首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding positions and relative minimum binding energies are calculated for complexes of 9-aminoacridine, proflavine, N-methylphenanthridinium, and ethidium in theoretically determined intercalation sites in B-DNA (sites I and II) and in unconstrained dimer-duplex sites. The selection of site I in B-DNA by these compounds agrees with the theoretical interpretation of studies of unwinding angles in closed circular DNA in all cases but ethidium, which is predicted to select site II. The most stable binding positions of the acridines and ethidium in unconstrained dimer-duplex units agree with experimental results of intercalation complexes of dinucleoside monophosphate units. Base-pair specificity for Watson-Crick pairing is examined. The energy of an intercalation complex is partitioned into ΔE23, the energy required to open base pairs BP2 and BP3 in B-DNA to a site, and ΔEIn, the energy change when a free molecular intercalates. ΔE23 depends strongly on the base-pair sequence, whereas ΔEIn for the four molecules studied does not. The three most stable sequences contain (pyrimidine)p(purine) units, and this provides a rationale for the exclusive formation of crystals of intercalation complexes with these units. In spite of this selectivity, the distribution of G?C and A?T base pairs is equal for these three units and persists as the more unstable sequences are included. Therefore, specificity arises from the interaction between the base pairs and the 2′-deoxyribose 5′-monophosphate backbone for the opening of B-DNA to an intercalation site and not from the interaction between the chromophore and the DNA.  相似文献   

2.
DNA bending by small, mobile multivalent cations.   总被引:6,自引:0,他引:6       下载免费PDF全文
We propose a purely electrostatic mechanism by which small, mobile, multivalent cations can induce DNA bending. A multivalent cation binds at the entrance to the B-DNA major groove, between the two phosphate strands, electrostatically repelling sodium counterions from the neighboring phosphates. The unscreened phosphates on both strands are strongly attracted to the groove-bound cation. This leads to groove closure, accompanied by DNA bending toward the cationic ligand. We explicitly treat the dynamic character of the cation-DNA interaction using an adiabatic approximation, noting that DNA bending is much slower than the diffusion of nonspecifically bound, mobile cations. We make semiquantitative estimates of the free energy components of bending-electrostatic (with a sigmoidal distance-dependent dielectric function), elastic, and entropic cation localization-and find that the equilibrium state is bent B-DNA stabilized with a self-localized cation. This is a bending polaron, formation of which should be critically dependent on the strength of electrostatic interaction and the concentration of highly mobile cations available for self-localization. We predict that the resultant bend will be large (approximately 20-40 degrees), smooth (because it is spread over 6 bp), and infrequent. The stability of such a bend can be variable, from transient to highly stable (static) bending, observable with standard curvature-measuring techniques. We further predict that this bending mechanism will have an unusual sequence dependence: sequences with less binding specificity will be more bent, unless the specific binding site is in the major groove.  相似文献   

3.
A theoretical modelling of the interaction of putrescine (H3+N-(CH2)4-(+NH3) with DNA is carried out, introducing two new features which make the simulation of this interaction considerably more realistic. Firstly, the DNA to which putrescine is bound is fully flexible and thus able to respond to the distorting influence of the ligand. Secondly, the effect of changing the ratio of DNA base pairs per bound ligand is explicitly modelled. In this way, we have been able to confirm the experimentally known preference of putrescine binding with AT base pairs in B-DNA, but we also show, through the new features introduced, that the nature of the binding site of the ligand and the resulting impact on DNA conformation is strongly modified by the ligand binding density.  相似文献   

4.
The Flp protein catalyzes a site-specific recombination reaction between two 47 bp DNA sites without the assistance of any other protein or cofactor. The Flp recognition target (FRT) site consists of three nearly identical sequences, two of which are separated by an 8 bp spacer sequence. In order to gain insight into this remarkable protein-DNA interaction we used a variety of chemical probe methods and the missing nucleoside experiment to examine Flp binding. Hydroxyl radical footprints of Flp bound to a recombinationally-competent site fall on opposite faces of canonical B-DNA. The 8 bp spacer region between the two Flp binding sites becomes reactive towards 5-phenyl-1,10-phenanthroline.copper upon Flp binding, indicating that once bound by Flp, this segment of DNA is not in the B-form. Missing nucleoside analysis reveals that within each binding site the presence of two nucleosides on the top strand and four on the bottom, are required for formation of a fully-occupied FRT site. In contrast, loss of any nucleoside in the three binding sites in the FRT interferes with formation of lower-occupancy complexes. DNA molecules with gaps in the 8 bp spacer region are over-represented in complexes with either two or three binding sites occupied by Flp, evidence that DNA flexibility facilitates the cooperative interaction of Flp protomers bound to a recombinationally-active site.  相似文献   

5.
The interaction of ethidium bromide with single-stranded synthetic and natural polynucleotides at high temperatures (t = 70 degrees C) and low pH values (pH 3.0) was studied. The isotherms of adsorption of ethidium bromide on single-stranded DNA were obtained. Two modes of binding of single-stranded DNA, strong and weak, were revealed. The values of the corresponding constants of interaction of this ligand and the number of bases per one binding site were determined.  相似文献   

6.
P Rio  M Leng 《Nucleic acids research》1983,11(14):4947-4956
The reaction between the chemical carcinogen N-hydroxy-2-aminofluorene and poly (dG-dC) . poly (dG-dC) (B-form), poly (dG-m5dC) . poly (dG-m5dC) (B-or Z-form), poly(dG-br5dC) . poly (dG-br5dC) (Z-form) has been studied. The carcinogen binds covalently to B-DNA but does not bind significantly to Z-DNA. These results are discussed as related to the accessibility, the electrostatic potential and the dynamic structure of DNA. The accessibility and the electrostatic potential of DNA do not explain the difference in reactivity of the carcinogen since a related carcinogen N-acetoxy-N-acetyl-2-aminofluorene binds equally well to both B and Z-DNA. On the other hand, poly (dG-dC) . poly(dG-dC) and poly (dG-br5dC) . poly(dG-br5dC), in presence of ethidium bromide binds equally well to N-hydroxy-2-aminofluorene. It is suggested that the very low binding of this carcinogen to Z-DNA as compared to B-DNA is due to differences in the dynamic structures of these two forms of DNA.  相似文献   

7.
Abstract

This research is an effort to further understand the physicochemical interaction between the novel drug molecule diethidium (2,7-diamino 9-[2,7 diamino 10-nN- phenanthridium] 10- nN- phenanthridium) and its biological receptor DNA. The ultimate goal is the elucidation of this novel class of drugs as potential pharmaceutical agents. Understanding the physico- chemical properties of this drug as well as the mechanism by which it interacts with DNA should ultimately allow the rational design of novel anti-cancer or anti-viral drugs.

A novel binding structure for the diethidium cation to B-form DNA is herein described. Molecular modeling on the complex formed between diethidium and a dodecamer of double-stranded B-form DNA, CGCGAATTCGCG, has shown that this complex is indeed fully capable of participating in the formation of a stable intercalation site. It was expected that diethidium would have a mechanism of intercalation significantly different from other classical intercalators because a) Its structure, that of two perpendicular planes, each known to have excellent intercalation properties, is novel b) The linker region length is zero c) The tilt between the two planes of the drug matches the geometry of the space available to this drug in the major groove.

We have studied the complex formed when diethidium enters the central site of the B-DNA dodecamer through the major groove. The complex forms several classes of intercalation structures, which are all stable and vary from “partially intercalate” to “fully intercalated”. Multiple minimizations show the drug to be very mobile within the intercalation site. Further, some structures show organization and concomitant stiffening of the DNA above the intercalation site, with a disorganization and disruption of the regular B-DNA structure immediately below the intercalation site. This particular phenomena may be expected to lead to significantly different physicochemical properties for the diethidium complex with respect to other known intercalators, because this sort of vectorial difference in structure above and below the site of intercalation is unknown in existing intercalators, as far as the authors are aware. In addition, we expect the mechanism of interaction between drug and DNA to be described by “direct ligand transfer”, wherein the drug is transferred from duplex DNA to duplex DNA without re-entering the solvent.1

This work is the first instance known to the authors of a novel drug entity that was deduced solely by mathematical reasoning 2 and described subsequently by computational methods. Evidence that diethidium should interact with its target site DNA differently from other known intercalators is strong.  相似文献   

8.
Study of the relaxation kinetics of the interaction of ethidium and DNA reveals a novel and potentially important general binding mechanism, namely direct transfer of the ligand between DNA binding sites without requiring dissociation to free ligand. The measurable relaxation spectrum shows three relaxation times, indicating that three bound dye species are present at equilibrium; about 80% of the dye is in the major intercalated form. For each relaxation the reciprocal relaxation time varies linearly with concentration up to very high DNA concentrations. The failure of the longer relaxation times to plateau at high concentration can be accounted for by including a bimolecular pathway for conversion from one complex form to another. This we envisage as direct transfer of an ethidium molecule, bound to one DNA molecule, to an empty binding site on another DNA molecule. Additional evidence for this direct transfer mechanism was obtained from an experiment showing that DNA (which binds ethidium relatively rapidly) accelerates the binding of ethidium to poly(rA) · poly(rU), presumably by first forming a DNA-ethidium complex and then transferring the ethidium to RNA. The bimolecular rate constant for transfer is found to be about four times larger than the constant for intercalating the free dye. The transfer pathway thus provides a highly efficient means for the ligand to equilibrate over its DNA binding sites, especially at high polymer concentration. The potential importance of direct transfer for DNA-binding regulatory proteins is emphasized.  相似文献   

9.
Abstract

A theoretical modelling of the interaction of putrescine (H+ 3N—(CH2)4—(-N+H3) with DNA is carried out, introducing two new features which make the simulation of this interaction considerably more realistic. Firstly, the DNA to which putrescine is bound is fully flexible and thus able to respond to the distorting influence of the ligand. Secondly, the effect of changing the ratio of DNA base pairs per bound ligand is explicitly modelled. In this way. we have been able to confirm the experimentally known preference of putrescine binding with AT base pairs in B-DNA, but we also show, through the new features introduced, that the nature of the binding site of the ligand and the resulting impact on DNA conformation is strongly modified by the ligand binding density.  相似文献   

10.
11.
The interaction of sanguinarine and ethidium with right-handed (B-form), left-handed (Z-form) and left-handed protonated (designated as H(L)-form) structures of poly(dG-dC).poly(dG-dC) and poly(dG-me5dC).poly(dG-me5dC) was investigated by measuring the circular dichroism and UV absorption spectral analysis. Both sanguinarine and ethidium bind strongly to the B-form DNA and convert the Z-form and the H(L)-form back to the bound right-handed form. Circular dichroic data also show that the conformation at the binding site is right-handed, even though adjacent regions of the polymer have a left-handed conformation either in Z-form or in H(L)-form. Both the rate and extent of B-form to Z-form transition were decreased by sanguinarine and ethidium under ionic conditions that otherwise favour the left-handed conformation of the polynucleotides. The rate of decrease is faster in the case of ethidium as compared to that of sanguinarine. Scatchard analysis of the spectrophotometric data shows that sanguinarine binds strongly to both the polynucleotides in a non-cooperative manner under B-form conditions, in sharp contrast to the highly-cooperative binding under Z-form and H(L)-form conditions. Correlation of binding isotherms with circular dichroism data indicates that the cooperative binding of sanguinarine under the Z-form and the H(L)-form conditions is associated with a sequential conversion of the polymer from a left-handed to a bound right-handed conformation. Determination of bound alkaloid concentration by spectroscopic titration technique and the measurement of circular dichroic spectra have enabled us to calculate the number of base pairs of Z-form and H(L)-form that adopt a right-handed conformation for each bound alkaloid. Analysis reveals that 2-3 base pairs (bp) of Z-form of poly(dG-dC).poly(dG-dC) and poly(dG-me5dC).poly(dG-me5dC) switch to the right-handed form for each bound sanguinarine, while approximately same number of base pairs switch to the bound right-handed form in complexes with H(L)-form of these polynucleotides. Comparative binding analysis shows that ethidium also converts approximately 2 bp of Z-form or H(L)-form to bound right-handed form under same experimental conditions. Since sanguinarine binds preferentially to alternating GC sequences, which are capable of undergoing the B to Z or B to H(L) transition, these effects may be an important part in understanding its extensive biological activities.  相似文献   

12.
Thallium (Tl) binds to the major and minor grooves of B-DNA in the solid state (Howerton et al., Biochemistry 40, 10023-10031, 2001). The aim of this study was to examine the binding of Tl(I) cation with calf-thymus DNA in aqueous solution at physiological pH, using constant concentration of DNA (12.5 mM) and various concentrations of metal ions (0.5 to 20 mM). UV-visible and FTIR spectroscopic methods were used to determine the cation binding site, the binding constant and DNA structural variations in aqueous solution. Direct Tl bindings to guanine and thymine were evident by major spectral changes of DNA bases with overall binding constant of K = 1.40 x 10(4) M(-1) and little perturbations of the backbone phosphate group. Both major and minor groove bindings were observed with no alteration of the B-DNA conformation. At low metal concentration (0.5 mM), the number of cations bound were 10 per 1000 nucleotides, while at higher cation concentration (10 mM), this increased to 30 cations per 1000 nucleotides.  相似文献   

13.
The affinity and specificity of a ligand for its DNA site is a function of the conformational changes between the isolated and complexed states. Although the structures of a hydroxypyrrole-imidazole-pyrrole polyamide dimer with 5'-CCAGTACTGG-3' and the trp repressor recognizing the sequence 5'-GTACT-3' are known, the baseline conformation of the DNA site would contribute to our understanding of DNA recognition by these ligands. The 0.74 A resolution structure of a B-DNA double helix, 5'-CCAGTACTGG-3', has been determined by X-ray crystallography. Six of the nine phosphates, two of four bound calcium ions and networks of water molecules hydrating the oligonucleotide have alternate conformations. By contrast, nine of the ten bases have a single, unique conformation with hydrogen atoms visible in most cases. The polyamide molecules alter the geometry of the phosphodiester backbone, and the water molecules mediating contacts in the trp repressor/operator complex are conserved in the unliganded DNA. Furthermore, the multiple conformational states, ions and hydration revealed by this ultrahigh resolution structure of a B-form oligonucleotide are potentially general considerations for understanding DNA-binding affinity and specificity by ligands.  相似文献   

14.
The interaction of methylene blue (MB) with DNA has been investigated by UV absorption spectra, Fluorescence spectra and UV-melting method. Analysis of the results of the melting experiments shows that melting temperature (T m) of the complexes increases with the [total ligand]: DNA ratio (r) at two concentrations of Na+ (2?mM Na+ and 20?mM Na+) providing support for conclusion that MB is a stabilizer of DNA helix structure. By contrast, the shapes of dependences of width of transition (ΔT) on r at low and high [Na+] are different which points to the existence of different types of binding modes of MB with DNA. UV-spectroscopy experiments and fluorescence spectra indicated that the binding modes of MB with DNA depended on r. At high r (r?>?0.25), remarkable hypochromic effect with no shift of λ max in the absorption spectra of MB was observed. The fluorescence of MB was quenched which indicated that MB was bound to phosphate groups of DNA by electrostatic interaction. At low r ratios (r?<?0.2), the absorption spectra of MB upon increasing the concentration of DNA showed gradually decrease in the peak intensities with a red shift. This phenomenon is usually associated with molecular intercalation into the base stack of the ds-DNA. Using the Scatchard’s model, the complex formation constants for MB with DNA were determined: the binding constant K?≈?6.5?×?105 and binding site size n?≈?4. Obtained data are not typical for intercalation model of ligands to DNA. Moreover, comparison between these data and our early experimental results of interaction of ethidium bromide with DNA made it possible to suggest that this binding type of MB is, more probably, semi-intercalation mode (Vardevanyan et al., 2003). This conclusion is in accordance with the analysis of the model structures of MB–DNA complexes which clearly shows the importance of solvent contributions in suggested structural form (Tong et al., 2010).  相似文献   

15.
Previous work suggests that noncompetitive inhibitor (NCI) ligands and channel permeant cations bind to sites within the nicotinic acetylcholine receptor ion channel. We have used ethidium as a fluorescent probe of the NCI site to investigate interactions between NCI ligands and channel permeant cations. We found that ethidium can be completely displaced from the receptor by a variety of inorganic monovalent and divalent cations. The rank order of monovalent cation affinities was found to be Tl+ greater than Rb+ greater than or equal to K+ greater than Cs+ greater than Na+ greater than Li+. The monovalent cation Kd values vary markedly over a 40-fold range, from 3 to 121 mM. The Kd values and rank order correspond to values determined previously from electrophysiological data. Hill plots of the back titrations yield slopes of 1.0 for all monovalent cations, indicating a single class of independent sites, as shown previously for NCI ligands. Scatchard analysis of ethidium binding in the presence of Tl+ reveals a reduction in affinity and no changes in the maximal number of sites. In the presence of agonist the kinetics of ethidium dissociation induced by the addition of phencyclidine or cations alone or the simultaneous addition of both are nearly identical. The ethidium dissociation rate induced by either phencyclidine or cations is regulated by the occupation of the agonist sites in a similar manner. These results indicate that the effect of cations on NCI ligand binding occurs by mutually exclusive competition. We suggest that NCIs can regulate cation binding at a physiological cation recognition site that is likely part of the cation permeation path through the receptor channel.  相似文献   

16.
Abstract

A theoretical model is proposed for the covalent binding of (+) 7 β,8α-dihydroxy-9α, 10α- epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene denoted by BPDE I(+), to N2 on guanine. The DNA must kink a minimum of 39° to allow proper hybrid configurations about the C10 and N2 atoms involved in bond formation and to allow stacking of the pyrene moiety with the non-bonded adjacent base pair. Conservative (same sugar puckers and glycosidic angles as in B-DNA) and non-conservative (alternating sugar puckers as in intercalation sites) conformations are found and they are proposed structures in pathways connecting B-DNA, an intercalation site, and a kink site in the formation of a covalently intercalative bound adduct of BPDE I(+) to N2 on guanine. Stereographic projections are presented for (3′) and (5′) binding in the DNA. Experimental data for bending of DNA by BPDE, orientation of BPDE in DNA and unwinding of superhelical DNA is explained. The structure of a covalent intercalative complex is predicted to result from the reaction. Also, an anti ? syn transition of guanine results in a structure which allows the DNA to resume its overall B-form. The only change is that guanine has been rotated by 200° about its glycosidic bond so that the BPDE I(+) is bound in the major groove. The latter step may allow the DNA to be stored with an adduct which may produce an error in the genetic code.  相似文献   

17.
The interaction between the B-form specific ligands netropsin (Nt) and distamycin-3 (Dst-3) and DNA duplexes has been studied under conditions of salt concentration and low water activity that modify the polymer conformation into a non-B DNA form, putatively a Z-like form. Three polymers with strict alternating purine-pyrimidine sequences and GC content from 100-0% have been tested: poly(dG-dC) . poly(dG-dC), poly(dA-dC) . poly(dG-dT) and poly(dA-dT) . poly(dA-dT). The titrations by Nt and Dst-3 were followed by circular dichroism. Although specific binding of Nt to the Z-form of poly(dG-dC) . poly(dG-dC) does not occur, Nt reverses this Z structure to the B-type conformation; Dst-3 is, however, totally inefficient. The presumed non-B or Z-like structure of poly(dA-dC) . poly(dG-dT) is reversed to the B-form upon interaction with Nt; Dst-3 also induces this reversal but at higher ligand ratios. The modified B-structure of poly(dA-dT) . poly(dA-dT) in low water activity is efficiently reversed to the B-form by interaction with both Nt and Dst-3.  相似文献   

18.
Abstract

The interaction of calf-thymus DNA with trivalent Al and Ga cations, in aqueous solution at pH =6–7 with cation/DNA(P) (P=phosphate) molar ratios (r) 1/80, 1/40, 1/20, 1/10, 1/4 and 1/2 was characterized by Fourier Transform infrared (FTIR) difference spectroscopy.

Spectroscopic results show the formation of several types of cation-DNA complexes. At low metal ion concentration (r=l/80, 1/40), both cations bind mainly to the backbone PO2 group and the guanine N-7 site of the G-C base pairs (chelation). Evidence for cation chelate formation comes from major shifting and intensity increase of the phosphate antisymmetric stretch at 1222 cm-1 and the mainly guanine band at 1717 cm1. The perturbations of A-T base pairs occur at high cation concentration with major helix destabilization. Evidence for cation binding to A-T bases comes from major spectral changes of the bands at 1663 and 1609 cm-1 related mainly to the thymine and adenine in-plane vibrations. A major reduction of the B-DNA structure occurs in favor of A-DNA upon trivalent cation coordination.  相似文献   

19.
Lee HJ  Lee YL  Ji JJ  Lim HM 《Molecules and cells》2003,16(3):377-384
The biochemical reaction of a site-specific recombinase such as Hin invertase or gammadelta resolvase starts with binding of the recombinase to its recombination site and cleavage of the DNA in the center of the site. This is followed by strand exchange and finally ligation of the ends of the recombined strands. Previous biochemical studies have shown that Hin invertase and gammadelta resolvase cannot proceed beyond DNA cleavage in the absence of Mg++ ion, indicating that these recombinases require Mg++ ion in the strand exchange process. We have observed that the intercalating agent, ethidium bromide (2 microM), does not interfere with DNA cleavage, but slows strand exchange in a concentration-dependent manner. Levels of Mg++ ion below 5 mM also slow strand exchange substantially. We infer that random intercalation of ethidium bromide inhibits unwinding of the double helix at the recombination site in the negatively supercoiled DNA and propose that Mg+ may be required for Hin to deform the secondary structure of B-DNA prior to strand exchange.  相似文献   

20.
Evidence for the reversible binding of paraquat to deoxyribonucleic acid   总被引:1,自引:0,他引:1  
Evidence for the reversible binding of paraquat to calf thymus DNA has been obtained using equilibrium dialysis and thermal melting point determinations. The data indicated the presence of at least two populations of binding site with affinity constants of 6.2 X 10(4) and 7.1 X 10(3) M-1, respectively. The binding capacities of DNA for paraquat were 66 and 480 nmol/mumol DNA nucleotide, respectively, and were equivalent to one ligand bound per 2 DNA phosphate groups. Putrescine inhibited paraquat binding to the low affinity sites without altering binding to the high affinity sites. Scatchard plots of paraquat binding characteristics indicated the presence of positive cooperativity between the compound and DNA. Thermal melting curves of DNA in the presence of paraquat and the endogenous amines putrescine, spermidine and spermine, provided evidence that paraquat cross-linked to DNA with a similar affinity as spermidine. The thermal melting point data also suggested the presence of positive cooperativity between ligand and macromolecule that possibly resulted from a conformation change in the structure of the DNA molecule. Paraquat competitively inhibited the binding of ethidium bromide to DNA and this effect was reversed by Na+. From the data, it is suggested that paraquat binds primarily to the negatively charged phosphates on the DNA backbone but is displaced into the interbase region occupied by the intercalator ethidium bromide. DNA binding of paraquat may, in part, account for its weak mutagenic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号