首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J Berman  G Stoner  C Dawe  J Rice  E Kingsbury 《In vitro》1978,14(8):675-685
Nine cultures of fibroblast cell types and 13 epithelial-like cell types were maintained for 1 week in media supplemented with L-asborbic acid (50 microgram per ml). All fibroblast-like cultures produced extracellular fibers that stained positively by a silver-impregnation reticulin stain. Nine of the 13 epithelial-like cultures produced fibers that stained positively for reticulin. Nearly all cultures not supplemented with ascorbic acid showed no fiber staining. Those few lines that stained positively for reticulin in the absence of ascorbic-acid supplementation demonstrated only slight reticulin formation. Reticulin from one fibroblast culture and one epithelial culture was examined by electron microscopy, and the silver-impregnated fibrils were morphologically identical to collagen. The reticulin was digestible with collagenase, providing further evidence that the silver-impregnation reticulin stain identifies collagen in culture. The demonstartion of collagen can be performed easily in histology laboratories using Formalin-fixed cells, and provides a means of assaying a functional property of cells in culture which is characteristic of connective tissue fibroblasts in general as well as certain specialized epithelia.  相似文献   

2.
Summary Nine cultures of fibroblast cell types and 13 epithelial-like cell types were maintained for 1 week in media supplemented with L-asborbic acid (50 μg per ml). All fibroblast-like cultures produced extracellular fibers that stained positively by a silver-impregnation reticulin stain. Nine of the 13 epithelial-like cultures produced fibers that stained positively for reticulin. Nearly all cultures not supplemented with ascorbic acid showed no fiber staining. Those few lines that stained positively for reticulin in the absence of ascorbic-acid supplementation demonstrated only slight reticulin formation. Reticulin from one fibroblast culture and one epithelial culture was examined by electron microscopy, and the silver-impregnated fibrils were morphologically identical to collagen. The reticulin was digestible with collagenase, providing further evidence that the silver-impregnation reticulin stain identifies collagen in culture. The demonstration of collagen can be performed easily in histology laboratories using Formalin-fixed cells, and provides a means of assaying a functional property of cells in culture which is characteristic of connective tissue fibroblasts in general as well as certain specialized epithelia.  相似文献   

3.
The different types of fibres of the collagenous and elastic systems can be demonstrated specifically in tissue sections by comparing the typical ultrastructural picture of each of the fibre types with studies using selective staining techniques for light microscopy. A practicalmodus operandi, which includes the recommended staining procedures and interpretation of the results, is presented. Micrographs and tables are provided to summarize the differential procedures. Reticulin fibres display a distinct argyrophilia when studied by means of silver impregnation techniques, and show up as a thin meshwork of weakly birefringent, greenish fibres when examined with the aid of the Picrosirius-polarization method. In addition, electron-microscopic studies showed that reticulin fibres are composed of a small number of thin collagen fibrils, contrasting with the very many thicker fibrils that could be localized ultrastructurally to the sites where non-argyrophilic, coarse collagen fibres had been characterized by the histochemical methods used. The three different fibre types of the elastic system belong to a continuous series: oxytalan—elaunin—elastic (all of the fibre types comprising collections of microfibrils with, in the given sequence, increasing amounts of elastin). The three distinct types of elastic system fibres have different staining characteristics and ultrastructural patterns. Ultrastructurally, a characteristic elastic fibre consists of two morphologically different components: a centrally located solid cylinder of amorphous and homogeneous elastin surrounded by tubular microfibrils. An oxytalan fibre is composed of a bundle of microfibrils, identical to the elastic fibre microfibrils, without amorphous material. In elaunin fibres, dispersed amorphous material (elastin) is intermingled among the microfibrils.  相似文献   

4.
Cryopreservation is commonly used for the long-term storage of heart valve allografts. Despite the excellent hemodynamic performance and durability of cryopreserved allografts, reports have questioned whether cryopreservation affects the valvular structural proteins, collagen and elastin. This study uses two-photon laser scanning confocal microscopy (LSCM) to evaluate the effect of cryopreservation on collagen and elastin integrity within the leaflet and conduit of aortic and pulmonary human heart valves. To permit pairwise comparisons of fresh and cryopreserved tissue, test valves were bisected longitudinally with one segment imaged fresh and the other imaged after cryopreservation and brief storage in liquid nitrogen. Collagen was detected by second harmonic generation (SHG) stimulation and elastin by autofluorescence excitation. Qualitative analysis of all resultant images indicated the maintenance of collagen and elastin structure within leaflet and conduit post-cryopreservation. Analysis of the optimized percent laser transmission (OPLT) required for full dynamic range imaging of collagen and elastin showed that OPLT observations were highly variable among both fresh and cryopreserved samples. Changes in donor-specific average OPLT in response to cryopreservation exhibited no consistent directional trend. The donor-aggregated results predominantly showed no statistically significant change in collagen and elastin average OPLT due to cryopreservation. Since OPLT has an inverse relationship with structural signal intensity, these results indicate that there was largely no statistical difference in collagen and elastin signal strength between fresh and cryopreserved tissue. Overall, this study indicates that the conventional cryopreservation of human heart valve allografts does not detrimentally affect their collagen and elastin structural integrity.  相似文献   

5.
Lung fibrosis is characterized by excessive deposition of extracellular matrix. This not only affects tissue architecture and function, but it also influences fibroblast behavior and thus disease progression. Here we describe the expression of elastin, type V collagen and tenascin C during the development of bleomycin-induced lung fibrosis. We further report in vitro experiments clarifying both the effect of myofibroblast differentiation on this expression and the effect of extracellular elastin on myofibroblast differentiation.Lung fibrosis was induced in female C57Bl/6 mice by bleomycin instillation. Animals were sacrificed at zero to five weeks after fibrosis induction. Collagen synthesized during the week prior to sacrifice was labeled with deuterium. After sacrifice, lung tissue was collected for determination of new collagen formation, microarray analysis, and histology. Human lung fibroblasts were grown on tissue culture plastic or BioFlex culture plates coated with type I collagen or elastin, and stimulated to undergo myofibroblast differentiation by 0–10 ng/ml transforming growth factor (TGF)β1. mRNA expression was analyzed by quantitative real-time PCR.New collagen formation during bleomycin-induced fibrosis was highly correlated to gene expression of elastin, type V collagen and tenascin C. At the protein level, elastin, type V collagen and tenascin C were highly expressed in fibrotic areas as seen in histological sections of the lung. Type V collagen and tenascin C were transiently increased. Human lung fibroblasts stimulated with TGFβ1 strongly increased gene expression of elastin, type V collagen and tenascin C. The extracellular presence of elastin increased gene expression of the myofibroblastic markers α smooth muscle actin and type I collagen.The extracellular matrix composition changes dramatically during the development of lung fibrosis. The increased levels of elastin, type V collagen and tenascin C are probably the result of increased expression by fibroblastic cells; reversely, elastin influences myofibroblast differentiation. This suggests a reciprocal interaction between fibroblasts and the extracellular matrix composition that could enhance the development of lung fibrosis.  相似文献   

6.
Summary NaOH solutions extract elastin and collagen from epoxy-embedded thin sections containing rat cardiac connective tissue. Extraction results in a reverse staining effect of clastin and collagen ultrastructure. Microfibril contrast is enhanced by NaOH treatment. This phenomenon finds application in the possibility of differentiating elastin, collagen, and microfibrils at the ultrastructural level.  相似文献   

7.
The protein composition in the extracellular matrix of cultured neonatal rat aortic smooth muscle cells has been monitored over time in culture. The influence of ascorbate on insoluble elastin and collagen has been described. In the absence of ascorbate, the cells accumulate an insoluble elastin component which can account for as much as 50% of the total protein in the extracellular matrix. In the presence of ascorbate, the amount of insoluble collagen increases, while the insoluble elastin content is significantly less. When ascorbate conditions are varied at different times during the culture, the extracellular matrices are altered with respect to collagen and elastin ratios. The decrease in elastin accumulation in the presence of ascorbate may be explained by an overhydroxylation of tropoelastin. Approximately 1/3 of the prolyl residues in the soluble elastin fractions isolated from cultures grown in the presence of ascorbate are hydroxylated. Since the insoluble elastin accumulated in these cultures contain the unique lysine-derived cross-links in amounts comparable to aortic tissue, this culture system proves ideal for studying the influence of extracellular matrix elastin on cell growth and metabolism.  相似文献   

8.
We describe an in vitro model that we have used to evaluate dermal substitutes and to obtain data on cell proliferation, the rate of degradation of the dermal equivalent, contractibility and de novo synthesis of collagen. We tested three classes of collagenous materials: (1) reconstituted non-crosslinked collagen, (2) reconstituted collagen that was chemically crosslinked with either glutaraldehyde, aluminium alginate or acetate, and (3) native collagen fibres, with or without other extracellular matrix molecules (elastin hydrolysate, hyaluronic acid or fibronectin). The non-crosslinked reconstituted collagen was degraded rapidly by human fibroblasts. Teh chemically crosslinked materials proved to be cytotoxic. Native collagen fibres were stable. In the absence of ascorbic acid, the addition of elastin hydrolysate to this type of matrix reduced the rate of collagen degradation. Both elastin hydrolysate and fibronectin partially prevented fibroblast-mediated contraction. Hyaluronic acid was only slightly effective in reducing the collagen degradation rate and more fibroblast-mediated contraction of the material was found than for the native collagen fibres with elastin hydrolysate and fibronectin. In the presence of ascorbate, collagen synthesis was enhanced in the native collagen matrix without additions and in the material containing elastin hydrolysate, but not in the material with hyaluronic acid. These results are indicative of the suitability of tissue substitutes for in vivo application.  相似文献   

9.
SynerGraft® (SG) decellularized–cryopreserved cardiac valve allografts have been developed to provide a valve replacement option that has reduced antigenicity, retained structural integrity, and the ability to be stored long-term until needed for implantation. However, it is critical to ensure that both the SG processing and cryopreservation of these allografts do not detrimentally affect the extracellular matrix architecture within the tissue. This study evaluates the effects of SG decellularization and subsequent cryopreservation on the extracellular matrix integrity of allograft heart valves. Human aortic and pulmonary valves were trisected, with one-third of each either left fresh (no further processing after dissection), decellularized, or decellularized and cryopreserved. Two-photon laser scanning confocal microscopy was used to visualize collagen and elastin in leaflets and conduits. The optimized percent laser transmission (OPLT) required for full dynamic range imaging of each site was determined, and changes in OPLT were used to infer changes in collagen and elastin signal intensity. Collagen fiber crimp period and collagen and elastin fiber diameter were measured in leaflet tissue. Statistically significant differences in OPLT and the dimensional characteristics of collagen and elastin in study groups were determined through single factor ANOVA. The majority of donor-aggregated average OPLT observations showed no statistically significant differences among all groups, indicating no difference in collagen or elastin signal strength. Morphometric analysis of collagen and elastin fibers revealed no significant alterations in treated leaflet tissues relative to fresh tissues. Collagen and elastin structural integrity within allograft heart valves are maintained through SynerGraft® decellularization and subsequent cryopreservation.  相似文献   

10.
Elastin and collagen fibers play important roles in the mechanical properties of aortic media. Because knowledge of local fiber structures is required for detailed analysis of blood vessel wall mechanics, we investigated 3D microstructures of elastin and collagen fibers in thoracic aortas and monitored changes during pressurization. Using multiphoton microscopy, autofluorescence images from elastin and second harmonic generation signals from collagen were acquired in media from rabbit thoracic aortas that were stretched biaxially to restore physiological dimensions. Both elastin and collagen fibers were observed in all longitudinal–circumferential plane images, whereas alternate bright and dark layers were observed along the radial direction and were recognized as elastic laminas (ELs) and smooth muscle-rich layers (SMLs), respectively. Elastin and collagen fibers are mainly oriented in the circumferential direction, and waviness of collagen fibers was significantly higher than that of elastin fibers. Collagen fibers were more undulated in longitudinal than in radial direction, whereas undulation of elastin fibers was equibiaxial. Changes in waviness of collagen fibers during pressurization were then evaluated using 2-dimensional fast Fourier transform in mouse aortas, and indices of waviness of collagen fibers decreased with increases in intraluminal pressure. These indices also showed that collagen fibers in SMLs became straight at lower intraluminal pressures than those in EL, indicating that SMLs stretched more than ELs. These results indicate that deformation of the aorta due to pressurization is complicated because of the heterogeneity of tissue layers and differences in elastic properties of ELs, SMLs, and surrounding collagen and elastin.  相似文献   

11.
Spatial distribution of collagen and elastin fibers in the lungs   总被引:3,自引:0,他引:3  
Surface tension forces acting on the thin-wall alveolar septa and the collagen-elastin fiber network are major factors in lung parenchymal micromechanics. Quantitative serial section analysis and morphometric evaluations of planar sections were used to determine the spatial location of collagen and elastin fibers in Sprague-Dawley rat and normal human lung samples. A large concentration of connective tissue fibers was located in the alveolar duct wall in both species. For rats, the tissue densities of collagen and elastin fibers located within 10 microns of an alveolar duct were 13 and 9%, respectively. In human lung samples, the tissue densities of collagen and elastin fibers within 20 microns of an alveolar duct were 18 and 16%, respectively. In both species, bands of elastin fibers formed a continuous ring around each alveolar mouth. In human lungs, elastin fibers were found to penetrate significantly deeper into alveolar septal walls than they did in rat lungs. The concentration of connective tissue elements in the alveolar duct walls of both species is consistent with their proposed roles as the principal load-bearing elements of the lung parenchyma.  相似文献   

12.
Cartilage is categorized into three general subgroups, hyaline, elastic, and fibrocartilage, based primarily on morphologic criteria and secondarily on collagen (Types I and II) and elastin content. To more precisely define the different cartilage subtypes, rabbit cartilage isolated from joint, nose, auricle, epiglottis, and meniscus was characterized by immunohistochemical (IHC) localization of elastin and of collagen Types I, II, V, VI, and X, by biochemical analysis of total glycosaminoglycan (GAG) content, and by biomechanical indentation assay. Toluidine blue staining and safranin-O staining were used for morphological assessment of the cartilage subtypes. IHC staining of the cartilage samples showed a characteristic pattern of staining for the collagen antibodies that varied in both location and intensity. Auricular cartilage is discriminated from other subtypes by interterritorial elastin staining and no staining for Type VI collagen. Epiglottal cartilage is characterized by positive elastin staining and intense staining for Type VI collagen. The unique pattern for nasal cartilage is intense staining for Type V collagen and collagen X, whereas articular cartilage is negative for elastin (interterritorially) and only weakly positive for collagen Types V and VI. Meniscal cartilage shows the greatest intensity of staining for Type I collagen, weak staining for collagens V and VI, and no staining with antibody to collagen Type X. Matching cartilage samples were categorized by total GAG content, which showed increasing total GAG content from elastic cartilage (auricle, epiglottis) to fibrocartilage (meniscus) to hyaline cartilage (nose, knee joint). Analysis of aggregate modulus showed nasal and auricular cartilage to have the greatest stiffness, epiglottal and meniscal tissue the lowest, and articular cartilage intermediate. This study illustrates the differences and identifies unique characteristics of the different cartilage subtypes in rabbits. The results provide a baseline of data for generating and evaluating engineered repair cartilage tissue synthesized in vitro or for post-implantation analysis.  相似文献   

13.
Appropriate matrix formation, turnover and remodeling in tissue-engineered small diameter vascular conduits are crucial for their long-term function. The interaction between cells and extra-cellular components is indispensable in determining cellular behavior in tissues and on biomaterials. The fibrin that contains fibronectin shows promise in most aspects as a tissue engineering scaffold, whereas, deposition of elastin and collagen by endothelial cells grown in the lumen of the construct is desirable to improve post implant retention, mechanical stability and vaso-responsiveness. So far there is no report on production of extra-cellular matrix (ECM) proteins, elastin and collagen by endothelial cells (EC) in in vitro culture conditions. In this study, we have used a biomimetic approach of providing multiple growth factors (GF) in the fibronectin (FN)-containing fibrin matrix to induce production of elastin and collagen by the endothelial cells for application in vascular tissue engineering. Deposition of elastin and collagens with matrix remodeling is demonstrated through qualitative analysis of the matrices that were recovered after growing cells on the initial fibrin-FN-GF matrix. Expressions of mRNA for both proteins were assessed by real time polymerase chain reaction (RT-PCR) to estimate the effects of multiple growth factor compositions. Marked deposition of elastin and collagen was evidenced by staining the recovered matrix after different culture intervals. Obviously, the biomimetic environment created by adding angiogenic and platelet growth factors in the fibrin-fibronectin-gelatin matrix can induce deposition of collagens and elastin by EC.  相似文献   

14.
Y C Fung 《Biorheology》1989,26(2):279-289
The width and curvature of the collagen and elastin fiber bundles in the human pulmonary interalveolar septa and alveolar mouths are measured. The data, together with the known mechanical properties of collagen and elastin fibers, are used to derive the incremental elastic moduli of the lung tissue. The constitutive equation for small incremental stress and strain superposed on a homeostatic inflated lung is linear and isotropic, and characterized by two material constants.  相似文献   

15.
The changes in crosslink contents in tissues after formalin fixation   总被引:1,自引:0,他引:1  
The aim of this study was to detect crosslinks of collagen and elastin in formalin-fixed tissue, to perform quantification of these crosslinks, and to investigate the effects of formalin fixation on crosslink contents in human yellow ligament and cartilage. Pyridinoline (Pyr) is a stable and nonreducible crosslink of collagen. Pentosidine (Pen) is a senescent crosslink formed between arginine and lysine in matrix proteins, including collagen. Desmosine (Des) and its isomer isodesmosine (Isodes) are crosslinks specifically found in elastin. It is useful to measure crosslink contents of collagen and elastin as a way of investigating the properties of various tissues or their pathological changes. If it is possible to evaluate crosslinks of collagen and elastin in formalin-fixed tissues, we can investigate crosslinks in a wide variety of tissues. We used HPLC to compare the concentrations of Pyr, Pen, Des, and Isodes in the formalin-fixed tissues with their concentrations in the frozen tissues. Pyr and Pen were detected in both the formalin-fixed yellow ligament and the cartilage, and their concentrations were not significantly affected by or related to the duration of formalin fixation. Des and Isodes were detected in the formalin-fixed yellow ligament but in significantly lower amounts compared to the frozen samples. We concluded that crosslinks of collagen were preserved in formalin, but crosslinks of elastin were not preserved in it. The reason for this might be that formalin did not fix elastin tissues sufficiently or it destroyed, masked, or altered elastin crosslinks.  相似文献   

16.
An attempt was made to establish a relationship between the content of elastin and collagen in the rat tissues during the process of aging. The content of collagen fractions and elastin in the rat liver, lung and skin, as well as the elastolytic activity of blood serum were determined. It was found that the concentration of elastin as well as the elastolytic activity of blood serum are increasing during the maturation of rats and the total collagen content is increasing too. After the animals reached the age from twelve to twenty four months--above mentioned values began to decrease. It is concluded that the changes in the content of the two fibrous proteins of the connective tissue depend on age.  相似文献   

17.
The distribution of collagen type III throughout the pulp tissue from human developing tooth was studied using specific antibodies, immuno-fluorescence as well as immuno-peroxidase labelling for electron microscopy. Our results indicate that type III and type I collagen are present in the pulp. The staining intensity seems to correlate with the relatively high proportions of type III collagen biochemically found in pulp. In addition, type III collagen and reticulin fibres are similarly distributed, except that the Von Korff fibres were never detected with anti-type III collagen antibodies. Correspondingly, at the ultrastructural level, type III collagen appears as fine, branched filaments or electron dense material distributed throughout the tissue and particularly in close association with the plasma membrane of pulp fibroblasts. In contrast, type I collagen appears as typical coarse cross banded fibres.  相似文献   

18.
Summary The distribution of collagen type III throughout the pulp tissue from human developing tooth was studied using specific antibodies, immunofluorescence as well as immuno-peroxidase labelling for electron microscopy.Our results indicate that type III and type I collagen are present in the pulp. The staining intensity seems to correlate with the relatively high proportions of type III collagen biochemically found in pulp. In addition, type III collagen and reticulin fibres are similarly distributed, except that the Von Korff fibres were never detected with anti-type III collagen antibodies. Correspondingly, at the ultrastructural level, type III collagen appears as fine, branched filaments or electron dense material distributed throughout the tissue and particularly in close association with the plasma membrane of pulp fibroblasts. In contrast, type I collagen appears as typical coarse cross banded fibres.  相似文献   

19.
Collagen and elastin are recognized as two major connective tissue proteins of human yellow ligament. In both collagen and elastin there are many kinds of intra- or intermolecular crosslinks. Pyridinoline (Pyr) and deoxypyridinoline (Dpyr) are mature crosslinks which maintain the structure of the collagen fibril. Desmosine (Des) and isodesmosine (Isodes) represent the major crosslinking components of elastin. Pentosidine (Pen), which is a senescent crosslink and one of the advanced glycation end products, accumulates with age in tissue proteins including collagen. We developed a direct and one-injection HPLC method to measure Pyr, Dpyr, Des, Isodes, and Pen in the hydrolysate of human yellow ligament. This method used one column and two detectors. Recovery rates of Pyr, Dpyr, Pen, Des, and Isodes were 86.4-98.3, 83.6-96.8, 78.7-95.6, 83.6-97.9, and 85.6-99.3%, respectively (n = 8). The intraassay coefficients of variation for Pyr, Dpyr, Pen, Des, and Isodes were 3.7, 4.1, 5.4, 4.5, and 4.7%, respectively (n = 8), and the interassay coefficients of variation for Pyr, Dpyr, Pen, Des, and Isodes were 4.4, 5.1, 4.9, 4.6 and 4.1%, respectively. Linear regression analysis showed the linearity (r = 0.99, P = 0.0001) of calibration line for each Pyr, Dpyr, Pen, Des, and Isodes. Using this method, we investigated age-related changes in the crosslinks of collagen and elastin in human yellow ligament. There was a significant correlation between Pen and age, but no correlations with Pyr, Dpyr, Des, and Isodes. We believe that this method is useful for investigating the content of these crosslinks in both collagen and elastin under various conditions.  相似文献   

20.
The aim of this study was to determine the effect that a thermal renal denervation cycle has on the mechanical properties of the arterial wall. Porcine arterial tissue specimens were tested in three groups: native tissue, decellularized tissue, decellularized with collagen digestion (e.g. elastin only). One arterial specimen was used as an unheated control specimen while another paired specimen was subjected to a thermal cycle of 70 °C for 120 s (n=10). The specimens were subjected to tensile loading and a shrinkage analysis. We observed two key results: The mechanical properties associated with the elastin extracellular matrix (ECM) were not affected by the thermal cycle. The effect of the thermal cycle on the collagen (ECM) was significant, in both the native and decellularized groups the thermal cycle caused a statistically significant decrease in stiffness, and failure strength, moreover the native tissue demonstrated a 27% reduction in lumen area post exposure to the thermal cycle. We have demonstrated that a renal denervation thermal cycle can significantly affect the mechanical properties of an arterial wall, and these changes in stiffness and failure strength were associated with alterations to the collagen rather than the elastin extracellular matrix component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号