaccination. Our findings may aid the design of vaccine immunogens and development of therapeutics against HIV-1 infection. 相似文献
12.
Helix-helix interactions in the putative three-helix bundle formation of the gp41 transmembrane (TM) domain may contribute to the process of virus-cell membrane fusion in HIV-1 infection. In this study, molecular dynamics is used to analyze and compare the conformations of monomeric and trimeric forms of the TM domain in various solvent systems over the course of 4 to 23-ns simulations. The trimeric bundles of the TM domain were stable as helices and remained associated in a hydrated POPE lipid bilayer for the duration of the 23-ns simulation. Several stable inter-chain hydrogen bonds, mostly among the three deprotonated arginine residues located at the center of each of the three TM domains, formed in a right-handed bundle embedded in the lipid bilayer. No such bonds were observed when the bundle was left-handed or when the central arginine residue in each of the three TM helices was replaced with isoleucine (R_I mutant), suggesting that the central arginine residues may play an essential role in maintaining the integrity of the three-helix bundle. These observations suggest that formation of the three-helix bundle of the TM domain may play a role in the trimerization of gp41, thought to occur during the virus-cell membrane fusion process. 相似文献
13.
AIDS是严重危害人类健康的疾病,而HIV是导致这种疾病的病毒。gp41六螺旋在介导HIV-1病毒与靶细胞间的膜融合过程中起着重要作用。因此,对于gp41结合蛋白的研究有助于深入了解gp41在HIV-1感染整个过程中扮演的角色,解释gp41对靶细胞的调控机制,为寻找新的抗艾滋病药物靶点以及艾滋病抑制剂的设计提供有益的思路。作者的实验室相继发现了一批与gp41六螺旋结构相互作用的蛋白质,进而对HIV-1 gp41六螺旋介导的膜融合过程和HIV-1感染机理有了更深入的了解。 相似文献
14.
Donna L Montgomery Ying-Jie Wang Renee Hrin Micah Luftig Bin Su Michael D Miller Fubao Wang Peter Haytko Lingyi Huang Salvatore Vitelli Jon Condra Xiaomei Liu Richard Hampton Andrea Carfi Antonello Pessi Elisabetta Bianchi Joseph Joyce Chris Lloyd Romas Geleziunas David Bramhill Vicki M King Adam C Finnefrock William Strohl Zhiqiang An 《MABS-AUSTIN》2009,1(5):462-474
The human D5 monoclonal antibody binds to the highly conserved hydrophobic pocket on the N-terminal heptad repeat (NHR) trimer of HIV-1 gp41 and exhibits modest yet relatively broad neutralization activity. Both binding and neutralization depend on residues in the complementarity determining regions (CDRs) of the D5 IgG variable domains on heavy chain (VH) and light chain (VL). In an effort to increase neutralization activity to a wider range of HIV-1 strains, we have affinity matured the parental D5 scFv by randomizing selected residues in 5 of its 6 CDRs. The resulting scFv variants derived from four different CDR changes showed enhanced binding affinities to gp41 NHR mimetic (5-helix) which correlated to improved neutralization potencies by up to 8-fold. However, when converted to IgG1s, these D5 variants had up to a 12-fold reduction in neutralization potency over their corresponding scFvs despite their slightly enhanced in vitro binding affinities. Remarkably, D5 variant IgG1s bearing residue changes in CDRs that interact with epitope residues N-terminal to the hydrophobic pocket (such as VH CDR3 and VL CDR3) retained more neutralization potency than those containing residue changes in pocket-interacting CDRs (such as VH CDR2). These results provide compelling evidence for the existence of a steric block to an IgG that extends to the gp41 NHR hydrophobic pocket region, and can be a useful guide for developing therapeutic antibodies and vaccines circumventing this block. 相似文献
15.
Clara Larcher Michael Bröker Hartwig P. Huemer Brigitte Sölder Thomas F. Schulz Johanna M. Hofbauer Helmut Wachter Manfred P. Dierich 《FEMS microbiology letters》1990,64(2):103-110
Abstract Two monoclonal antibodies (MAbs) were produced in Balb/c mice by immunization with recombinant gp41 derived from expression of λ-BH10 cDNA of the human immunowdeficiency virus-1 (HIV-1) in the prokaryotic expression vector pEX-41 [1, 2]. Characterization of the epitopes recognized by these MAbs was done with HIV-1 envelope (env) fusion proteins expressed in Escherochia coli encoding ten distinct segments of the env proteins [3]. In comparison, another mouse MAb, M25 [4], a human MAb directed against gp41, which was produced by the xeno hydridoma line 3D6 [5, 6] and a pool of human patient sera containing antibodies to HIV-1 were tested. We were able to demonstrate that the epitopes recognized by our MAbs are located betweeni arg732 and ser759 [7] of the HIV-1 env glycoprotein gp160 of HTLV-III strain B. M25 reacted with epitopes between ser647 and pro731, which includes the hydrophobic transmembrane region of gp41 [4]. The human MAb against gp41, 3D6 [5, 6] reacts with epitopes between ile474 and trp646, a polypeptide stretch consisting of gp120 and gp41 specific amino acids. The human serum pool, positive for HIV-1 antibodies, reacted predominantly with antigenic determinants locatedp between ile474 and leu863. The recombinant env fusion proteins were initially produced to test the immunoreactivity with patient sera and to characterize epitopes which are relevant for immunodiagnostic purposes [3]. In this study, we showed that the set of recombinant evr proteins is also a simple and accurate tool for the characterization of MAbs directed to the HIV envelope proteins. 相似文献
16.
Human (HIV-1) and simian (SIV) immunodeficiency virus fusion with the host cell is promoted by the receptor-triggered refolding of the gp41 envelope protein into a stable trimer-of-hairpins structure that brings viral and cellular membranes into close proximity. The core of this hairpin structure is a six-helix bundle in which an inner homotrimeric coiled coil is buttressed by three antiparallel outer HR2 helices. We have used stopped-flow circular dichroism spectroscopy to characterize the unfolding and refolding kinetics of the six-helix bundle using the HIV-1 and SIV N34(L6)C28 polypeptides. In each case, the time-course of ellipticity changes in refolding experiments is well described by a simple two-state model involving the native trimer and the unfolded monomers. The unfolding free energy of the HIV-1 and SIV trimers and their urea dependence calculated from kinetic data are in very good agreement with data measured directly by isothermal unfolding experiments. Thus, formation of the gp41 six-helix bundle structure involves no detectable population of stable, partly folded intermediates. Folding of HIV-1 N34(L6)C28 is five orders of magnitudes faster than folding of its SIV counterpart in aqueous buffer: k(on),(HIV-1)=1.3 x 10(15)M(-2)s(-1) versus k(on),(SIV)=1.1 x 10(10)M(-2)s(-1). The unfolding rates are similar: k(off),(HIV-1)=1.1 x 10(-5)s(-1) versus k(off),(SIV=)5.7 x 10(-4)s(-1). Kinetic m-values indicate that the transition state for folding of the HIV-1 protein is significantly more compact than the transition state of the SIV protein. Replacement of a single SIV threonine by isoleucine corresponding to position 573 in the HIV-1 sequence significantly stabilizes the protein and renders the folding rate close to that of the HIV-1 protein yet without making the transition state of the mutant as compact as that of the HIV-1 protein. Therefore, the overall reduction of surface exposure in the high-energy transition state seems not to account for different folding rates. While the available biological evidence suggests that refolding of the gp41 protein is slow, our study implies that structural elements outside the trimer-of-hairpins limit the rate of HIV-1 fusion kinetics. 相似文献
17.
Hartono YD Lee AN Lee-Huang S Zhang D 《Bioorganic & medicinal chemistry letters》2011,21(6):1607-1611
HL9 is a nonapeptide fragment of human lysozyme which has been shown to have anti-HIV-1 activity in nanomolar concentration. This study aims to explain this inhibitory activity by using molecular dynamics (MD) simulation, focusing on the ectodomain of gp41, the envelope glycoprotein of HIV-1 crucial to membrane fusion. It was found that in HL9, two Trp residues separated by two others occupy the conserved hydrophobic pocket on gp41 and thus inhibit fusion in dominant-negative manner. Detailed HL9-gp41 binding interactions and free energies of binding were obtained through MD simulation and solvated interaction energies (SIE) calculation, giving a binding free energy of −8.25 kcal/mol which is in close agreement with the experimental value of −9.96 kcal/mol. Since C-helical region (C34) of gp41 also has two Trp residues separated by two others, this arrangement may be generalised and used to scan peptide library and to find those having similar manner of inhibition. 相似文献
18.
《Bioorganic & medicinal chemistry》2016,24(2):201-206
Human immunodeficiency virus type 1 (HIV-1), the pathogen of acquired immunodeficiency syndrome (AIDS), causes about 2 million people to death every year. Fusion inhibitors targeted the envelope protein (gp41) represent a novel and alternative approach for anti-AIDS therapy, which terminates the HIV-1 life cycle at an early stage. Using CP621-652 as a template, a series of peptides were designed, synthesized and evaluated in vitro assays. An interesting phenomenon was found that the substitution of hydrophobic residues at solvent accessible sites could increase the anti-HIV activity when the C-terminal sequence was extended with an enough numbers of amino acids. After the active peptides was synthesized and evaluated, peptide 8 showed the best anti-HIV-1 IIIB whole cell activity (MAGI IC50 = 53.02 nM). Further study indicated that peptide 8 bound with the gp41 NHR helix, and then blocked the conformation of 6-helix, thus inhibited virus–cell membrane fusion. The results would be helpful for the design of peptide fusion inhibitors against HIV-1 infection. 相似文献
19.
Guofen Gao Lindsay Wieczorek Kristina K. Peachman Victoria R. Polonis Carl R. Alving Mangala Rao Venigalla B. Rao 《The Journal of biological chemistry》2013,288(1):234-246
The HIV-1 envelope spike is a trimer of heterodimers composed of an external glycoprotein gp120 and a transmembrane glycoprotein gp41. gp120 initiates virus entry by binding to host receptors, whereas gp41 mediates fusion between viral and host membranes. Although the basic pathway of HIV-1 entry has been extensively studied, the detailed mechanism is still poorly understood. Design of gp41 recombinants that mimic key intermediates is essential to elucidate the mechanism as well as to develop potent therapeutics and vaccines. Here, using molecular genetics and biochemical approaches, a series of hypotheses was tested to overcome the extreme hydrophobicity of HIV-1 gp41 and design a soluble near full-length gp41 trimer. The two long heptad repeat helices HR1 and HR2 of gp41 ectodomain were mutated to disrupt intramolecular HR1-HR2 interactions but not intermolecular HR1-HR1 interactions. This resulted in reduced aggregation and improved solubility. Attachment of a 27-amino acid foldon at the C terminus and slow refolding channeled gp41 into trimers. The trimers appear to be stabilized in a prehairpin-like structure, as evident from binding of a HR2 peptide to exposed HR1 grooves, lack of binding to hexa-helical bundle-specific NC-1 mAb, and inhibition of virus neutralization by broadly neutralizing antibodies 2F5 and 4E10. Fusion to T4 small outer capsid protein, Soc, allowed display of gp41 trimers on the phage nanoparticle. These approaches for the first time led to the design of a soluble gp41 trimer containing both the fusion peptide and the cytoplasmic domain, providing insights into the mechanism of entry and development of gp41-based HIV-1 vaccines. 相似文献
20.
HIV-1跨膜蛋白gp41是HIV-1包膜与靶细胞膜融合过程中的关键蛋白,而且序列保守,是理想的HIV-1作用靶点。为获得HIV-1中国流行株CRF07 B/C gp41蛋白的晶体结构来指导疫苗设计及药物开发,采用CRF07 B/C gp160基因序列为模板,经PCR、酶切、连接,将gp41 helix-bundle区域克隆到pET30-his表达载体中,经表达、纯化和结晶筛选,获得了gp41 helix-bundle的晶体并解析了结构,为针对中国艾滋病病毒流行株疫苗的设计及药物开发提供了结构参考。 相似文献