共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of the pesticide carbendazim (MBC) on the in vitro meiotic maturation of mouse oocytes were evaluated using conventional and confocal fluorescence microscopy. The response of oocytes exposed to 0, 3, 10, or 30 μM MBC during meiotic maturation was analyzed with respect to chromosome organization, meiotic spindle microtubules, and cortical actin using fluorescent labels for each of these structures. Continuous exposure to MBC during the resumption of meiosis resulted in a dose-dependent inhibition of meiotic cell cycle progression at metaphase of meiosis-1. Drug exposure at the metaphase-anaphase transition of meiosis-1 did not interfere with cell cycle progression to metaphase-2 except at high concentrations (30 μM). At the level of spindle microtubule organization, MBC caused a loss of nonacetylated microtubules and a decrease in spindle size at 3 or 10 μM concentrations. Thirty μM MBC prevented spindle assembly when added at the beginning of meiotic maturation or caused spindle pole disruption and fragmentation when added to preformed spindles. Spindle disruption involved a loss of phosphoprotein epitopes, as monitored by MPM-2 staining, and resulted in the appearance of dispersed chromosomes that retained a metaphase-plate location on spindle fragments associated with the oocyte cortex. Polar body extrusion was impaired by MBC, and abnormal polar bodies were observed in most treated oocytes. The results suggest that MBC disrupts cell cycle progression in mouse oocytes by altering meiotic spindle microtubule stability and spindle pole integrity. Mol. Reprod. Dev. 46:351–362, 1997. © 1997 Wiley-Liss, Inc. 相似文献
2.
M. A. Handel P. W. Lane A. C. Schroeder M. T. Davisson 《Molecular reproduction and development》1988,21(4):409-423
A new murine mutation, skeletal fusions with sterility, sks, has been identified. This mutation causes arrest during the pachytene stage of virtually all spermatogenic cells. Defects in chromosome pairing and appearance of the synaptonemal complex during meiosis in the male are apparent, but defective pairing is probably not the cause of sterility. Affected females are functionally infertile. Oocytes are capable of undergoing meiotic maturation in vitro but cannot be fertilized in vitro. Affected individuals of both sexes are characterized by fusions of vertebrae and of ribs. The sks gene has been mapped to Chromosome 4, 16.6 cM distal to the brown locus. 相似文献
3.
R. Gambardella J. G. Duckett F. Alfano M. Gargiulo C. Squillacioti 《Plant biology (Stuttgart, Germany)》1993,106(4):350-355
This correlated immunofluorescence and electron microscope study reveals that the microtubule arrays during meiosis in Timmiella barbuloides mirror those in other mosses but the organization of the metaphase I spindle is quite different. In other mosses the sagittiform metaphase I spindle initially contains four bands of microtubules derived from the tetrahedral system present at prophase. These bands converge towards the division axis and each half spindle contains two focal points of microtubules straddling a cleavage furrow. In Timmiella the sagittiform spindle also contains four microtubular foci derived from the preprophasic tetrahedron. However, one of these contributes to one half spindle, the other half deriving from the three remaining foci orientated at approximately 120° to each other. In contrast to other mosses the sporocytes in Timmiella are hardly lobed, the cleavage-furrows ill-defined, the prophasic plastid positioning in the lobes is also more variable and the organelle band in meiocytes comprises mitochondria alone. 相似文献
4.
MEK (MAPK kinase) is an upstream protein kinase of MAPK in the MOS/MEK/MAPK/p90rsk signaling pathway. We previously reported the function and regulation of MAPK during rat oocyte maturation. In this study, we further investigated the localization and possible roles of MEK1/2. First, immunofluorescent staining revealed that p-MEK1/2 was restricted to the germinal vesicle (GV). After germinal vesicle breakdown (GVBD), p-MEK1/2 condensed in the vicinity of chromosomes and then translocated to the spindle poles at metaphase I, while spindle microtubules stained faintly. When the oocyte went through anaphase I and telophase I, p-MEK1/2 disappeared from spindle poles and became associated with the midbody. By metaphase II, p-MEK1/2 was again localized to the spindle poles. Second, p-MEK1/2 was localized to the centers of cytoplasmic microtubule asters induced by taxol. Third, p-MEK1/2 co-localized with gamma-tubulin in microtubule-organizing centers (MTOCs). Forth, treatment with U0126, a non-competitive MEK1/2 inhibitor, did not affect germinal vesicle breakdown, but caused chromosome mis-alignment in all MI oocytes examined and abnormal spindle organization as well as small cytoplasmic spindle-like structure formation in MII oocytes. Finally, U0126 reduced the number of cytoplasmic asters induced by taxol. Our data suggest that MEK1/2 has regulatory functions in microtubule assembly and spindle organization during rat oocyte meiotic maturation. 相似文献
5.
Matthies HJ Messina LG Namba R Greer KJ Walker MY Hawley RS 《The Journal of cell biology》1999,147(6):1137-1144
Drosophila melanogaster oocytes heterozygous for mutations in the alpha-tubulin 67C gene (alphatub67C) display defects in centromere positioning during prometaphase of meiosis I. The centromeres do not migrate to the poleward edges of the chromatin mass, and the chromatin fails to stretch during spindle lengthening. These results suggest that the poleward forces acting at the kinetochore are compromised in the alphatub67C mutants. Genetic studies demonstrate that these mutations also strongly and specifically decrease the fidelity of achiasmate chromosome segregation. Proper centromere orientation, chromatin elongation, and faithful segregation can all be restored by a decrease in the amount of the Nod chromokinesin. These results suggest that the accurate segregation of achiasmate chromosomes requires the proper balancing of forces acting on the chromosomes during prometaphase. 相似文献
6.
7.
Sperm from mice of the PL/J strain have a high frequency of sperm-head morphology abnormalities. Fluorescence in situ hybridization (FISH) methods revealed that PL/J sperm are also characterized by a high frequency of aneuploidy. The traits of abnormal sperm head morphology and aneuploidy are associated with numerous meiotic abnormalities. Spermatocytes of PL/J mice exhibit chromosome asynapsis during meiotic prophase as well as reduced crossing over, revealed by analysis of both MLH1 foci in pachytene spermatocytes and chiasmata seen at the first meiotic metaphase. During the first meiotic division, roughly one-third of the PL/J spermatocytes exhibit aberrant spindle morphology, with abnormalities including monopolar spindles, split spindle poles, and incomplete spindle formation and centrosomal abnormalities. F1 progeny of a cross between PL/J and C57BL/6J did not exhibit a high frequency of either sperm aneuploidy or sperm head morphology aberrations, as would be expected if the PL/J traits were dominant. Among progeny of a backcross of F1 mice to PL/J, none of 16 males assessed exhibited elevated frequencies of sperm head morphology abnormalities. Four of the individuals exhibited elevated sperm aneuploidy, but not at the levels of the PL/J parents. Thus, it is likely that the aberrant PL/J traits are due to several genes and/or modifiers affecting the generation of both sperm aneuploidy and abnormal sperm head morphology. 相似文献
8.
We have studied the response of interphase and mitotic microtubule arrays in root meristem cells of spring and winter cultivars of wheat Triticum aestivum L. (Moskovskaya 35 and Moskovskaya 39) to cold stress (1 h at 0°C) and acclimation to cold (3–48 h at 0°C). We show that, in general, interphase microtubules are more resistant to cold then mitotic arrays in both cultivars. During cold stress, no changes are detected in the microtubule system of interphase cells of spring wheat, whereas the density of endoplasmic microtubules increases in interphase cells of winter wheat. During mitosis, the density of the kinetochore fibers of the spindle decreases in the cells of both cultivars, but it is prevailing in the cells of spring cultivar of wheat. During acclimation to cold, the disorganization of the cortical microtubule bundles and the enhanced growth of the endoplasmic microtubule network, which is comprised of microtubule converging centers, are observed in cells of both cultivars. However, the mitotic microtubule systems of winter and spring cultivars respond differently to cold acclimation. During prophase, a diffuse tubulin “halo,”followed by the assembly of microtubule converging centers, accumulate at the perinuclear area in the cells of winter wheat. In cells of spring cultivar, the prophase spindle is only detected during initial stages of cold acclimation. During metaphase, aberrant mitotic spindles, abnormal metaphase plates, and the excessive appearance of microtubule converging centers are observed in cells of both cultivars. Acclimation induces the disorganization of the phragmoplast and the formation of multiple microtubule converging centers during telophase in the cells of both cultivars. Microtubule converging centers are detected at the perinuclear area of daughter cells in winter wheat and in the cortical cytoplasm in spring wheat. The excessive formation of microtubule converging centers suggests the activation of microtubule assembly during prolonged exposure to low temperature. Our data also demonstrates common pathways of microtubule response to cold treatment (0°C). 相似文献
9.
Mendes-Bonato AB Filho RG Pagliarini MS Borges Do Valle C de Oliveira Penteado MI 《Cell biology international》2002,26(7):641-646
Cytogenetic studies carried out in the tetraploid accession BRA001068 of Brachiaria decumbens, also known as cv. Basilisk, revealed an unusual pattern of microsporogenesis. The spindle in metaphase I and anaphase I became heavily stained with propionic carmine. In telophase I, the interzonal microtubules continued to be intensely stained, and during the phragmoplast formation the fibers were pushed to the cell wall, persisting until prophase II, even after cytokinesis. Due to its tetraploid condition, the accession presented many cells with precocious chromosome migration to the poles in metaphase I and laggards in anaphase I that gave rise to micronuclei in telophase I. While in other polyploid accessions of Brachiaria micronuclei remained in this condition until the second cytokinesis, the micronuclei in this accession organized their own spindle in the second division. In several microsporocytes, the micronuclei with their minispindle were divided further into microcytes by additional cytokinesis. Some curious planes of cytokinesis were found in some cells, with partitioning of cytoplasm into cells of irregular shape. The result consisted of a high frequency of abnormal products of meiosis. Quadrivalents were observed in diakinesis at low frequency, which suggests a segmental allotetraploid and the inability of both genomes to co-ordinate their activities, leading to multiple spindle and precocious cellularization. In spite of abnormal meiotic products reducing pollen fertility, seed production was normal. Enough normal pollen was available to fertilize the central-cell nucleus of the embryo sac and produce normal endosperm in this pseudogamous aposporous apomictic accession. 相似文献
10.
Liu Y Li GP White KL Rickords LF Sessions BR Aston KI Bunch TD 《Molecular reproduction and development》2007,74(11):1473-1482
The effects of nicotine on nuclear maturation and meiotic spindle dynamics of bovine oocytes and subsequent embryonic development were investigated. Maturation rates (85%-94%) derived from nicotine treatments at 0.01 to 1.0 mM were similar to the control (86%), but significantly decreased at 2.0 to 6.0 mM. Haploid complements of metaphase II oocytes in 0.01 to 1.0 mM nicotine (approximately 90%) were similar to the control, while lower (ranged from 63% to 76%, P < 0.05 or P < 0.01) haploid oocytes were observed in the 2.0 to 6.0 mM nicotine groups. The majority of the PB1-free oocytes derived from 3.0 to 6.0 mM nicotine treatments were diploidy (2n = 60). Spindle microtubules changed from characteristically being asymmetrical in the controls to being equally distributed into two separate chromosome groups in the nicotine treatments. Nicotine disorganized the microfilament organization and inhibited the movement of anaphase or telophase chromosomes to the cortical area. The inhibited two chromosome groups became two spindles that either moved close in proximity or merged entirely together resulting in diploidy within the affected oocyte. Nicotine treatment significantly reduced the rate of cleavage and blastocyst development after parthenogenetic activation. Diploidy and cell number were drastically reduced in the resultant blastocysts. In conclusion, nicotine can alter the normal process of bovine oocyte meiosis and affects subsequent embryonic development. 相似文献
11.
- Download : Download high-res image (245KB)
- Download : Download full-size image
12.
Oocytes uniquely accumulate cytoplasmic constituents to support early embryogenesis. This unique specialization is accompanied by acquisition of a large size and by execution of asymmetric meiotic divisions that preserve precious ooplasm through the expulsion of minimal size polar bodies. While often taken for granted, these basic features of oogenesis necessitate unique specializations of the meiotic apparatus. These include a chromatin‐sourced RanGTP gradient that restricts spindle size by defining a spatial domain where meiotic spindles form, acentriolar centrosomes that rely on microtubule organizing centers to form spindle poles, and an actin‐based mechanism for asymmetric spindle positioning. Additionally, localized protein synthesis to support spindle formation is achieved in the spindle forming region, whilst protein synthesis is reduced elsewhere in the ooplasm. This is achieved through enrichment of spindle‐related mRNAs in the spindle forming region combined with local PLK1‐mediated phosphorylation and inactivation of the translational repressor EIF4EBP1. This allows PLK1 to function as an important regulatory nexus through which endogenous and exogenous signals can impact spindle formation and function, and highlights the important role that PLK1 may have in maintaining oocyte quality and fertility. 相似文献
13.
A stable cell line CV-1 was obtained for vital observation of the transport of mitochondria in animals cells, which express a fragment of the resident protein of mitochondria marked by yellow fluorescent protein. The parameters and conditions of movement of the mitochondria in living cells were established using fluorescence videomicroscopy. Under the normal conditions, only a small part of mitochondria (ca. 7%) was transported over significant distances, while others were in the state of relative rest. The effective transport of mitochondria strictly depended on the dynamic properties of microtubules. Incubation of cell in a serum-free medium suppressed active transport of mitochondria, thus suggesting its dependence on certain, not yet determined environmental factors. 相似文献
14.
《Current biology : CB》2022,32(6):1247-1261.e6
- Download : Download high-res image (266KB)
- Download : Download full-size image
15.
William D. Gilliland Eileen M. Colwell David M. Osiecki Suna Park Deanna Lin Chandramouli Rathnam Daniel A. Barbash 《Genetics》2015,199(1):73-83
The abundance and composition of heterochromatin changes rapidly between species and contributes to hybrid incompatibility and reproductive isolation. Heterochromatin differences may also destabilize chromosome segregation and cause meiotic drive, the non-Mendelian segregation of homologous chromosomes. Here we use a range of genetic and cytological assays to examine the meiotic properties of a Drosophila simulans chromosome 4 (sim-IV) introgressed into D. melanogaster. These two species differ by ∼12–13% at synonymous sites and several genes essential for chromosome segregation have experienced recurrent adaptive evolution since their divergence. Furthermore, their chromosome 4s are visibly different due to heterochromatin divergence, including in the AATAT pericentromeric satellite DNA. We find a visible imbalance in the positioning of the two chromosome 4s in sim-IV/mel-IV heterozygote and also replicate this finding with a D. melanogaster 4 containing a heterochromatic deletion. These results demonstrate that heterochromatin abundance can have a visible effect on chromosome positioning during meiosis. Despite this effect, however, we find that sim-IV segregates normally in both diplo and triplo 4 D. melanogaster females and does not experience elevated nondisjunction. We conclude that segregation abnormalities and a high level of meiotic drive are not inevitable byproducts of extensive heterochromatin divergence. Animal chromosomes typically contain large amounts of noncoding repetitive DNA that nevertheless varies widely between species. This variation may potentially induce non-Mendelian transmission of chromosomes. We have examined the meiotic properties and transmission of a highly diverged chromosome 4 from a foreign species within the fruitfly Drosophila melanogaster. This chromosome has substantially less of a simple sequence repeat than does D. melanogaster 4, and we find that this difference results in altered positioning when chromosomes align during meiosis. Yet this foreign chromosome segregates at normal frequencies, demonstrating that chromosome segregation can be robust to major differences in repetitive DNA abundance. 相似文献
16.
We have analysed the role of RBR (retinoblastoma related), the Arabidopsis homologue of the tumour suppressor Retinoblastoma protein (pRb), during meiosis. We characterise the rbr-2 mutation, which causes a loss of RBR in male meiocytes. The rbr-2 plants exhibit strongly reduced fertility, while vegetative growth is generally unaffected. The reduced fertility is due to a meiotic defect that results in reduced chiasma formation and subsequent errors in chromosome disjunction. Immunolocalisation studies in wild-type meiocytes reveal that RBR is recruited as foci to the chromosomes during early prophase I in a DNA double-strand-break-dependent manner. In the absence of RBR, expression of several meiotic genes is reduced. The localisation of the recombinases AtRAD51 and AtDMC1 is normal. However, localisation of the MutS homologue AtMSH4 is compromised. Additionally, polymerisation of the synaptonemal complex protein AtZYP1 is abnormal. Together, these data indicate that loss of RBR during meiosis results in a reduction of crossover formation and an associated failure in chromosome synapsis. Our results indicate that RBR has an important role in meiosis affecting different aspects of this complex process. 相似文献
17.
18.
19.
对韭莲(2n=48)小孢子母细胞减数分裂及小孢子发育进行研究。结果显示同一居群植株的减数分裂行为存在明显差异。多数韭莲植株小孢子母细胞减数分裂存在少量落后染色体、微核等现象,平均每株中具有异常分离行为的母细胞占14.02%,小孢子发育正常,但花粉无活力。并首次从减数分裂后期Ⅰ的特殊的细胞学形态证明韭莲是臂内倒位杂合体。而少数植株韭莲的小孢子母细胞减数分裂极其紊乱,后期Ⅰ出现多极分离、大量落后染色体,小孢子母细胞减数分裂总异常分离高达94.3%。四分孢子期多分孢子体高达73.4%。分析认为:前者减数分裂行为异常的原因主要由染色体结构变异所致,而后者的原因除染色体结构变异外,还可能与控制纺锤体形成的基因突变有关。 相似文献
20.
Nam-Hyung Kim Hiroaki Funahashi Randall S. Prather Gerald Schatten Billy N. Day 《Molecular reproduction and development》1996,43(2):248-255
Microtubule and microfilament organization in porcine oocytes during maturation in vivo and in vitro was imaged by immunocytochemistry and laser scanning confocal microscopy. At the germinal vesicle stage, microtubules were not detected in the oocyte. After germinal vesicle breakdown, a small microtubule aster was observed near the condensed chromatin. During the prometaphase stage, microtubule asters were found in association with each chromatin mass. The asters then elongated and encompassed the chromatin at the metaphase-I stage. At anaphase-I and telophase-I microtubules were detected in the meiotic spindle. Microtubules were observed only in the second meiotic spindle at the metaphase-II stage. The meiotic spindle was a symmetric, barrel-shaped structure containing anastral broad poles, located peripherally and radially oriented. Taxol, a microtubule-stabilizing agent, did not induce microtubules in oocytes at the germinal vesicle stage. After germinal vesicle breakdown, numerous cytoplasmic foci of microtubules were formed in the entire oocyte when oocytes were incubated in the presence of taxol. Microfilaments were observed as a relatively thick uniform area around the cell cortex and were also found throughout the cytoplasm of oocytes at the germinal vesicle stage. After germinal vesicle breakdown, the microfilaments were concentrated close to the female chromatin. During prometaphase, microfilaments were chromatin moved to the peripheral position. At metaphase-I, two domains, a thick and a thin microfilament area, existed in the egg cortex. Chromosomes were located in the thick microfilament domain of the cortex. In summary, these results suggest that both micro-tubules and microfilaments are closely involved with chromosomal dynamics after germinal vesicle breakdown and during meiotic maturation in porcine oocytes. © 1996 Wiley-Liss, Inc. 相似文献