首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
卢善发 《植物学报》2000,17(6):481-491
植物脂肪酸既具重要生理功能,又有巨大食用和工业价值。其生物合成途径较为复杂,涉及乙酰_CoA羧化酶、脂肪酸合成酶、脂肪酸去饱和酶和脂肪酸延长酶等一系列酶。近年来,对脂肪酸生物合成途径进行了大量研究,克隆出许多相关基因,初步阐明了脂肪酸合成规律,并在此基础上开展了利用基因工程技术调控脂肪酸合成研究,取得可喜进展。本文详细介绍了植物饱和脂肪酸、不饱和脂肪酸和超长链脂肪酸的生物合成与基因工程研究的新结果。  相似文献   

2.
植物脂肪酸的生物合成与基因工程   总被引:27,自引:1,他引:27  
卢善发 《植物学通报》2000,17(6):481-491
植物脂肪酸既具重要生理功能,又有巨大食用和工业价值。其生物合成途径较为复杂,涉及乙酰-CoA羟化酶、脂肪酸合成酶、脂肪酸去饱和酶和脂肪酸延长酶等一系列酶。近年来,对脂肪酸生物合成途径进行了大量研究,克隆出许多相关基因,初步阐明了脂肪酸合成规律,并在此基础上开展了利用基因工程技术调控脂肪酸合成研究,取得可喜进展。本文详细介绍了植物饱和脂肪酸、不饱和脂肪酸和超长链脂肪酸的生物合成与基因工程研究的新结果  相似文献   

3.
红树植物红海榄脂肪酸的GC-MS分析   总被引:7,自引:0,他引:7  
采用索氏提取法对红树植物红海榄(Rhizophora stylosa)叶中的脂肪酸进行提取,甲酯化后利用气相色谱-质谱联用仪对脂肪酸成分进行分离和鉴定,鉴定出了12种脂肪酸,占脂肪酸总量的84.95%,其中主要包括十六酸(棕榈酸)(40.49%),9-十八碳烯酸(油酸)(17.24%),9,12-十八碳二烯酸(亚油酸)(11.24%)等。  相似文献   

4.
The soybean aphid (Aphis glycines Matsumura) is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of “metabolic hijacking” by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor.  相似文献   

5.
Oxygenated fatty acids such as ricinoleic acid and vernolic acid can serve in the industry as synthons for the synthesis of a wide range of chemicals and polymers traditionally produced by chemical conversion of petroleum derivatives. Oxygenated fatty acids can also be useful to synthesize specialty chemicals such as cosmetics and aromas. There is thus a strong interest in producing these fatty acids in seed oils (triacylglycerols) of crop species. In the last 15 years or so, much effort has been devoted to isolate key genes encoding proteins involved in the synthesis of oxygenated fatty acids and to express them in the seeds of the model plant Arabidopsis thaliana or crop species. An often overlooked but rich source of enzymes catalyzing the synthesis of oxygenated fatty acids and their esterification to glycerol is the biosynthetic pathways of the plant lipid polyesters cutin and suberin. These protective polymers found in specific tissues of all higher plants are composed of a wide variety of oxygenated fatty acids, many of which have not been reported in seed oils (e.g. saturated ω-hydroxy fatty acids and α,ω-diacids). The purpose of this mini-review is to give an overview of the recent advances in the biosynthesis of cutin and suberin and discuss their potential utility in producing specific oxygenated fatty acids for specialty chemicals. Special emphasis is given to the role played by specific acyltransferases and P450 fatty acid oxidases. The use of plant surfaces as possible sinks for the accumulation of high value-added lipids is also highlighted.  相似文献   

6.
This paper describes a method for manipulating plant membrane fatty acid compositions without altering growth temperature or other conditions. Tween-fatty acid esters carrying specific fatty acids were synthesized and applied to various organs of plants growing axenically in glass jars. Treated plants incorporated large amounts of exogenous fatty acids into all acylated membrane lipids detected. Fatty acids were taken up by both roots and leaves. Fatty acids applied to roots were found in leaves, while fatty acids applied to leaves appeared in both leaves higher on the plant and in roots, indicating translocation (probably in the phloem). Foliar application was most effective; up to 20% of membrane fatty acids of leaves above the treated leaf and up to 40% of root membrane fatty acids were exogenously derived. Plants which took up exogenous fatty acids changed their patterns of fatty acid synthesis such that ratios of saturated to unsaturated fatty acids remained essentially unaltered. Fatty acid uptake was most extensively studied in soybean (Glycine max [L.] Merr.), but was also observed in other species, including maize (Zea mays L.), mung beans (Vigna radiata L.), peas (Pisum sativum L.), petunia (Petunia hybrida L.) and tomato (Lycopersicon esculentum Mill.). Potential applications of this system include studying internal transport of fatty acids, regulation of fatty acid and membrane synthesis, and influences of membrane fatty acid composition on plant physiology.  相似文献   

7.
All fatty acids are not equal: discrimination in plant membrane lipids   总被引:1,自引:0,他引:1  
Plant membrane lipids are primarily composed of 16-carbon and 18-carbon fatty acids containing up to three double bonds. By contrast, the seed oils of many plant species contain fatty acids with significantly different structures. These unusual fatty acids sometimes accumulate to >90% of the total fatty acid content in the seed triacylglycerols, but are generally excluded from the membrane lipids of the plant, including those of the seed. The reasons for their exclusion and the mechanisms by which this is achieved are not completely understood. Here we discuss recent research that has given new insights into how plants prevent the accumulation of unusual fatty acids in membrane lipids, and how strict this censorship of membrane composition is. We also describe a transgenic experiment that resulted in an excessive buildup of unusual fatty acids in cellular membranes, and clearly illustrated that the control of membrane lipid composition is essential for normal plant growth and development.  相似文献   

8.
9.
The addition of plant oils to the growth medium stimulated growth and lipid synthesis in the fungus Blakeslea trispora. However, only oils with high content of linoleic and especially linolenic acid enhanced lycopene formation. The increase in lycopene formation was accompanied by accumulation in the neutral lipid fraction of the fatty acids prevailing in plant oils. In contrast, the influence of exogenous lipids on the fatty acid composition of bulk fungal phospholipids was insignificant. Nonetheless, a marked increase in the content of membrane lipids and of their phosphatidylethanolamine content was revealed. Presumably, the main mechanism of stimulation of lycopene formation by the oils involves an increase in the solubility of lycopene in the triacylglycerols of the lipid bodies, which is due to an increase in the desaturation degree of their fatty acids. The predominance of linoleic and especially of linolenic fatty acid in plant oils is regarded as a criterion for selecting the oil species for the purpose of intensifying lycopene synthesis.  相似文献   

10.
植物脂肪酸脱饱和酶特性及转基因研究进展   总被引:5,自引:0,他引:5  
脂肪酸代谢是有机体的基本代谢之一。植物体内首先合成的是饱和脂肪酸,然后在脂肪酸脱饱和酶作用下形成不饱和脂肪酸。目前已经从很多植物中克隆到了脂肪酸合成相关的酶,并对其功能进行了鉴定。详细介绍了近年来应用基因工程技术对植物油中不饱和脂肪酸含量和组分进行改造所取得的进展,并对其在植物抗性育种中的应用进行了展望。  相似文献   

11.
In two sheep fitted with esophageal cannulas the stimulation of resting saliva secretion by intrabuccal injections of volatile fatty acids (VFA) and of certain organic plant compounds was investigated. Volatile fatty acids, salicin and vanillin increased saliva flow rate by 100, 76 and 72% over 2.5 min after injection. Minor positive or negative effects were obtained with quercitrin, protocatechuic acid, grass juice, anethole and agaricinic acid. Injections of volatile fatty acids and of salicin induced chewing activities, which were significantly correlated with salivary flow rates. The results indicate that organic plant compounds can provide a stimulus for saliva secretion mediated in part by chewing activities.  相似文献   

12.
13.
植物脂肪酸β-氧化的研究进展   总被引:1,自引:0,他引:1  
脂肪酸的分解代谢在多数有机体中主要通过β-氧化循环进行,在哺乳动物中β-氧化作用发生在线粒体和过氧化物酶体中,而植物和多数真菌类的β-氧化作用只发生在过氧化物酶体中。植物界的过氧化物酶体β-氧化作用不仅存在于脂肪酸的分解代谢和脂质代谢中,也存在于植物激素和氨基酸的代谢中。近来对模式生物的研究发现,过氧化物酶体β-氧化途径在植物信号系统和发育,尤其是茉莉酸的生物合成中起着重要作用。简要介绍了β-氧化途径在脂肪酸分解代谢、植物信号系统和发育中的作用的研究进展。  相似文献   

14.
植物脂肪酸调控基因工程研究   总被引:18,自引:0,他引:18  
石东乔  周奕华  陈正华 《生命科学》2002,14(5):291-295,317
脂肪酸代谢是植物最重要的代谢途径之一,脂肪酸在人们日常生活及工业生产上有重要用途,作者阐明了植物脂肪酸代谢的基本途径,并对近些年来植物脂肪酸代谢的遗传调控及基因工程的研究进展做了较为详细的总结,同时对植物脂肪酸调控基因工程发展提出了展望。  相似文献   

15.
Biological Control of Phytopathogenic Fungi by Fatty Acids   总被引:1,自引:0,他引:1  
Liu S  Ruan W  Li J  Xu H  Wang J  Gao Y  Wang J 《Mycopathologia》2008,166(2):93-102
The aim of the present study was to evaluate the antifungal activity of fatty acids against phytopathogenic fungi. Two pot experiments were conducted by mixing palmitic and oleic acids in the soil in which poor plant growth was observed. In addition, the antifungal activities of nine fatty acids (butyric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, oleic acid, and linoleic acid) against four phytopathogenic fungi: Alternaria solani, Colletotrichum lagenarium, Fusarium oxysporum f. sp. Cucumerinum, and Fusarium oxysporum f. sp. lycopersici, were assessed by measuring mycelial growth and spore germination via Petri dish assay. The results of the pot experiments showed that the mixture of palmitic and oleic acids enhanced the growth of the seedlings of continuous-tomato and continuous-cucumber. Except for oleic acid, in the Petri dish assay, the fatty acids tested were observed to inhibit the mycelial growth of one or more tested fungi. In addition to the suppression of mycelial growth, butyric acid, caproic acid, caprylic acid, capric acid, lauric acid, and palmitic acid showed an inhibitory effect against spore germination and the extent of inhibition varied with both the type of fatty acids, and the fungi. In particular, capric acid displayed strong inhibitory effect against C. lagenarium on the mycelial growth and spore germination. The saturated fatty acids, i.e. palmitic acids, showed stronger antifungal activity than the unsaturated fatty acids, i.e. oleic acid. It suggests that fatty acids might be applicable to exploring for alternative approaches to integrated control of phytopathogens.  相似文献   

16.
The seeds of many nondomesticated plant species synthesize oils containing high amounts of a single unusual fatty acid, many of which have potential usage in industry. Despite the identification of enzymes for unusual oxidized fatty acid synthesis, the production of these fatty acids in engineered seeds remains low and is often hampered by their inefficient exclusion from phospholipids. Recent studies have established the feasibility of increasing triacylglycerol content in plant leaves, which provides a novel approach for increasing energy density of biomass crops. Here, we determined whether the fatty acid composition of leaf oil could be engineered to accumulate unusual fatty acids. Eleostearic acid (ESA) is a conjugated fatty acid produced in seeds of the tung tree (Vernicia fordii) and has both industrial and nutritional end‐uses. Arabidopsis thaliana lines with elevated leaf oil were first generated by transforming wild‐type, cgi‐58 or pxa1 mutants (the latter two of which contain mutations disrupting fatty acid breakdown) with the diacylglycerol acyltransferases (DGAT1 or DGAT2) and/or oleosin genes from tung. High‐leaf‐oil plant lines were then transformed with tung FADX, which encodes the fatty acid desaturase/conjugase responsible for ESA synthesis. Analysis of lipids in leaves revealed that ESA was efficiently excluded from phospholipids, and co‐expression of tung FADX and DGAT2 promoted a synergistic increase in leaf oil content and ESA accumulation. Taken together, these results provide a new approach for increasing leaf oil content that is coupled with accumulation of unusual fatty acids. Implications for production of biofuels, bioproducts, and plant–pest interactions are discussed.  相似文献   

17.
Anorexia nervosa is a model of simple starvation accompanied by secondary hyperlipoproteinemia. The pattern of plasma fatty acids influences the levels of plasma lipids and lipoproteins. The concentration of plasma lathosterol is a surrogate marker of cholesterol synthesis de novo, concentrations of campesterol and beta-sitosterol reflect resorption of exogenous cholesterol. The aim of the study was to evaluate fatty acids in plasma lipid classes and their relationship to plasma lipids, lipoproteins, cholesterol precursors and plant sterols. We examined 16 women with anorexia nervosa and 25 healthy ones. Patients with anorexia nervosa revealed increased concentrations of total cholesterol, triglycerides, HDL-cholesterol, campesterol and beta-sitosterol. Moreover, a decreased content of n-6 polyunsaturated fatty acids was found in all lipid classes. These changes were compensated by an increased content of monounsaturated fatty acids in cholesteryl esters, saturated fatty acids in triglycerides and both monounsaturated and saturated fatty acids in phosphatidylcholine. The most consistent finding in the fatty acid pattern concerned a decreased content of linoleic acid and a raised content of palmitoleic acid in all lipid classes. The changes of plasma lipids and lipoproteins in anorexia nervosa are the result of complex mechanisms including decreased catabolism of triglyceride-rich lipoproteins, normal rate of cholesterol synthesis and increased resorption of exogenous cholesterol.  相似文献   

18.
Cryptogein is a proteinaceous elicitor of plant defense reactions which also exhibits sterol carrier properties. In this study, we report that this protein binds fatty acids. The stoichiometry of the fatty acid-cryptogein complex is 1:1. Linoleic acid and dehydroergosterol compete for the same site, but elicitin affinity is 27 times lower for fatty acid than for sterol. We show that C7 to C12 saturated and C16 to C22 unsaturated fatty acids are the best ligands. The presence of double bonds markedly increases the affinity of cryptogein for fatty acids. A comparison between elicitins and known lipid transfer proteins is discussed.  相似文献   

19.
The addition of geraniol to cell suspension cultures of Citrus limon resulted in the rapid formation of nerol, citronellol, geranic acid and citronellic acid. Concurrently, a transient accumulation of bound forms of branched chain fatty acids, and, with a few hours delay, of regular chain C2 to C12 fatty acids was elicited. A concerted action of combined alpha/beta-oxidation enzymes on the terpenic acids, followed by an enlarged acetyl CoA pool is suggested. Terpene catabolism in plants and in vitro plant cells is discussed.  相似文献   

20.
目前,利用传统育种方法改良油料作物脂肪酸组分已取得巨大成功,通过有性杂交、X-射线或EMS处理等方法都可用来修饰存在于油菜中脂肪酸的性质。国外已培育出高棕榈酸、高或低亚油酸、高油酸和无芥酸的油菜品种。但由于油料作物基因池(Gene Pool)的局限性使得育种学家不得不寻找其他种质资源。随着基因克隆和遗传转化技术的进步,通过基因工程改良油料作物品质已成可能。本文主要介绍了植物脂肪酸的代谢途径以及通过操纵TAG的生物合成来改变油的成分等研究,其中主要包括脂肪酸链长度的改良、饱和度改良、增加脂肪酸含量以及新的不饱和脂肪酸的改良等方面。不久的将来,转基因油料作物中将会产生更有价值的脂肪酸造福于人类。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号