首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently a cDNA clone, vanilloid receptor subtype-1 (VR1), was isolated and found to encode an ion channel that is activated by both capsaicin, the pain producing compound in chili peppers, and by noxious thermal stimuli. Subsequently, two related cDNAs have been isolated, a stretch inactivating channel with mechanosensitive properties and a vanilloid receptor-like protein that is responsive to high temperatures (52-53 degrees C). Here, we report the isolation of a vanilloid receptor 5'-splice variant (VR.5'sv) which differs from VR1 by elimination of the majority of the intracellular N-terminal domain and ankyrin repeat elements. Both VR.5'sv and VR1 mRNA were shown to be expressed in tissues reportedly responsive to capsaicin including dorsal root ganglion, brain, and peripheral blood mononuclear cells. Functional expression of VR.5'sv in Xenopus oocytes and mammalian cells showed no sensitivity to capsaicin, the potent vanilloid resiniferatoxin, hydrogen ions (pH 6.2), or noxious thermal stimuli (50 degrees C). Since VR.5'sv is otherwise identical to VR1 throughout its transmembrane spanning domains and C-terminal region, these results support the hypothesis that the N-terminal intracellular domain is essential for the formation of functional receptors activated by vanilloid compounds and noxious thermal stimuli.  相似文献   

2.
Nociceptive dorsal root ganglion (DRG) cells can be divided into three main populations, namely (1) small diameter non-peptide-expressing cells, (2) small-diameter peptide-expressing (calcitonin gene related peptide (CGRP), substance P) cells, and (3) medium-diameter peptide-expressing (CGRP) cells. The properties of these cell populations will be reviewed, with a special emphasis on the expression of the vanilloid (capsaicin) receptor VR1 and its regulation by growth factors. Cells in populations 1 and 2 express VR1, a nonselective channel that transduces certain nociceptive stimuli and that is crucial to the functioning of polymodal nociceptors. Cells in population 1 can be regulated by glial cell line derived neurotrophic factor (GDNF) and those in populations 2 and 3 by nerve growth factor (NGF). In vivo, DRG cells express a range of levels of VR1 expression and VR1 is downregulated after axotomy. However, treatment with NGF or GDNF can prevent this downregulation. In vitro, DRG cells also show a range of VR1 expression levels that is NGF and (or) GDNF dependent. Functional studies indicate that freshly dissociated cells also show differences in sensitivity to capsaicin. The significance of this is not known but may indicate a difference in the physiological role of cells in populations 1 and 2.  相似文献   

3.
Vanilloid receptor subtype 1, VR1, is an ion channel that serves as a polymodal detector of pain-producing chemicals such as capsaicin and protons in primary afferent neurons. Here we showed that both capsaicin and acidification produced elevations in the intracellular Ca(2+) concentration ([Ca(2+)](i)) in cultured human epidermal keratinocytes. The capsaicin- and acidification-evoked increases in [Ca(2+)](i) were inhibited by capsazepine, an antagonist to VR1. VR1-like immunoreactivity was observed in the cells. These findings suggest that functional VR1-like protein is present and functions as a sensor against noxious chemical stimuli, such as capsaicin or acidification, in epidermal keratinocytes.  相似文献   

4.
The tissue distribution and functional characterization of human VR1   总被引:8,自引:0,他引:8  
The irritant action of capsaicin is mediated by the vanilloid receptor, VR1, which is expressed in sensory neurons termed nociceptors. Capsaicin also desensitizes nociceptors and, thus, is useful clinically as an analgesic. Given the potential importance of VR1 in pain, we have cloned the human capsaicin receptor, hVR1, from a human dorsal root ganglia (DRG) cDNA library. Human VR1 protein is 85% identical to the rat VR1 and many of the amino acid differences are concentrated at the amino and carboxyl termini. VR1 is expressed in DRG as an approximately 4.2 kilobase RNA, and is also expressed in the central nervous system and in the kidney. Capsaicin (EC(50) = 853 nM), low pH (<5.5), and noxious heat (44 degrees C) activate hVR1 expressed in Xenopus oocytes. Subthreshold pH (6.4) sensitizes VR1 to capsaicin (EC(50) = 221 nM). This study demonstrates the similarity of human and rat VR1 in integrating multiple noxious stimuli.  相似文献   

5.
Vanilloid receptor 1 (VR1) is a polymodal receptor originally found in sensory neurons of the central nervous system. Recent evidence indicates that VR1 is also expressed in non-neuronal tissues. We report here endogenous expression of VR1 in rabbit submandibular gland (SMG) and its possible role in regulating saliva secretion based on: (i) the expression of VR1 mRNA and protein detected in SMG; (ii) VR1 was mainly localized in the basolateral membrane of duct cells and the cytoplasm of acinar cells and also in cytoplasm of primary cultured neonatal rabbit SMG cells; (iii) stimulation of neonatal rabbit SMG cells with capsaicin induced a significant increase in intracellular calcium, and capsazepine, a VR1 antagonist, abolished this increase; (iv) infusion of capsaicin via the external carotid artery to isolated SMG increased saliva secretion of the gland. These findings indicated that VR1 was expressed in SMG and appeared to play an important role in regulating saliva secretion.  相似文献   

6.
Vanilloid receptor 1 (VR1), a capsaicin receptor, is known to play a major role in mediating inflammatory thermal nociception. Although the physiological role and biophysical properties of VR1 are known, the mechanism of its activation by ligands is poorly understood. Here we show that VR1 must be phosphorylated by Ca2+-calmodulin dependent kinase II (CaMKII) before its activation by capsaicin. In contrast, the dephosphorylation of VR1 by calcineurin leads to a desensitization of the receptor. Moreover, point mutations in VR1 at two putative consensus sites for CaMKII failed to elicit capsaicin-sensitive currents and caused a concomitant reduction in VR1 phosphorylation in vivo. Such mutants also lost their high affinity binding with [3H]resiniferatoxin, a potent capsaicin receptor agonist. We conclude that the dynamic balance between the phosphorylation and dephosphorylation of the VR1 channel by CaMKII and calcineurin, respectively, controls the activation/desensitization states by regulating VR1 binding. Furthermore, because sensitization by protein kinase A and C converge at these sites, phosphorylation stress in the cell appears to control a wide range of excitabilities in response to various adverse stimuli.  相似文献   

7.
Vanilloid receptor subtype 1 (VR1) was cloned as a capsaicin receptor from neuronal cells of dorsal root ganglia. VR1 was subsequently found in a few non-neuronal tissues, including skeletal muscle [Onozawa et al., Tissue distribution of capsaicin receptor in the various organs of rats, Proc. Jpn. Acad. Ser. B 76 (2000) 68-72]. We confirmed the expression of VR1 in muscle cells using the RT-PCR method and Western blot analysis. Immunostaining studies with a confocal microscope and an electron microscope indicated that VR1 was present in the sarcoplasmic reticulum (SR), a store of Ca2+. The SR releases Ca2+ to cause a contraction when a muscle is excited. However, SR still releases a small amount of Ca2+ under relaxed conditions. We found that this leakage was enhanced by capsaicin and was antagonized by capsazepine, a capsaicin blocker, indicating that leakage of Ca2+ occurs through a channel composed of VR1.  相似文献   

8.
The capsaicin receptor VR1 is a polymodal nociceptor activated by multiple stimuli. It has been reported that protein kinase C plays a role in the sensitization of VR1. Protein kinase D/PKCmu is a member of the protein kinase D serine/threonine kinase family that exhibits structural, enzymological, and regulatory features distinct from those of the PKCs, with which they are related. As part of our effort to optimize conditions for evaluating VR1 pharmacology, we found that treatment of Chinese hamster ovary (CHO) cells heterologously expressing rat VR1 (CHO/rVR1) with butyrate enhanced rVR1 expression and activity. The expression of PKCmu and PKCbeta1, but not of other PKC isoforms, was also enhanced by butyrate treatment, suggesting the possibility that these two isoforms might contribute to the enhanced activity of rVR1. In support of this hypothesis, we found the following. 1) Overexpression of PKCmu enhanced the response of rVR1 to capsaicin and low pH, and expression of a dominant negative variant of PKCmu reduced the response of rVR1. 2) Reduction of endogenous PKCmu using antisense oligonucleotides decreased the response of exogenous rVR1 expressed in CHO cells as well as of endogenous rVR1 in dorsal root ganglion neurons. 3) PKCmu localized to the plasma membrane when overexpressed in CHO/rVR1 cells. 4) PKCmu directly bound to rVR1 expressed in CHO cells as well as to endogenous rVR1 in dorsal root ganglia or to an N-terminal fragment of rVR1, indicating a direct interaction between PKCmu and rVR1. 5) PKCmu directly phosphorylated rVR1 or a longer N-terminal fragment (amino acids 1-118) of rVR1 but not a shorter one (amino acids 1-99). 6) Mutation of S116A in rVR1 blocked both the phosphorylation of rVR1 by PKCmu and the enhancement by PKCmu of the rVR1 response to capsaicin. We conclude that PKCmu functions as a direct modulator of rVR1.  相似文献   

9.
The capsaicin receptor, VR1, is a sensory neuron-specific ion channel that serves as a polymodal detector of pain-producing chemical and physical stimuli. It has been reported that ATP, one of the inflammatory mediators, potentiates the VR1 currents evoked by capsaicin or protons and reduces the temperature threshold for activation of VR1 through metabotropic P2Y(1) receptors in a protein Kinase C (PKC)-dependent pathway, suggesting the phosphorylation of VR1 by PKC. In this study, direct phosphorylation of VR1 upon application of phorbol 12-myristate 13-acetate (PMA) was proven biochemically in cells expressing VR1. An in vitro kinase assay using glutathione S-transferase fusion proteins with cytoplasmic segments of VR1 showed that both the first intracellular loop and carboxyl terminus of VR1 were phosphorylated by PKCepsilon. Patch clamp analysis of the point mutants where Ser or Thr residues were replaced with Ala in the total 16 putative phosphorylation sites showed that two Ser residues, Ser(502) and Ser(800) were involved in the potentiation of the capsaicin-evoked currents by either PMA or ATP. In the cells expressing S502A/S800A double mutant, the temperature threshold for activation was not reduced upon PMA treatment. The two sites would be promising targets for the development of substance modulating VR1 function, thereby reducing pain.  相似文献   

10.
Effects of capsaicin on human intestinal cell line Caco-2   总被引:1,自引:0,他引:1  
The influence of capsaicin processing on human intestinal cell line Caco-2 was examined by measuring transepithelial electrical resistance (TER). There was an increase in permeability at high concentration (200 to 500 μM) of capsaicin, and the effect was inhibited by pretreatment of capsazepine, which is a competitive antagonist of the vanilloid receptor 1 (VR1). LDH-activity as well as changes in intracellular Ca2+ were determined to know whether or not capsaicin affected TER activity through its influence on the tight junction. We also determined the expression of the VR1-like protein on Caco-2 cells in time-dependent manner by western blotting using vanilloid receptor (VR1) antiserum. Our results showed that the permeability increase by capsaicin was through binding to VR1-like protein of Caco-2 cells. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Analysis of small dorsal root ganglion (DRG) neurons revealed novel functions for vanilloid receptor 1 (VR1) in the regulation of cytosolic Ca(2+). The VR1 agonist capsaicin induced Ca(2+) mobilization from intracellular stores in the absence of extracellular Ca(2+), and this release was inhibited by the VR1 antagonist capsazepine but was unaffected by the phospholipase C inhibitor xestospongins, indicating that Ca(2+) mobilization was dependent on capsaicin receptor binding and was not due to intracellular inositol-1,4,5-trisphosphate generation. Confocal microscopy revealed extensive expression of VR1 on endoplasmic reticulum, consistent with VR1 operating as a Ca(2+) release receptor. The main part of the capsaicin-releasable Ca(2+) store was insensitive to thapsigargin, a selective endoplasmic reticulum Ca(2+)-ATPase inhibitor, suggesting that VR1 might be predominantly localized to a thapsigargin-insensitive endoplasmic reticulum Ca(2+) store. In addition, VR1 was observed to behave as a store-operated Ca(2+) influx channel. In DRG neurons, capsazepine attenuated Ca(2+) influx following thapsigargin-induced Ca(2+) store depletion and inhibited thapsigargin-induced inward currents. Conversely, transfected HEK-293 cells expressing VR1 showed enhanced Ca(2+) influx and inward currents following Ca(2+) store depletion. Combined data support topographical and functional diversity for VR1 in the regulation of cytosolic Ca(2+) with the plasma membrane-associated form behaving as a store-operated Ca(2+) influx channel and endoplasmic reticulum-associated VR1 possibly functioning as a Ca(2+) release receptor in sensory neurons.  相似文献   

12.
Analysis of the native quaternary structure of vanilloid receptor 1   总被引:15,自引:0,他引:15  
Vanilloid receptor subtype 1 (VR1) is a ligand-gated channel that can be activated by capsaicin and other vanilloids as well as by protons and heat. In the present study, we have analyzed the oligomeric state of VR1. Co-immunoprecipitation of differently tagged VR1 molecules indicated that VR1 can form oligomers. Using two different heterologous VR1 expression systems as well as endogenous VR1 expressed in dorsal root ganglion cells, we analyzed oligomer formation using perfluoro-octanoic acid polyacrylamide gel electrophoresis. Results were confirmed both with chemical cross-linking agents as well as through endogenous cross-linking mediated by transglutaminase. Our results clearly show that VR1 forms multimers in each of the expression systems with a homotetramer as a predominant form. The oligomeric structure of VR1 may contribute to the complexity of VR1 pharmacology. Finally, differences in glycosylation between the systems were observed, indicating the need for caution in the use of the heterologous expression systems for analysis of VR1 properties.  相似文献   

13.
Agonists of the vanilloid receptor type 1 (VR1), such as capsaicin, induce an analgesic effect following an initial excitatory response. It has been demonstrated that the vanilloid system plays an important role in inflammatory hyperalgesia. In accordance, we show that the VR1 antagonist capsazepine (30 microg; i.pl.) prevented the thermal hyperalgesia induced by carrageenan or complete Freund's adjuvant (CFA) in mice. Furthermore, we studied whether this inflammation-induced activation of the vanilloid system could enhance the analgesic properties of capsaicin. A single administration of capsaicin (10 microg; i.pl.) induced in control mice an analgesic effect that lasted for 2 days. In contrast, in carrageenan-treated animals, the analgesic effect of this dose of capsaicin lasted for 6 days and in CFA-treated mice for 30 days. This prolongation of capsaicin-induced analgesia during inflammation was mediated through VR1 since it was completely blocked by coadministration of capsazepine (10 microg). Licking behavior induced by capsaicin in carrageenan- and CFA-treated mice was greater than in control animals. However, although capsaicin induced a more prolonged analgesia in CFA-treated mice, the licking behavior was greater in the carrageenan-treated group, suggesting that the prolongation of analgesia is independent of the initial nociceptive input. Overall, these results show that the analgesic effects of capsaicin are importantly enhanced during inflammation, supporting the fact that the stimulation of VR1 could perhaps constitute a suitable strategy to avoid inflammatory hyperalgesia.  相似文献   

14.
15.
We examined co-localization of vanilloid receptor (VR1) with sweet receptors T1R2, T1R3, or bitter receptor T2R6 in taste receptor cells of rat circumvallate papillae. Tissue sections of rat circumvallate papillae were doubly reacted with anti-VR1 antibodies and anti-T1R2, anti-T1R3 or anti-T2R6 antibodies, using double-immunofluorescence histochemistry technique. Localizations of VR1, T1Rs and T2R6 in the vallate taste cells containing α-gustducin were also examined. VR1 immunoreactivities (-ir) were observed in subsets of taste cells in the circumvallate papillae, and 96–99% of the vallate taste cells exhibiting T1R2-, T1R3- or T2R6-ir co-exhibited VR1-ir. Approximately half of T2R6-ir cells (~49%), and 50–58% of T1Rs-ir cells, co-exhibited α-gustducin-ir in the vallate taste buds. About 58% of VR1-ir cells in the vallate exhibited α-gustducin-ir as well. Results support the idea that capsaicin may interact with the transduction pathways of sweet and bitter taste stimuli, possibly in mediation of its receptor VR1 localized in taste receptor cells. Additionally, the partial co-localization of α-gustducin with VR1 suggests that a tentative modulatory function of capsaicin in sweet and bitter transductions in the rat circumvallate comprises of both α-gustducin-mediated and non-mediated transduction pathways.  相似文献   

16.
17.
Vanilloid receptor subtype 1 (VR1) is a non-selective cation channel detected on sensory neurons that is sensitive to capsaicin, the main pungent ingredient of hot chili pepper. Capsaicin application to neonatal animals causes cardiorespiratory distress, and this susceptibility to capsaicin changes during early postnatal life. This prompted us to hypothesise that in addition to its known neuronal localisation, VR1 is also expressed by non-neuronal cells of the heart during development. This issue was addressed in the rat heart during pre- and postnatal development by means of RT-PCR, western blot and immunohistochemistry. VR1-mRNA was transiently expressed from E14 to P30 but absent from adult hearts. Translation into protein was verified by western blotting. Immunohistochemistry proved that VR1 protein was localised in cardiomyocytes during those developmental stages at which mRNA was detected. In conclusion, VR1 is not neuron-specific but is transiently expressed on cardiomyocytes during ontogeny thereby pointing to a developmental role of this cation channel.  相似文献   

18.
The vanilloid receptor VR1 is a nonspecific Ca(2+) channel, expressed in sensory neurons in the peripheral nervous system and in various brain regions, which is believed to be an important molecular integrator of several chemical (acid, vanilloids) and physical stimuli (heat) that cause pain. Recently, several endogenous ligands for VR1 have been identified such as arachidonyl ethanolamide (anandamide) and the more potent arachidonyl dopamine (AA-DO). Here, we further characterize AA-DO as a ligand for rat VR1, heterologously expressed in CHO and HEK293 cells. AA-DO inhibited the binding of [3H]RTX to VR1 with a K(d) value of 5.49 +/- 0.68 microM and with positive cooperativity (p = 1.89 +/- 0.27), indicating that AA-DO was about 5-fold more potent than anandamide in this system. The K(d) (9.7 +/- 3.3 microM), and p values (1.54 +/- 0.04) for the binding of AA-DO to spinal cord membranes are in good correlation with the CHO-VR1 data. AA-DO stimulated 45Ca(2+) uptake on CHO-VR1 and HEK-VR1 cells with EC(50) values of 4.76 +/- 1.43 and 7.17 +/- 1.64 microM and Hill coefficients of 1.28 +/- 0.11 and 1.13 +/- 0.13, respectively, consistent with the binding measurements. In contrast to anandamide, AA-DO induced virtually the same level of 45Ca(2+) uptake as did capsaicin (90 +/- 6.6% in the CHO cells expressing VR1 and 89.3 +/- 9.4% in HEK293 cells expressing VR1). In a time dependent fashion following activation, AA-DO partially desensitized VR1 both in 45Ca(2+) uptake assays (IC(50) = 3.24 +/- 0.84 microM, inhibition is 68.5 +/- 6.85%) as well as in Ca(2+) imaging experiments (35.8 +/- 5.1% inhibition) using the CHO-VR1 system. The extent of desensitization was similar to that caused by capsaicin itself. We conclude that AA-DO is a full agonist for VR1 with a potency in the low micromolar range and is able to significantly desensitize the cells in a time and dose dependent manner.  相似文献   

19.
The vanilloid receptor (VR1 or TRPV1) is a capsaicin (CAP)-sensitive non-selective cation channel. Although its channel activity is reportedly modulated through protein-protein interactions, to date very few VR1 interacting proteins have been identified. To address this issue, a yeast two-hybrid screening technique using the C-terminus of rVR1 as bait was employed. Upon interrogation of a mouse brain library, one gene product that interacts with VR1 and is highly homologous to human eferin was found. Its interaction with VR1 was confirmed by GST-pull-down and co-immunoprecipitation. When cotransfected into HEK cells, VR1 and eferin largely colocalize. Furthermore, in rat dorsal root ganglion cells, the rat eferin homologue also colocalizes with rVR1. However, this protein had no significant effect on VR1 channel activity in response to CAP. This was determined by two-electrode recording of oocytes and whole cell recording of HEK cells that were cotransfected with VR1 and human eferin.  相似文献   

20.
The cloned vanilloid receptor 1 (VR1) is a ligand-gated calcium channel that is believed to be the capsaicin-activated vanilloid receptor found in native tissues, based on similarities regarding molecular mass, tissue distribution, and electrophysiological properties. Using a Fluorescent Imaging Plate Reader (FLIPR), along with Fluo-3 to signal intracellular calcium levels ([Ca(++)](i)), rat VR1 (rVR1) and a human orthologue (hVR1) were pharmacologically characterized with various VR1 ligands. HEK-293 cells, stably expressing rVR1 or hVR1, exhibited dose-dependent increases in [Ca(++)](i) when challenged with capsaicin (EC(50)s congruent with 10 nM). Responses to capsaicin were blocked by the VR1 antagonist capsazepine and were dependent on VR1 expression. Potencies for 10 structurally diverse VR1 agonists revealed rVR1 potencies highly correlated to that of hVR1 (R(2) = 0.973). However, a subset of agonists (tinyatoxin, gingerol, and zingerone) was approximately 10-fold more potent for rVR1 compared to hVR1. Schild analysis for blockade of capsaicin-induced responses by capsazepine was consistent with competitive antagonism, whereas ruthenium red displayed noncompetitive antagonism. Compared to rVR1, hVR1 was more sensitive to blockade by both antagonists. For both rVR1 and hVR1, time-response waveforms elicited by resiniferatoxin increased more gradually compared to other agonists. Tinyatoxin also displayed slow responses with hVR1 but showed rapid responses with rVR1. Thus, FLIPR technology can be used to readily reveal differences between rVR1 and hVR1 pharmacology with respect to potencies, efficacies, and kinetics for several VR1 ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号