首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 927 毫秒
1.
Francisella tularensis, the causative agent of tularemia, is a highly infectious intracellular pathogen with no licensed vaccine available today. The recent search for genome sequences involved in F. tularensis virulence mechanisms led to the identification of the 30-kb region defined as a Francisella pathogenicity island (FPI). In our previous iTRAQ study we described the concerted upregulation of some FPI proteins in different F. tularensis strains cultivated under stress conditions. Among them we identified the IglH protein whose role in Francisella virulence has not been characterized yet. In this work we deleted the iglH gene in a European clinical isolate of F. tularensis subsp. holarctica FSC200. We showed that the iglH gene is necessary for intracellular growth and escape of F. tularensis from phagosomes. We also showed that the iglH mutant is avirulent in a mouse model of infection and persists in the organs for about three weeks after infection. Importantly, mice vaccinated by infection with the iglH mutant were protected against subcutaneous challenge with the fully virulent parental FSC200 strain. This is the first report of a defined subsp. holarctica FPI deletion strain that provides protective immunity against subsequent subcutaneous challenge with a virulent isolate of F. tularensis subsp. holarctica.  相似文献   

2.
Francisella tularensis is an obligate, intracellular bacterium that causes acute, lethal disease following inhalation. As an intracellular pathogen F. tularensis must invade cells, replicate, and disseminate while evading host immune responses. The mechanisms by which virulent type A strains of Francisella tularensis accomplish this evasion are not understood. Francisella tularensis has been shown to target multiple cell types in the lung following aerosol infection, including dendritic cells (DC) and macrophages. We demonstrate here that one mechanism used by a virulent type A strain of F. tularensis (Schu4) to evade early detection is by the induction of overwhelming immunosuppression at the site of infection, the lung. Following infection and replication in multiple pulmonary cell types, Schu4 failed to induce the production of proinflammatory cytokines or increase the expression of MHCII or CD86 on the surface of resident DC within the first few days of disease. However, Schu4 did induce early and transient production of TGF-beta, a potent immunosuppressive cytokine. The absence of DC activation following infection could not be attributed to the apoptosis of pulmonary cells, because there were minimal differences in either annexin or cleaved caspase-3 staining in infected mice compared with that in uninfected controls. Rather, we demonstrate that Schu4 actively suppressed in vivo responses to secondary stimuli (LPS), e.g., failure to recruit granulocytes/monocytes and stimulate resident DC. Thus, unlike attenuated strains of F. tularensis, Schu4 induced broad immunosuppression within the first few days after aerosol infection. This difference may explain the increased virulence of type A strains compared with their more attenuated counterparts.  相似文献   

3.
Immunoproteomic analysis was applied to study the immunoreactivity of serum samples collected at different time points from a laboratory assistant accidentally infected with highly virulent strain of Francisella tularensis subsp. tularensis. Immunoblotting showed that the spectrum of F. tularensis antigens recognized specifically by immune sera remained with the exception for 1 antigen stable for up to 16 years after infection. Using immunoproteomics approach 10 immunoreactive antigens were successfully identified. Several new immunogenic F. tularensis proteins were described for the first time.  相似文献   

4.
We used the killing of Galleria mellonella (Lepidoptera: Pyralidae; the greater wax moth) caterpillar by the live vaccine strain (LVS) of Francisella tularensis to develop an invertebrate host system that can be used to study F. tularensis infection and the in vivo effects of antibacterial compounds on F. tularensis LVS. After injection into the insect hemocoel, F. tularensis LVS, killed caterpillars despite the association of LVS with hemocytes. The rate of killing depended on the number of bacteria injected. Antibiotic therapy with ciprofloxacin, levofloxacin or streptomycin administered before or after inoculation prolonged survival and decreased the tissue burden of F. tularensis in the hemocoel. Delayed drug treatment reduced the efficacy of antibacterials and especially streptomycin. The G. mellonella-F. tularensis LVS system may facilitate the in vivo study of F. tularensis, efficacy with antibacterial agents.  相似文献   

5.
Findings from a number of studies suggest that the PilA pilin proteins may play an important role in the pathogenesis of disease caused by species within the genus Francisella. As such, a thorough understanding of PilA structure and chemistry is warranted. Here, we definitively identified the PglA protein-targeting oligosaccharyltransferase by virtue of its necessity for PilA glycosylation in Francisella tularensis and its sufficiency for PilA glycosylation in Escherichia coli. In addition, we used mass spectrometry to examine PilA affinity purified from Francisella tularensis subsp. tularensis and F. tularensis subsp. holarctica and demonstrated that the protein undergoes multisite, O-linked glycosylation with a pentasaccharide of the structure HexNac-Hex-Hex-HexNac-HexNac. Further analyses revealed microheterogeneity related to forms of the pentasaccharide carrying unusual moieties linked to the distal sugar via a phosphate bridge. Type A and type B strains of Francisella subspecies thus express an O-linked protein glycosylation system utilizing core biosynthetic and assembly pathways conserved in other members of the proteobacteria. As PglA appears to be highly conserved in Francisella species, O-linked protein glycosylation may be a feature common to members of this genus.  相似文献   

6.
Sixteen raptors and three hooded crows were infected experimentally with Francisella tularensis biovar palaearctica. The birds were infected parenterally or per os. One goshawk, one sparrow hawk and one hooded crow died during the experimental period, and the remaining 16 birds were killed 14-77 days after the first infection. Francisella tularensis was not isolated from any bird. Antibody levels against F. tularensis measured in nine birds varied from 0 to 1:1,280. In one goshawk with a titer of 1:1,280, positive fluorescent antibody reactions against F. tularensis were seen in the liver and spleen. These results are similar to those found by other authors indicating that raptors and corvids are normally resistant to infections with F. tularensis.  相似文献   

7.
We have isolated and characterized outer membrane vesicles (OMVs) from Francisella. Transport of effector molecules through secretion systems is a major mechanism by which Francisella tularensis alters the extracellular proteome and interacts with the host during infection. Outer membrane vesicles produced by Francisella were examined using TEM and AFM and found to be 43-125 nm in size, representing another potential mechanism for altering the extracellular environment. A proteomic analysis (LC-MS/MS) of OMVs from F. novicida and F. philomiragia identified 416 (F. novicida) and 238 (F. philomiragia) different proteins, demonstrating that OMVs are an important contributor to the extracellular proteome. Many of the identified OMV proteins have a demonstrated role in Francisella pathogenesis. Biochemical assays demonstrated that Francisella OMVs possess acid phosphatase and hemolytic activities that may affect host cells during infection, and are cytotoxic toward murine macrophages in cell culture. OMVs have been previously used as a human vaccine against Neisseria meningitidis . We hypothesized that Francisella OMVs could be useful as a novel Francisella vaccine. Vaccinated BALB/C mice challenged with up to 50 LD50 of Francisella showed statistically significant protection when compared to control mice. In the context of these new findings, we discuss the relevance of OMVs in Francisella pathogenesis as well as their potential use as a vaccine.  相似文献   

8.
Francisella tularensis is a facultative intracellular bacterium that survives and multiplies inside macrophages. Here we constructed a new promoter probe plasmid denoted pKK214 by introduction of a promoter-less chloramphenicol acetyltransferase (cat) gene into the shuttle vector pKK202. A promoter library was created in F. tularensis strain LVS by cloning random chromosomal DNA fragments into pKK214. Approximately 15% of the recombinant bacteria showed chloramphenicol resistance in vitro. The promoter library was also used to infect macrophages in the presence of chloramphenicol and after two cycles of infection the library contained essentially only chloramphenicol resistance clones which shows that pKK214 can be used to monitor F. tularensis genes that are expressed during infection.  相似文献   

9.
The intracellular bacterium Francisella tularensis is the causative agent of tularemia, a potentially fatal disease. In macrophages, Francisella escapes the initial phagosome and replicates in the cytosol, where it is detected by the cytosolic DNA sensor AIM2 leading to activation of the AIM2 inflammasome. However, during aerosol infection, Francisella is also taken up by dendritic cells. In this study, we show that Francisella novicida escapes into the cytosol of bone marrow-derived dendritic cells (BMDC) where it undergoes rapid replication. We show that F. novicida activates the AIM2 inflammasome in BMDC, causing release of large amounts of IL-1β and rapid host cell death. The Francisella Pathogenicity Island is required for bacterial escape and replication and for inflammasome activation in dendritic cells. In addition, we show that bacterial DNA is bound by AIM2, which leads to inflammasome assembly in infected dendritic cells. IFN-β is upregulated in BMDC following Francisella infection, and the IFN-β signalling pathway is partially required for inflammasome activation in this cell type. Taken together, our results demonstrate that F. novicida induces inflammasome activation in dendritic cells. The resulting inflammatory cell death may be beneficial to remove the bacterial replicative niche and protect the host.  相似文献   

10.
Francisella tularensis is an obligate intracellular bacterium that induces severe, acute, often fatal disease when acquired by the respiratory route. Despite the seriousness of this pathogen, very little is understood about its interaction with key target cells in the airways and lungs (alveolar macrophages and airway dendritic cells (DC)) after inhalation. In this study we demonstrate replication of F. tularensis in primary DC. Early after infection, F. tularensis induced increased expression of MHC class II and CD86 on DC, but not macrophages. This was followed by depletion of DC from the airways and lungs. Despite logarithmic replication and phenotypic maturation of DC, F. tularensis failed to induce production of several key proinflammatory cytokines, including TNF-alpha and IL-6, from DC. However, F. tularensis infection did elicit production of the potent immunosuppressive cytokine, TGF-beta. Furthermore, F. tularensis actively suppressed the ability of DC to secrete cytokines in response to specific TLR agonists. Finally, we also found that infection of DC and macrophages in the lungs appears to actually increase the severity of pulmonary infection with F. tularensis. For example, depletion of airway DC and alveolar macrophages before infection resulted in significantly prolonged survival times. Together, these data suggest F. tularensis is able to selectively uncouple Ag-presenting functions from proinflammatory cytokine secretion by critical APCs in the lungs, which may serve to create a relatively immunosuppressive environment favorable to replication and dissemination of the organism.  相似文献   

11.
Francisella tularensis is a facultative intracellular pathogen that infects a wide variety of mammals and causes tularemia in humans. It is recognized as a potential agent of bioterrorism due to its low infectious dose and multiple routes of transmission. To date, genetic manipulation in Francisella spp. has been limited due to the inefficiency of DNA transformation, the relative lack of useful selective markers, and the lack of stably replicating plasmids. Therefore, the goal of this study was to develop an enhanced shuttle plasmid that could be utilized for a variety of genetic procedures in both Francisella and Escherichia coli. A hybrid plasmid, pFNLTP1, was isolated that was transformed by electroporation at frequencies of >1 x 10(7) CFU mug of DNA(-1) in F. tularensis LVS, Francisella novicida U112, and E. coli DH5alpha. Furthermore, this plasmid was stably maintained in F. tularensis LVS after passage in the absence of antibiotic selection in vitro and after 3 days of growth in J774A.1 macrophages. Importantly, F. tularensis LVS derivatives carrying pFNLTP1 were unaltered in their growth characteristics in laboratory medium and macrophages compared to wild-type LVS. We also constructed derivatives of pFNLTP1 containing expanded multiple cloning sites or temperature-sensitive mutations that failed to allow plasmid replication in F. tularensis LVS at the nonpermissive temperature. In addition, the utility of pFNLTP1 as a vehicle for gene expression, as well as complementation, was demonstrated. In summary, we describe construction of a Francisella shuttle plasmid that is transformed at high efficiency, is stably maintained, and does not alter the growth of Francisella in macrophages. This new tool should significantly enhance genetic manipulation and characterization of F. tularensis and other Francisella biotypes.  相似文献   

12.
In this paper we evaluate the role of human γδ T cells in control of Francisella tularensis infection. Using an in vitro model of infection, a reduction in bacterial numbers was detected in the presence of human γδ T cells for both attenuated LVS and virulent SCHU S4 strains of F. tularensis. Antibody neutralisation of IFN-γ caused an increase in survival of F. tularensis LVS suggesting that γδ T cell-mediated control of F. tularensis infection is partially mediated by IFN-γ.  相似文献   

13.
Francisella tularensis, the causative agent of tularaemia, is a highly infectious and virulent intracellular pathogen. There are two main human pathogenic subspecies, Francisella tularensis ssp. tularensis (type A), and Francisella tularensis ssp. holarctica (type B). So far, knowledge regarding key virulence determinants is limited but it is clear that intracellular survival and multiplication is one major virulence strategy of Francisella. In addition, genome sequencing has revealed the presence of genes encoding type IV pili (Tfp). One genomic region encoding three proteins with signatures typical for type IV pilins contained two 120 bp direct repeats. Here we establish that repeat-mediated loss of one of the putative pilin genes in a type B strain results in severe virulence attenuation in mice infected by subcutaneous route. Complementation of the mutant by introduction of the pilin gene in cis resulted in complete restoration of virulence. The level of attenuation was similar to that of the live vaccine strain and this strain was also found to lack the pilin gene as result of a similar deletion event mediated by the direct repeats. Presence of the pilin had no major effect on the ability to interact, survive and multiply inside macrophage-like cell lines. Importantly, the pilin-negative strain was impaired in its ability to spread from the initial site of infection to the spleen. Our findings indicate that this putative pilin is critical for Francisella infections that occur via peripheral routes.  相似文献   

14.
15.
Francisella novicida is a gram-negative pathogen that can induce disease in mice that mimics human tularemia, and is nearly identical to Francisella tularensis at the genomic level. In this work a number of antibiotic marker cassettes that incorporate a strong F. novicida promoter is constructed, which greatly enhances selection in F. novicida and F. tularensis. Two low-copy plasmid vectors based on a broad-host-range plasmid, and an integrating vector have also been made, and these can be used for genetic complementation. Two general approaches to deletion mutagenesis in F. novicida is also described.  相似文献   

16.
Rasko DA  Esteban CD  Sperandio V 《Plasmid》2007,58(2):159-166
Francisella tularensis is a category A bioterror pathogen which in some cases can cause a severe and fatal human infection. Very few virulence factors are known in this species due to the difficulty in working with it as well as the lack of tools for genetic manipulation. This work describes the construction of a shuttle vector that can replicate in Escherichia coli and F. tularensis as well as two distinct promoter trap constructs based on the shuttle vector backbone. Replication in F. tularensis is based on the promiscuous origin of replication from the Staphylococcus aureus plasmid pC194. We demonstrate the novel plasmids can coexist with established F. tularensis vectors based on the pFNL10 plasmid, the current workhorse of F. tularensis genetics. Our promoter trap can identify promoters that are activated during intracellular growth and survival. These new vectors provide additional tools for the genetic manipulation of F. tularensis.  相似文献   

17.
18.
The conditions of the enzyme-linked immunosorbent assay (ELISA) for the detection of Francisella tularensis were worked out. In the study of 27 strains differing in their biological characteristics, the sensitivity of the assay was determined, varying within the range of 1 X 10(4)--5 X 10(4) million cells/ml and exceeding the sensitivity of the currently used methods for the immunodiagnosis of tularemia by 1-2 orders. ELISA also proved to be a highly effective technique for the detection of the specific antigen in the organs of infected animals. The antigen was regularly detected in the organs of white mice, beginning from day 3 after their infection with the minimal doses of F. tularensis. The method may be recommended both for the identification of isolated cultures and for the early diagnosis of tularemia infection.  相似文献   

19.
Abstract Francisella tularensis , the causative agent of the epizootic disease tularemia in mammals, can be isolated from mud and water. To study the spread and persistence of Francisella tularensis in water, different strategies for pre-treatment of natural water samples prior to identification of the bacterium by polymerase chain reaction (PCR) were evaluated. A method for handling of samples taken from natural waters was developed. Applied on natural water samples amended with F. tularensis , the method rendered identification by PCR reproducible and it resulted in an amplified Francisella -specific product in all samples from natural waters tested. In addition, by employing primers targeting conserved regions of the 16S rDNA the presence of bacteria was demonstrated in all samples investigated. The results presented will, in combination with other techniques that allow identification, improve studies on the epizootiology and epidemiology of the genus Francisella .  相似文献   

20.
Champion MD 《PloS one》2011,6(5):e20295
Whole genome comparative studies of many bacterial pathogens have shown an overall high similarity of gene content (>95%) between phylogenetically distinct subspecies. In highly clonal species that share the bulk of their genomes subtle changes in gene content and small-scale polymorphisms, especially those that may alter gene expression and protein-protein interactions, are more likely to have a significant effect on the pathogen's biology. In order to better understand molecular attributes that may mediate the adaptation of virulence in infectious bacteria, a comparative study was done to further analyze the evolution of a gene encoding an o-methyltransferase that was previously identified as a candidate virulence factor due to its conservation specifically in highly pathogenic Francisella tularensis subsp. tularensis strains. The o-methyltransferase gene is located in the genomic neighborhood of a known pathogenicity island and predicted site of rearrangement. Distinct o-methyltransferase subtypes are present in different Francisella tularensis subspecies. Related protein families were identified in several host species as well as species of pathogenic bacteria that are otherwise very distant phylogenetically from Francisella, including species of Mycobacterium. A conserved sequence motif profile is present in the mammalian host and pathogen protein sequences, and sites of non-synonymous variation conserved in Francisella subspecies specific o-methyltransferases map proximally to the predicted active site of the orthologous human protein structure. Altogether, evidence suggests a role of the F. t. subsp. tularensis protein in a mechanism of molecular mimicry, similar perhaps to Legionella and Coxiella. These findings therefore provide insights into the evolution of niche-restriction and virulence in Francisella, and have broader implications regarding the molecular mechanisms that mediate host-pathogen relationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号