首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of long-term free-air ozone fumigation and canopy position on leaf contents of total glutathione, its redox state, non-structural proteins (NSP), soluble amino compounds, and total soluble sugars in old-growth beech (FAGUS SYLVATICA) and spruce (PICEA ABIES) trees were determined over a period of five years. Ozone fumigation had weak effects on the analysed metabolites of both tree species and significant changes in the contents of total glutathione, NSP, and soluble sugars were observed only selectively. Beech leaves were affected by crown position to a higher extent than spruce needles and exhibited lower contents of total glutathione and NSP and total soluble sugars, but enhanced contents of oxidised glutathione and amino compounds in the shade compared to the sun crown. Contents of total soluble sugars generally were decreased in shade compared to sun needles of spruce trees. Interspecific differences between beech and spruce were more distinct in the sun compared to the shade crown. Contents of total glutathione were increased whilst contents of amino compounds and total soluble sugars were lower in spruce needles compared to beech leaves. The metabolites determined showed individual patterns in the course of the five measurement years. Contents of total glutathione and its redox state correlated with air temperature and global radiation, indicating an important role for the antioxidant at low temperatures. Correlations of glutathione with instantaneous ozone concentrations seem to be a secondary effect. Differences in proteins and/or amino compounds in the inter-annual course are assumed to be a consequence of alterations in specific N uptake rates.  相似文献   

2.
Mixed spruce-beech plantations grown in large open-top chambers (OTC) were used to study consequences of elevated CO2, nitrogen-deposition and soil type on plant internal nitrogen and sulphur cycling of juvenile beech (Fagus sylvatica L.) and spruce (Picea abies Karst.) in a competitive situation. Processes of re-cycling as a consequence of protein turnover during leaf senescence in autumn were of further interest. For this purpose, phloem sap was collected in September 1998 and analysed for the composition and concentrations of organic and inorganic nitrogen and sulphur compounds. The phloem exudate of spruce showed higher total soluble non-protein nitrogen (TSNN) concentration on calcareous soil than on acidic soil, independent of the treatment. N-fertilization increased the N-concentration of phloem exudate significantly on both soil types, mainly by an increase of Arg and Gln concentrations. Elevated CO2 slightly increased TSNN on calcareous, but not on acidic soil. The combination of elevated CO2 and augmented N-deposition induced a further increase of TSNN on calcareous soil, but caused a lower N-effect on TSNN on acidic soil. Arg, the main TSNN component in phloem exudate, mediated this effect. Since Arg is considered to be a major nitrogen storage compound, it is concluded that in autumn elevated CO2 and augmented N-deposition, influence storage of N rather than N-supply of spruce. An effect of elevated CO2 and augmented N-deposition on GSH and sulphate concentrations in phloem exudate of spruce was not observed on acidic soil. On calcareous soil augmented N-deposition enhanced, elevated CO2 decreased phloem exudate GSH contents. In combination, elevated CO2 compensated the positive effect of N-deposition. The effects of elevated CO2 and augmented N-deposition on phloem sap N- and S-contents described above were not observed for beech trees. Apparently, elevated CO2 and augmented N-deposition did not affect plants internal S and N cycling of beech grown in spruce-beech plantations.  相似文献   

3.
Field-grown spring wheat (Triticum aestivum L. cv. Dragon) was exposed to ambient and elevated CO2 concentrations (1.5 and 2 times ambient) in open-top chambers. Contents of non-structural carbohydrates were analysed enzymatically in leaves, stems and ears six times during the growing season. The impact of elevated CO2 on wheat carbohydrates was non-significant in most harvests. However, differences in the carbohydrate contents due to elevated CO2 were found in all plant compartments. Before anthesis, at growth stage (GS) 30 (the stem is 1 cm to the shoot apex), the plants grown in elevated CO2 contained significantly more water soluble carbohydrates (WSC), fructans, starch and total non-structural carbohydrates (TNC) in the leaves in comparison with the plants grown in ambient CO2. It is hypothesised that the plants from the treatments with elevated CO2 were sink-limited at GS30. After anthesis, the leaf WSC and TNC contents of the plants from elevated CO2 started to decline earlier than those of the plants from ambient CO2. This may indicate that the leaves of plants grown in the chambers with elevated CO2 senesced earlier. Elevated CO2 accelerated grain development: 2 weeks after anthesis, the plants grown in elevated CO2 contained significantly more starch and significantly less fructans in the ears compared to the plants grown in ambient CO2. Elevated CO2 had no effect on ear starch and TNC contents at the final harvest. Increasing the CO2 concentration from 360 to 520 μmol mol?1 had a larger effect on wheat non-structural carbohydrates than the further increase from 520 to 680 μmol mol?1. The results are discussed in relation to the effects of elevated CO2 on yield and yield components.  相似文献   

4.
Saplings of Fagus sylvatica and Picea abies were grown in mono‐ and mixed cultures in a 2‐year phytotron study under all four combinations of ambient and elevated ozone (O3) and carbon dioxide (CO2) concentrations. The hypotheses tested were (1) that the competitiveness of beech rather than spruce is negatively affected by the exposure to enhanced O3 concentrations, (2) spruce benefits from the increase of resource availability (elevated CO2) in the mixed culture and (3) that the responsiveness of plants to CO2 and O3 depends on the type of competition (i.e. intra vs. interspecific). Beech displayed a competitive disadvantage when growing in mixture with spruce: after two growing seasons under interspecific competition, beech showed significant reductions in leaf gas exchange, biomass development and crown volume as compared with beech plants growing in monoculture. In competition with spruce, beech appeared to be nitrogen (N)‐limited, whereas spruce tended to benefit in terms of its plant N status. The responsiveness of the juvenile trees to the atmospheric treatments differed between species and was dominated by the type of competition: spruce growth benefited from elevated CO2 concentrations, while beech growth suffered from the enhanced O3 regime. In general, interspecific competition enhanced these atmospheric treatment effects, supporting our hypotheses. Significant differences in root : shoot biomass ratio between the type of competition under both elevated O3 and CO2 were not caused by readjustments of biomass partitioning, but were dependent on tree size. Our study stresses that competition is an important factor driving plant development, and suggests that the knowledge about responses of plants to elevated CO2 and/or O3, acquired from plants growing in monoculture, may not be transferred to plants grown under interspecific competition as typically found in the field.  相似文献   

5.
本试验利用改进的开顶式气室(OTC)在黄土高原长武农业生态试验站田间模拟大气CO2浓度升高环境,设置3个处理:CK(田间环境,自然大气CO2浓度)、OTC(OTC气室,自然大气CO2浓度)、OTCe(OTC气室,CO2浓度700 μmol·mol-1),探讨春玉米在不同生育期各器官非结构性碳水化合物(NSC)及籽粒品质(可溶性糖、淀粉和粗蛋白)对大气CO2浓度升高的响应,为揭示旱作区春玉米对大气CO2浓度升高的适应机理提供科学依据。结果表明: 大气CO2浓度升高对玉米NSC含量、积累量的影响因器官和生育期不同而异。与CK和OTC相比,OTCe促进了生殖生长阶段叶、茎和根NSC的活化再分配,提高了叶片、茎秆和根系NSC转运到籽粒的量(ATMNSC)、向籽粒的转运率(ARNSC)以及对籽粒的贡献率(ACNSC);与CK相比,OTC带来的增温效应抑制了茎和根NSC的活化再分配,促进了叶NSC的活化再分配,显著提高了玉米叶ATMNSC、ARNSC、ACNSC。在两年试验中,大气CO2浓度升高对玉米籽粒可溶性糖、淀粉和粗蛋白含量无显著影响。  相似文献   

6.
Structure and density of soil microarthropod communities (Oribatida and Collembola) were studied in one natural beech forest and one spruce monoculture planted on a former beech stand in South Bohemia (Czech Republic). The spruce monoculture establishment increased microarthropod densities (93,000 ind. m?2 in the natural beech forest vs. 400,540 ind. m?2 in the spruce monoculture for Oribatida; 66,360 ind. m?2 in the natural beech forest vs. 136,360 ind. m?2 in the spruce monoculture for Collembola); additionally, it changed greatly the community structure in terms of species composition and functional traits. In the spruce monoculture, groups susceptible to disturbance were suppressed. The oribatid trophic structure changed as well with opportunistic herbifungivorous species increasing in the monoculture at the expense of fungivorous species. Similarly, hemiedaphic collembolans increased in the monoculture at the expense of euedaphic species. We conclude that the “functional approach” seems to be fruitful in revealing soil fauna response to environmental change.  相似文献   

7.
A 2-yr phytotron study was conducted to investigate the intra- and inter-specific competitive behaviour of juvenile beech (Fagus sylvatica) and spruce (Picea abies). Competitiveness was analysed by quantifying the resource budgets that occur along structures and within occupied space of relevance for competitive interaction. Ambient and elevated CO(2) and ozone (O(3)) regimes were applied throughout two growing seasons as stressors for provoking changes in resource budgets, growth and allocation to facilitate the competition analysis. The hypothesis tested was that the ability to sequester space at low structural cost will determine the competitive success. Spruce was a stronger competitor than beech, as displayed by its higher above-ground biomass increments in mixed culture compared with monoculture. A crucial factor in the competitive success of spruce was its ability to enlarge crown volume at low structural costs, supporting the hypothesis. Interspecific competition with spruce resulted in a size-independent readjustment of above-ground allocation in beech (reduced leaf : shoot biomass ratio). The efficient use of resources for above-ground space sequestration proved to be a parameter that quantitatively reflects competitiveness.  相似文献   

8.
应用封闭式生长室系统,研究了CO2浓度升高对红桦(Betula albosinensis)幼苗的根/冠、粗根和细根的干质量、非结构性碳水化合物类含量、碳含量和碳/氮、氮和磷的含量及氮磷吸收量的影响。结果表明:CO2浓度升高使红桦幼苗粗根和细根的干质量增加,同时根/冠值显著升高,表明CO2浓度升高使红桦幼苗生物量向根系的分配增加;与对照相比,粗根的还原糖、蔗糖和总可溶性糖含量显著增加,而在细根中没有显著变化;粗根、细根的淀粉和总的非结构性碳水化合物含量显著增加;CO2浓度升高下粗根和细根的碳含量有升高的趋势但未达到显著水平,同时氮含量降低,碳/氮值升高;氮的吸收量在粗根和细根中均无显著变化。上述结果表明,CO2浓度升高下红桦幼苗根系氮含量下降是由非结构性碳水化合物(主要是淀粉)含量升高和(或)根系生物量增加产生的稀释效应引起的。  相似文献   

9.
CO(2) partial pressure (pCO(2)) in industrial cell culture reactors may reach 150-200 mm Hg, which can significantly inhibit cell growth and recombinant protein production. The inhibitory effects of elevated pCO(2) at constant pH are due to a combination of the increases in pCO(2) and [HCO(-) (3)], per se, and the associated increase in osmolality. To decouple the effects of pCO(2) and osmolality, low-salt basal media have been used to compensate for this associated increase in osmolality. Under control conditions (40 mm Hg-320 mOsm/kg), hybridoma cell growth and metabolism was similar in DMEM:F12 with 2% fetal bovine serum and serum-free HB GRO. In both media, pCO(2) and osmolality made dose-dependent contributions to the inhibition of hybridoma cell growth and synergized to more extensively inhibit growth when combined. Elevated osmolality was associated with increased apoptosis. In contrast, elevated pCO(2) did not increase apoptotic cell death. Specific antibody production also increased with osmolality although not with pCO(2). In an effort to understand the mechanisms through which elevated pCO(2) and osmolality affect hybridoma cells, glucose metabolism, glutamine metabolism, intracellular pH (pHi), and cell size were monitored in batch cultures. Elevated pCO(2) (with or without osmolality compensation) inhibited glycolysis in a dose-dependent fashion in both media. Osmolality had little effect on glycolysis. On the other hand, elevated pCO(2) alone had no effect on glutamine metabolism, whereas elevated osmolality increased glutamine uptake. Hybridoma mean pHi was approximately 0.2 pH units lower than control at 140 mm Hg pCO(2) (with or without osmolality compensation) but further increases in pCO(2) did not further decrease pHi. Osmolality had little effect on pHi. Cell size was smaller than control at elevated pCO(2) at 320 mOsm/kg, and greater than control in hyperosmotic conditions at 40 mm Hg.  相似文献   

10.
The five major antioxidants enzymes, cytochrome oxidase (COX), GSH, and GSSG, and endogenous and in vitro stimulated lipid peroxidation (TBA-RS) were assayed in the lung of old (28 months) and young (9 months) adult rats due to the almost total absence of data of this kind in this tissue, which is normally exposed to relatively high pO2 throughout life. Catalase, selenium (Se)-dependent GSH peroxidase (GPx), GSH reductase, GSH, GSSG, GSSG/GSH, and in vivo and in vitro TBA-RS showed similar values in old and young animals. The decrease observed for non Se-dependent GPx disappeared when the values were expressed in relation to COX activity. Only superoxide dismutase showed a clear decrease when referred both to protein and COX activity. These results suggest that lung aging is not accelerated in old age due to a decrease in the antioxidant capacity of the tissue. Nevertheless, they are compatible with a continuous damage of the lung tissue by free radicals throughout the life span.  相似文献   

11.
Vâlcu CM  Schlink K 《Proteomics》2006,6(5):1599-1605
Protein extraction procedure and the reducing agent content (DTT, dithioerythritol, tributyl phosphine and tris (2-carboxyethyl) phosphine (TCEP)) of the sample and rehydration buffers were optimised for European beech leaves and roots and Norway spruce needles. Optimal extraction was achieved with 100 mM DTT for leaves and needles and a mixture of 2 mM TCEP and 50 mM DTT for roots. Performing IEF in buffers containing hydroxyethyldisulphide significantly enhanced the quality of separation for all proteins except for acidic root proteins, which were optimally focused in the same buffer as extracted.  相似文献   

12.
To analyze the effects of elevated carbon dioxide concentration (PCO2) on the mass flow of reduced nitro- gen (N) in the phloem and xylem of trees, juvenile beech (Fagus sylvatica L.) and spruce (Picea abies (L.) Karst.) were grown in phytotrons and exposed to ambient and elevated PCO2 (plus 687.5 mg/m^3 CO2) for three growing seasons. Elevated PCO2 significantly decreased the mass flow of N from the shoot to roots of beech by significantly reducing the concentration of soluble amino compounds in the phloem, even if the area of conductive phloem of cross-sectional bark tissue was significantly increased, because of less callus deposition in the sieve elements. In spruce, the downward mass flow of reduced N also tended to be decreased, similar to that in beech. Resembling findings in the phloem, N mass flow from roots to shoot in both tree species was significantly diminished owing to significantly reduced concentrations of amino compounds in the xylem and a lower transpiration rate. Therefore, the mass flow of reduced N between shoots and roots of trees was mainly governed by the concentrations of soluble amino compounds in the phloem and xylem in relation to the loading of reduced N in both long-distance transport pathways.  相似文献   

13.
林恬  郑怀舟  朱锦懋 《生态学报》2022,42(18):7641-7651
植物叶片中的非结构性碳水化合物(NSC)和碳(C)、氮(N)、磷(P)含量可反映植物和生态系统对水分亏缺环境的响应及适应程度。以福建省长汀县25a马尾松(Pinus massoniana)为对象,原位观测分析了3年持续100%隔离降雨对成年马尾松针叶NSC与C、N、P的影响。结果表明:(1)持续隔离降雨导致马尾松针叶NSC含量先显著增加后减少,最终导致针叶NSC含量季节变化消失;且针叶可溶性糖含量、可溶性糖/淀粉比值在后期显著增加;(2)持续隔离降雨使马尾松针叶N含量、P含量、N∶P均表现为前期与对照组差异不显著,后期显著高于对照组;(3)马尾松针叶NSC含量、可溶性糖含量、P含量、N∶P与土壤水分含量呈显著或极显著相关,且均与P含量显著或极显著相关,与N素无相关性。以上研究结果表明,随着土壤水分含量的持续减少马尾松可通过调整针叶中NSC含量的积累及分配和提高针叶N、P含量来适应缺水环境,P含量的增加对NSC含量波动及可溶性糖和淀粉的相互转化起促进作用。  相似文献   

14.
Biochemically based models of C(3) photosynthesis can be used to predict that when photosynthesis is limited by the amount of Rubisco, increasing atmospheric CO(2) partial pressure (pCO(2)) will increase light-saturated linear electron flow through photosystem II (J(t)). This is because the stimulation of electron flow to the photosynthetic carbon reduction cycle (J(c)) will be greater than the competitive suppression of electron flow to the photorespiratory carbon oxidation cycle (J(o)). Where elevated pCO(2) increases J(t), then the ratio of absorbed energy dissipated photochemically to that dissipated non-photochemically will rise. These predictions were tested on Dactylis glomerata grown in fully controlled environments, at either ambient (35 Pa) or elevated (65 Pa) pCO(2), and at two levels of nitrogen nutrition. As was predicted, for D. glomerata grown in high nitrogen, J(t) was significantly higher in plants grown and measured at elevated pCO(2) than for plants grown and measured at ambient pCO(2). This was due to a significant increase in J(c) exceeding any suppression of J(o). This increase in photochemistry at elevated pCO(2) protected against photoinhibition at high light. For plants grown at low nitrogen, J(t) was significantly lower in plants grown and measured at elevated pCO(2) than for plants grown and measured at ambient pCO(2). Elevated pCO(2) again suppressed J(o); however growth in elevated pCO(2) resulted in an acclimatory decrease in leaf Rubisco content that removed any stimulation of J(c). Consistent with decreased photochemistry, for leaves grown at low nitrogen, the recovery from a 3-h photoinhibitory treatment was slower at elevated pCO(2).  相似文献   

15.
Carbon dioxide is a by-product of mammalian cell metabolism that will build up in culture if it is not removed from the medium. Increased carbon dioxide levels are generally not a problem in bench-top bioreactors, but inhibitory levels can easily be reached in large-scale vessels, especially if the aeration gas is enriched in oxygen. Due to the equilibrium attained between dissolved CO(2) and bicarbonate, increased pCO(2) is associated with increased osmolality in bioreactors with pH control. While a few preliminary reports indicate that elevated pCO(2) levels can inhibit cell growth and/or recombinant protein production, no comprehensive analysis of the interrelated effects of elevated pCO(2) and osmolality has been published. We have examined the effects of 140, 195, and 250 mm Hg (187, 260, and 333 mbar, respectively) pCO(2) (with and without osmolality control) on the growth of and recombinant tPA production by MT2-1-8 Chinese hamster ovary (CHO) cells. The effects of elevated osmolality were also investigated at the control pCO(2) of 36 mm Hg. Elevated pCO(2) at 310 mOsm/kg osmolality inhibited cell growth in a dose-dependent fashion, with a maximum decrease of 30% in the specific growth rate (mu) at 250 mm Hg. Osmolality alone had no effect on mu, but the combination of elevated pCO(2) and osmolality increased the maximal reduction in mu to 45%. Elevated pCO(2) at 310 mOsm/kg osmolality decreased the specific tPA production rate (q(tPA)) by up to 40% at 250 mm Hg. Interestingly, while increased osmolality decreased q(tPA) significantly at 140 mm Hg pCO(2), it had no effect or even increased q(tPA) at 195 and 250 mm Hg. (c) 1996 John Wiley & Sons, Inc.  相似文献   

16.
Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies Karst.) seedlings were exposed to realistically elevated O3 levels in open‐air experiments over three growing seasons. The total O3 exposure doses were 1.2 × (1991), 1.5 × (1992) and 1.7 × (1993) ambient levels. During the 1992 and 1993 growing seasons pine and spruce seedlings received two different levels of nitrogen supply. Effects on growth, mycorrhiza formation, needle ultrastructure, primary and secondary compounds were studied. Ozone exposure had only slight effects on biomass production, growth height and nutrient content of studied conifers. Higher nitrogen availability improved growth of the seedlings and resulted in higher concentration of nitrogen in needles. In Scots pine O3 exposure did not have effects on quantity of total mycorrhizas and short roots, while higher nitrogen availability decreased quantity of mycorrhizas and short roots. In both tree species O3 exposure induced O3‐related ultrastructural symptoms, e.g. granulation and dark staining of the chloroplast stroma in the needle mesophyll cells, at both nitrogen availability levels. Ozone exposure and nitrogen availability did not have significant effects on starch concentrations in either tree species. Concentrations of some individual terpenes were higher in O3‐exposed needles, while concentrations of individual and total resin acids, total phenolics and catechins were not affected by O3 exposure. Nitrogen availability did not have substantial effects on concentrations of monoterpenes. By contrast, concentrations of some individual and total resin acids were lower in pine needles and higher in spruce needles with higher nitrogen availability, while phenolic concentration in spruce needles decreased at higher nitrogen availability. The results suggest that realistically elevated levels of O3 in the field can have some negative effects on the mesophyll ultrastructure of conifer needles, but carbon allocation to root and shoot growth and secondary metabolites are not affected substantially.  相似文献   

17.
MALDI-TOF mass spectrometry and 13C NMR spectroscopy were applied to unveil typical characteristics of condensed tannins of leaves and needles from willow (Salix alba), spruce (Picea abies) and beech (Fagus sylvatica) of three tree species that are ubiquitous in German forests and landscapes. For further evaluation, lime (Tilia cordata) was included. The 13C NMR spectroscopy confirmed the purity of the condensed tannin fractions and the efficiency of the procedure used for their extraction. While signals representative for procyanidin units are observable in all liquid-state 13C NMR spectra, resonance lines of prodelphinidin were only detected in those obtained from the condensed tannins of spruce needles and beech leaves. Typical signals in the chemical shift region between 70 and 90 ppm demonstrated the presence of stereoisomers (catechin/epicatechin; gallocatechin/ epigallocatechin). The MALDI-TOF mass spectra of the condensed tannins show signals of polymers of up to undecamers. Supporting the observations from the NMR spectroscopy, the mass spectra of the willow and lime leaf condensed tannins were identified as polymers with mainly procyanidin units, while the polymers of the spruce needle and beech leaves exhibit varying procyanidin/prodelphinidin ratios. Post source decay (PSD) fragmentation lead to a sequential loss of monomers and allowed a detailed characterization and sequencing of individual chains. In the case of the condensed tannins of lime this technique clearly excludes a pelargonidin terminal unit followed by a prodelphinidin unit, which would result in the same molecular masses as a polymer solely built up of procyanidin units.  相似文献   

18.
19.
The role of glutathione (GSH) in the differentiated state of insulin-secreting cells was studied using 2-mercaptoethanol as a means of varying intracellular GSH levels. 2-Mercaptoethanol (50 microM) caused a marked increase of GSH in two rat insulinoma cell lines, RINm5F and INS-1, the latter being dependent on the presence of 2-mercaptoethanol for survival in tissue culture. The effect of 2-mercaptoethanol on GSH was shared by other thiol compounds. Since in other cell types 2-mercaptoethanol is thought to act on cystine transport, thereby increasing the supply of cysteine for GSH synthesis, we have studied [35S]cystine-uptake in INS-1 cells. At equimolar concentrations to cystine, 2-mercaptoethanol caused stimulation of [35S]cystine-uptake. The effect persisted in the absence of extracellular Na+, probably suggesting the involvement of the Xc- carrier system. INS-1 cells with a high GSH level, cultured 48 h with 2-mercaptoethanol, displayed a lower cystine uptake than control cells with a low GSH content. The effect of variations of the GSH levels on short-term insulin release was studied. No alteration of glyceraldehyde-induced or KCl-induced insulin release in RINm5F cells was detected. In contrast, both in islets and in INS-1 cells, a high GSH level was associated with a slightly lower insulin release. In INS-1 cells the effect was more marked at low glucose concentrations, resulting in an improved stimulation of insulin secretion. On the other hand, in islets, a decrease in the incremental insulin release evoked by glucose was seen. As in other cell types, oxidized glutathione (GSSG) was less than 5% of total GSH, and in INS-1 cells no change in the GSH/GSSG ratio was detected during glucose-induced or 3-isobutyl-1-methylxanthine-induced insulin release. In conclusion, 2-mercaptoethanol-dependent INS-1 cells, as well as RINm5F cells and islets of Langerhans, display a low capacity in maintaining intracellular levels of GSH in tissue culture without extracellular thiol supplementation; 2-mercaptoethanol possibly acts by promoting cyst(e)ine transport; changes in GSH levels caused a moderate effect on the differentiated function of insulin-secreting cells.  相似文献   

20.
Using the Swiss Canopy Crane CO2 enrichment facility, the beech weevil's host choice in a CO2-enriched atmosphere and the in situ effect of its infestation on the chemistry of host leaves were investigated. The fraction of infested leaves was larger on CO2-enriched trees, suggesting that weevil impact on beech may increase as atmospheric CO2 concentration keeps rising. Egg insertion in the central leaf vein partially interrupts phloem and xylem transport. Because of this separation between the source of photosynthates, the leaf tip, and the rest of the plant, the leaf tip becomes enriched in non-structural carbohydrates and depleted in nitrogen. Elevated CO2 slightly enhanced non-structural carbohydrates in uninfested leaves, but exerted no further increase in infested leaf part, suggesting a saturation effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号