首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to assess the sperm membrane integrity and permeability of frozen-thawed bovine spermatozoa, processed at varying temperatures during and after thawing, by exposing the spermatozoa to standardized hypoosmotic conditions. The hypoosmotic swelling (HOS) test was employed to measure changes in sperm membrane functional status and permeability. Frozen specimens (from 5 bulls) were thawed at 37h degrees C for 10 sec and transferred to a water bath at 37 (Aliquot 1), 21 (Aliquot 2) or 5 degrees C (Aliquot 3) to complete thawing (1 to 2 min). The specimens were maintained and processed at these temperatures for additional 5 to 10 min. Specimens were slowly diluted 1:1 (v/v) and washed with Ham's F-10 media containing 3% (w/v) BSA. The HOS test was performed by adding 0.1 ml of the sperm specimen to 1.0 ml of a 100 mOsm/L HOS diluent. The following treatments were performed: 1) Aliquot 1 (control), specimens were incubated in HOS solutions at 37 degrees C for 5 min; 2) Aliquot 2, specimens were incubated in HOS solutions at 21 or 37 degrees C for 5 min; and 3) Aliquot 3, specimens were incubated in HOS solutions at 5 or 37 degrees C for 5 min. Samples were obtained from the sperm specimen-HOS diluent mixtures at 1 min intervals (during the 5 min incubation period), fixed and assessed for sperm swelling patterns. The sperm response to the HOS test for specimens processed at temperatures below 37 degrees C was higher when samples were incubated in HOS diluents at 37 degrees C. This finding indicates that the potential for sperm swelling (measurement of sperm membrane functional status) can be maintained when spermatozoa are processed at temperatures below 37 degrees C. The highest response to the HOS test was observed in spermatozoa processed at 21 degrees C and incubated in a HOS solution at 37 degrees C. The response to the HOS test was superior to the one observed in specimens maintained and processed at 37 degrees C throughout. Thawing of spermatozoa at 37 degrees C, followed by processing at 21 degrees C seems to reduce the negative effects associated with osmotic shock and results in the preservation of the sperm membrane functional status during the in vitro handling of frozen-thawed bovine spermatozoa.  相似文献   

2.
Correa JR  Zavos PM 《Theriogenology》1995,44(7):963-971
This study was undertaken to investigate the occurrence of osmotic shock, sperm viability and membrane functional status of frozen-thawed bovine spermatozoa during a short-term incubation period (2 h) in vitro after dilution by 2 methods. Frozen semen from 10 bulls (0.5-ml plastic straws, 7% glycerol) was thawed and diluted by slow or rapid dilution method with Ham's F-10 medium containing 0 or 7% glycerol and assessed for sperm motion parameters, percentage of spermatozoa with coiled tails and reactivity to the hypoosmotic swelling (HOS; percentage of spermatozoa swelling) test at 60 min intervals during a 2 h incubation period (37 degrees C). Post-thaw sperm viability, as reflected by percentage and grade of motility (0 to 4) did not differ between the 2 dilution methods (P > 0.05) at the beginning of incubation (Time 0). However, differences were apparent (P < 0.05) as the incubation time increased. Slow dilution with medium containing 0% glycerol caused less increase (P < 0.05) in percentage of spermatozoa with coiled tails; Moreover, these spermatozoa showed greater reactivity to the HOS test. When contrasting slow vs rapid dilution methods, the occurrence of osmotic shock was less frequent, and response to the HOS test was greater for spermatozoa diluted slowly, regardless of the glycerol content of the incubation medium. Rapid deglycerolization of frozen-thawed bovine spermatozoa in a single step, induces damage which is not detected on the basis of spennatozoal motility but is clearly evident after several hours of incubation by using the HOS test to detect damage.  相似文献   

3.
Different thawing methods are used for stallion semen, however, it is unclear which method is the optimal one. To determine if the thawing temperature has an effect on semen quality, we compared 2 thawing temperatures, 75 degrees C and 37 degrees C. The following parameters were used to measure sperm quality: sperm motility, sperm viability, plasma membrane integrity and sperm morphology. Twenty-three ejaculates from 10 Dutch Warmblood stallions were thawed either at 37 degrees C for 30 sec or at 75 degrees C for 7 sec. Sperm motility was evaluated by a Hamilton Thorn Motility Analyser. Plasma membrane integrity and sperm viability were evaluated by using a live/dead fluorescein stain containing a calcein AM probe and ethidium homodimer-1 probe. The eosinaniline blue staining method was used to evaluate the percentage of live and dead cells, as well as sperm morphology. There was no significant difference (P = 0.84) between sperm motility after thawing at 37 degrees C and 75 degrees C. There was also no significant difference (P = 0.053) between the percentage of live spermatozoa using the calcein AM/ethidium homodimer stain after thawing at 37 degrees C and 75 degrees C. There was, however, a significant difference (P = 0.032) between the percentage of live spermatozoa using the eosin-aniline blue stain after thawing at 37 degrees C compared with that at 75 degrees C. In conclusion, our laboratory results indicated that stud farms using frozen semen should thaw the straws at 37 degrees C instead of 75 degrees C. The lower temperature is easier to work with, as thawing at the higher temperature requires special equipment and has to be timed very carefully to avoid damage to the spermatozoa.  相似文献   

4.
5.
Semen from five 2.5-yr-old rams selected for use in an AI program was collected over 3 consecutive days using an artificial vagina. The semen was diluted with a skim milk extender containing 7% glycerol (v/v), packed in French mini-straws (approx. 100 mill/straw), and frozen in a programmable freezer. Three freezing operations were carried out per ram. Three straws per freezing operation were subjected to the following thawing procedures: 1) 70 degrees C, 5 sec; 2) 50 degrees C, 9 sec and 3) 35 degrees C, 12 sec. Post-thaw sperm motility was subjectively assessed using a phase contrast microscope; while the combined fluorochromes carboxyfluorescein diacetate and propidium iodide (CFDA/PI), the hypo-osmotic swelling test (HOS) and the presence of normal apical ridges (NAR's) were used to determine the degree of sperm membrane integrity. Significant differences between thawing treatments were found for post-thaw motility (P < .05) and membrane integrity (P < 0.01), and variation among rams was statistically significant. Post-thaw sperm motility as well as the percentage of spermatozoa showing intact membranes were significantly higher (P < 0.01) for straws thawed at 70 degrees C than for those thawed at 35 degrees C (67.0 +/- 1.1 and 63.0 +/- 1.1%, and 50.5 +/- 1.5 and 41.7 +/- 1.5%, respectively). However, no corresponding statistically significant difference could be found for these parameters when 70 degrees C and 50 degrees C thawing were compared. It was concluded that sperm can be thawed at 50 degrees C for 9 sec instead of 70 degrees C for 5 sec without further reducing sperm motility or membrane integrity. This lower thawing temperature would facilitate the widespread use of frozen/thawed ram semen under farm conditions in Sweden.  相似文献   

6.
Cryopreservation of epididymal spermatozoa is a potentially valuable tool for preserving genetic material from individuals of endangered species that die accidentally. Improvement of sperm-freezing protocols would increase the efficacy of gene banking from endangered felids, and the domestic cat can be used as a model for the wild felids. Addition of the detergent Equex STM paste to semen freezing extenders has been found to improve post-thaw survival and longevity of spermatozoa from various species but has never been tested for cat spermatozoa. Spermatozoa from cats with a high percentage of morphologically abnormal spermatozoa are more susceptible for cold injury and osmotic stress than spermatozoa from normozoospermic cats. Therefore, the aims of this study were to investigate: (a) if addition of Equex STM paste to a semen freezing extender would improve post-thaw sperm survival, and (b) if there is a relation between the percentage of morphologically normal spermatozoa and cryopreservation induced damage in cat epididymal spermatozoa. Spermatozoa harvested from epididymides of 10 male cats were frozen in a Tris egg yolk extender with or without the addition of Equex STM paste (0.5%, v/v). Sperm motility, membrane integrity and acrosomal status were evaluated immediately after harvesting, and at 0, 2, 4 and 6 h post-thaw. Sperm membrane integrity and acrosomal status were also evaluated after cooling to 4 degrees C, just before freezing. Cooling did not cause significant damage to the spermatozoa, whereas freezing damaged sperm membranes and acrosomes. Addition of Equex to the freezing extender had a significant positive effect on the percentage of intact acrosomes immediately after thawing (P > 0.05), but had a negative effect on the longevity of the spermatozoa; the percentages of membrane intact and motile spermatozoa being significantly lower in the presence of Equex than in the controls at 6h after thawing. The percentage of morphologically normal spermatozoa was not found to be correlated with either cryopreservation induced acrosome or plasma membrane damage, or with post-thaw motility (P > 0.05). The results clearly show that addition of Equex STM paste in the freezing extender protects the acrosomes of cat epididymal spermatozoa during the freezing--thawing process, but reduces the sperm longevity during in vitro incubation at 38 degrees C. Our results also indicate that the percentage of morphologically normal epididymal spermatozoa is not correlated with cryopreservation induced sperm damage using the described freezing protocol.  相似文献   

7.
In this study, we evaluated the effects of the thawing methodology on sperm function after cryopreservation in pellets. We compared the use of two thawing procedures: method (1) maintaining pellet for 10 min in air at room temperature, then another 10-min period in air at 37 °C followed by dilution in a thawing medium; and method (2) immersing the pellets directly in thawing medium at 37 °C for 20 min. This procedure leads to a higher rate of temperature increase and a dilution of the glycerol present in the freezing medium. We analyzed the effect of the thawing procedure on sperm motility, viability, membrane lipid packing disorder, acrosome status, reactive oxygen species (ROS) level and sperm chromatin condensation. This study revealed a positive effect of the M2 thawing methodology on sperm parameters. The percentage of spermatozoa with fast-linear movement is increased (M1: 17.26% vs. M2: 28.05%, p < 0.01), with higher viability (M1: 37.81% vs. M2: 40.15%, p < 0.01) and less acrosome damage (M1: 40.44% vs. M2: 35.45%, p = 0.02). We also detected an increase in the percentage of viable spermatozoa with low membrane lipid disorder (M1: 31.36% vs. M2: 33.17%, p = 0.03) and a reduction in chromatin condensation (44.62 vs. 46.62 arbitrary units, p = 0.02). Further studies will be necessary to evaluate the possible clinical applications.  相似文献   

8.
Sperm parameters such as the concentration and percentage of motile spermatozoa are commonly used to assess semen quality. The sperm quality analyzer (SQA) is a device that detects variations in the optical density of motile spermatozoa, providing a sperm motility index (SMI) that is based on various sperm parameters including the concentration, morphology and acrosomal status of motile spermatozoa. The relationship between SMI values of frozen-thawed bovine spermatozoa undergoing swelling in a hypoosmotic medium (100 mOsm/L) and other sperm parameters were evaluated. Frozen semen specimens from 3 bulls were thawed and washed with Ham's F-10 supplemented with 3% BSA and split into 3 (0.2 mL) aliquots. The aliquots were diluted with 1.0 mL of Ham's F-10 (Aliquot 1), isotonic sodium citrate (Aliquot 2), and hypotonic sodium citrate (Aliquot 3). The osmotic pressure of the media used for dilution of Aliquots 1 and 2 was 300 mOsm/L, while that for Aliquot 3 was 100 mOsm/L. Following dilution, the aliquots were incubated for 30 min and manually assessed at 5-min intervals for the percentage and grade of motility (Grades 0 to 4) as well as for the percentage of swollen spermatozoa. Sperm samples were simultaneously evaluated by SQA to obtain the SMI values at the same 5-min intervals during the 30-min incubation. Significant correlations were observed between SMI values and other sperm parameters in Aliquot 3 (P < 0.05). The results indicated that the SMI values obtained from frozen-thawed bovine spermatozoa exposed to a 100 mOsm/L diluent, which causes optimal swelling of spermatozoa, are highly correlated to other sperm parameters. The SQA unit, as applied in this study, can be used for rapid and reliable screening of sperm samples.  相似文献   

9.
A study was conducted to determine an optimum technique for semen cryopreservation and the biological competence of frozen-thawed ferret spermatozoa. Fifty-two fresh electroejaculates from 4 males were evaluated for sperm percentage motility, forward progressive motility, motility index (SMI) and acrosomal integrity. To determine the optimum temperature for maintaining sperm motility in vitro and the influence of glycerol on sperm motility, seminal aliquants were diluted in TEST diluent (containing either 0 or 4% glycerol) and maintained at 25 degrees or 37 degrees C. For cryopreservation, semen was diluted in each of 3 cryodiluents (TEST, PDV, BF5F), cooled for 30 min at 5 degrees C and pelleted on solid CO2 or frozen in 0.25 ml straws (20 degrees C/min to -100 degrees C). Following thawing, SMI and acrosomal integrity were determined. Ten females with maximum vulval swelling were given 90 i.u. human chorionic gonadotrophin and laparoscopically inseminated in utero with spermatozoa previously frozen using the optimum diluent and freeze-thaw method. The maintenance temperature of 25 degrees C was superior (P less than 0.05) to 37 degrees C for sustaining sperm motility, and glycerol did not influence (P greater than 0.05) motility for up to 11 h of culture. After thawing, motile spermatozoa were recovered in all treatment groups, but sperm motility and normal acrosomal ratings were highest using the PDV diluent, the pelleting method and thawing at 37 degrees C (P less than 0.05). Seven of the 10 ferrets (70%) inseminated with spermatozoa frozen by this approach became pregnant and produced 31 kits (mean litter size 4.4; range 1-9 kits).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Ejaculated boar spermatozoa are vulnerable to cold shock. Prolonged storage of boar spermatozoa at low temperatures reduces survival rate, resulting in a bottleneck for the extension of artificial insemination in pig husbandry. This study evaluated whether alginate microencapsulization processing can improve the longevity of boar spermatozoa stored at 5 degrees C and the fertility of microencapsulated spermatozoa in vivo. Sperm-rich fraction semen from three purebred boars were concentrated and microencapsulated using alginate at 16-18 degrees C, and then were stored at 5 degrees C. Following storage for 1, 3 and 7 days, the microcapsule was taken out to assess sperm release under 37 degrees C incubation with or without 110 rpm stirring. The percentage of sperm released from microcapsules with 110 rpm stirring was higher than without stirring (81 versus 60%) after 24h of incubation. In another experiment, semen was also microencapsulated to evaluate the sperm motility. The motility of spermatozoa was assessed at 10 min, 8, 24, 32, 48, 56 and 72 h following incubation at 37 degrees C for nine consecutive days. The fertility of the free and microencapsulated semen was assessed by inseminating sows, and the reproductive traits (conception rate, farrowing rate, and litter size) were recorded. The motility of encapsulated spermatozoa was significantly higher than that of free semen after 8h incubation at 37 degrees C after storing for over three days (P<0.05). No significant difference existed in conception rate, farrowing rate, and litter size between the microencapsulated and non-encapsulated semen after four days of storage. In conclusion, microencapsulation can increase the longevity of boar spermatozoa and may sustain in vivo ova fertilization ability.  相似文献   

11.
We studied the relationship between motility and membrane damage, as assessed by fluorescent staining, in fresh and in frozen-thawed ram spermatozoa. Semen from Merino rams was incubated with 6-carboxyfluorescein diacetate and propidium iodide. In both fresh and frozen-thawed samples, the percentage of intact spermatozoa was lower than the motility rate, thus indicating the presence of damaged but motile spermatozoa. Freezing and thawing resulted in a marked loss of membrane integrity, whereas motility decreased to a lesser extent. There was a positive relationship (r=0.64; P<0.001) between membrane integrity immediately after thawing and motility after 8 h of incubation at 37 degrees C. These results demonstrate the usefulness of the fluorescent staining method for the prediction of ram sperm quality and post-thaw survival.  相似文献   

12.
This study was carried out to investigate the cryoprotective efficacy of Equex STM Paste on the quality of canine post-thaw epididymal spermatozoa. Following castration, spermatozoa were flushed from the cauda epididymides. Epididymal spermatozoa from 13 of 16 dogs with a sperm motility of >70% were frozen in an egg yolk-Tris extender, supplemented with Equex STM Paste (0.5%, v/v); the extender free of Equex STM Paste served as a control cryoprotective diluent. The quality of spermatozoa, judged by its motility, plasma membrane integrity and acrosome integrity, was evaluated on four occasions, immediately after collection, after equilibration and at 0 and 2h post-thaw. Reducing the temperature to 4 degrees C for 2h prior to freezing decreased sperm motility (P=0.001), but had no effects on membrane integrity or acrosome integrity. Immediately after thawing, the percentage of acrosome-intact spermatozoa significantly decreased in samples frozen without Equex STM Paste compared to freshly collected or Equex-treated samples. After incubation at 37 degrees C for 2h post-thaw, a greater percentage of motile spermatozoa (P=0.018) and spermatozoa with intact acrosomes (P=0.001) were observed in Equex-treated samples compared with the control. The percentage of membrane-intact spermatozoa did not differ significantly between Equex-treated and control samples at any time. Supplementation with Equex STM Paste in the semen extender was effective for freezing canine epididymal spermatozoa because it protected acrosome integrity against damage induced by cryopreservation and it prolonged post-thaw sperm motility during in vitro incubation at 37 degrees C.  相似文献   

13.
Correa JR  Zavos PM 《Theriogenology》1996,46(7):1225-1232
A number of semen manipulative techniques are currently available to remove the undesirable spermatozoa, debris and other factors and to increase sperm quality. The use of motility stimulants such as caffeine or others could optimize the recovery and quality of frozen-thawed spermatozoa processed by a variety of sperm selection techniques. Frozen-thawed specimens from 5 bulls were slowly diluted and washed with Ham's F-10 medium containing 3% BSA (w/v) and 0 or 2 mM caffeine. Aliquots containing approximately 50 x 10(6) total sperm cells were used for conventional sperm wash, swim-up, Percoll density gradient centrifugation (80, 70, 55 and 40% Percoll gradients) and Sephadex (SpermPrep I) filtration. Quantitative and qualitative characteristics of selected spermatozoa included: total sperm (x 10(6)), percentage and grade (0 to 4) of motility, percentage of spermatozoa with coiled tails and response to the hypoosmotic swelling (HOS) test (percentage of swollen spermatozoa). When compared to washed specimens, fewer spermatozoa were recovered via the swim-up, Percoll and SpermPrep I filtration methods. Quantitative and qualitative characteristics of these spermatozoa improved further after processing with Ham's F-10 containing 2 mM caffeine, followed by selection via the various techniques. Enhancement of sperm motility, in conjunction with the most appropriate sperm selection technique, represents an efficient method for the recovery of spermatozoa with improved qualitative characteristics.  相似文献   

14.
Rasul Z  Ahmed N  Anzar M 《Theriogenology》2007,68(5):813-819
The objective of the present study was to investigate the synergistic effect of DMSO and glycerol added at various temperatures on the post-thaw quality of buffalo sperm. Pooled ejaculates from four Nili-Ravi buffalo bulls were divided into 18 aliquots and extended (1:10) in Tris-citric acid extender differing in glycerol:DMSO ratios (0:0, 0:1.5, 0:3; 3:0, 3:1.5, 3:3; and 6:0, 6:1.5, 6:3, respectively; %, v:v) either at 37 or 4 degrees C. Semen was packaged in 0.5 mL French straws and frozen in a programmable cell freezer. Thawing was performed at 37 degrees C for 50s. Post-thaw motion characteristics, plasma membrane integrity and acrosome morphology of buffalo sperm were determined using computer-assisted semen analyzer (CASA), hypoosmotic swelling (HOS) assay and phase-contrast microscopy, respectively. Glycerol (6%) in extender yielded better post-thaw sperm motility, velocities (straight-line and average path), plasma membrane integrity, and normal acrosomes (P<0.05). Post-thaw sperm motility and plasma membrane integrity declined in the presence of DMSO (P<0.01). The addition of glycerol (6%) at 37 degrees C yielded better post-thaw sperm motility, plasma membrane integrity and velocities than addition at 4 degrees C (P<0.05). In conclusion, glycerol is still an essential cryoprotectant for buffalo sperm. The addition of DMSO antagonized the cryoprotection ability of glycerol and reduced the post-thaw quality of buffalo sperm. Furthermore, 6% glycerol added at 37 degrees C, provided better cryoprotection to the motility apparatus and plasma membrane integrity of buffalo sperm.  相似文献   

15.
Five experiments evaluated the effects of processing, freezing and thawing techniques on post-thaw motility of equine sperm. Post-thaw motility was similar for sperm frozen using two cooling rates. Inclusion of 4% glycerol extender was superior to 2 or 6%. Thawing in 75 degrees C water for 7 sec was superior to thawing in 37 degrees C water for 30 sec. The best procedure for concentrating sperm, based on sperm motility, was diluting semen to 50 x 10(6) sperm/ml with a citrate-based centrifugation medium at 20 degrees C and centrifuging at 400 x g for 15 min. There was no difference in sperm motility between semen cooled slowly in extender with or without glycerol to 5 degrees C prior to freezing to -120 degrees C and semen cooled continuously from 20 degrees C to -120 degrees C. From these experiments, a new procedure for processing, freezing and thawing semen evolved. The new procedure involved dilution of semen to 50 x 10(6) sperm/ml in centrifugation medium and centrifugation at 400 x g for 15 min, resuspension of sperm in lactose-EDTA-egg yolk extender containing 4% glycerol, packaging in 0.5-ml polyvinyl chloride straws, freezing at 10 degrees C/min from 20 degrees C to -15 degrees C and 25 degrees C/min from -15 degrees C to -120 degrees C, storage at -196 degrees C, and thawing at 75 degrees C for 7 sec. Post-thaw motility of sperm averaged 34% for the new method as compared to 22% for the old method (P<0.01).  相似文献   

16.
The effect of processing prior to sex-sorting, re-freezing and thawing of frozen-thawed bull spermatozoa on in vitro sperm characteristics was investigated. Frozen-thawed bull spermatozoa (three bulls; three ejaculates per bull) were prepared for sorting by washing (FT-WASH) or gradient centrifugation (FT-GRADIENT) and evaluated for motility and forward progressive motility (FPM) after processing, staining, sorting and incubation (3 h; 37 degrees C). After frozen-thawed samples were processed and analyzed using a high-speed cell sorter, aliquots were removed and re-frozen and thawed (FTF-WASH; FTF-GRADIENT). Non-sorted frozen-thawed spermatozoa (FT-CONTROL) were also re-frozen and thawed (FTF-CONTROL). Spermatozoa from all treatments were assessed for penetration of an artificial cervical mucus at 0 h after sorting or thawing, and for motility, FPM and acrosomal status after 3-h incubation (37 degrees C). Frozen-thawed spermatozoa prepared by gradient centrifugation before sorting were sorted more efficiently than washed samples (P < 0.05). However, after sorting (FT) or thawing (FTF) and incubation, the percentage of motile spermatozoa and FPM rating was lower for GRADIENT than WASH (21.5 +/- 3.39%; 1.4 +/- 0.16 FPM versus 48.6 +/- 4.02%, 2.6 +/- 0.16 FPM; P < 0.01). Frozen-thawed sorted spermatozoa (FT) penetrated in greater numbers (151.0 +/- 19.50 spermatozoa) and distance (56.3 +/- 5.11 mm) in the artificial cervical mucus and had a higher proportion of motile spermatozoa (65.5 +/- 2.77%) and FPM rating (2.8 +/- 0.12) after incubation than spermatozoa that had been re-frozen and thawed after sorting (FTF: 14.0 +/- 3.67 spermatozoa, 21.6 +/- 3.05 mm, 12.2 +/- 1.31% and 1.2 +/- 0.10 FPM, respectively; P < 0.001). Regardless of processing prior to sorting, frozen-thawed sorted and non-sorted spermatozoa migrated similar distances in the artificial cervical mucus (FT-WASH: 60.0 +/- 1.2 mm; FT-GRADIENT: 57.2 +/- 0.76 mm; FT-CONTROL: 51.7 +/- 0.69 mm). The results of this preliminary study suggested that frozen-thawed bull spermatozoa can be efficiently sorted into high purity X- and Y-chromosome enriched samples with retained functional capacity.  相似文献   

17.
Huang SY  Kuo YH  Lee WC  Tsou HL  Lee YP  Chang HL  Wu JJ  Yang PC 《Theriogenology》1999,51(5):1007-1016
The decline in boar semen quality after cryopreservation may be attributed to changes in intracellular proteins. Thus, the aim of the present study was to evaluate the change of protein profiles in boar spermatozoa during the process of cooling and after cryopreservation. A total of 9 sexually mature boars (mean age = 25.5+/-12.3 mo) was used. Samples for protein analysis were collected before chilling, after cooling to 15 degrees C, after cooling to 5 degrees C, following thawing after freezing to -100 degrees C, and following thawing after 1 wk of cryopreservation at -196 degrees C. Semen characteristics evaluated included progressive motility and the percentage of morphologically normal spermatozoa. Total proteins from 5x10(6) spermatozoa were separated and analyzed by SDS-PAGE. The results revealed that there was a substantial decrease of a 90 kDa protein in the frozen-thawed spermatozoa. Western blot analysis demonstrated that this protein was 90 kDa heat-shock protein (HSP90). Time course study showed that the decrease of HSP90 in spermatozoa initially occurred in the first hour during cooling to 5 degrees C. When compared with the fresh spermatozoa before chilling, there was a 64% decrease of HSP90 in spermatozoa after cooling to 5 degrees C. However, the motility and percentage of normal spermatozoa did not significantly decrease during this period of treatment. Both declined substantially as the semen was thawed after freezing from -100 degrees C. The results indicated that the decrease of HSP90 precedes the decline of semen characteristics. The length of time between a decrease of HSP90 and the decline in sperm motility was estimated to be 2 to 3 h. Taken together, the above results suggested that a substantial decrease of HSP90 might be associated with a decline in sperm motility during cooling of boar spermatozoa.  相似文献   

18.
Effect of sperm diluents on the acrosome reaction in canine sperm   总被引:4,自引:0,他引:4  
In this study we investigated the influence of sperm diluting media and temperature on the incidence of the acrosome reaction in dog sperm. Ejaculates were collected from 5 dogs, diluted with six different media and then incubated at 37 degrees C and 20 degrees C. Fluorescein isothiocynate conjugated peanut agglutinin (FITC-PNA) and ethidium homodimer as a vital stain were used in combination to determine the acrosomal status of viable spermatozoa, the technique was validated using electron microscopy. The outer acrosomal membrane of dog spermatozoa was shown to be the specific binding site for FITC-PNA. After 6 h of incubation, ejaculates diluted in media with a high Ca2+ concentration showed a significantly higher percentage (means +/- SD) of acrosome reacted spermatozoa [64 +/- 7 and 58 +/- 9 in sperm capacitation medium with (SP-TALP-1) and without BSA (SP-TALP-2), respectively] than those diluted in media with a low Ca2+ concentration [36 +/- 5, 39 +/- 4, 18 +/- 2 and 20 +/- 4 in Canine Capacitation Medium (CCM), Egg Yolk Tris dog semen extender (EXT-1), Modified Egg Yolk Tris extender (EXT-2) and Modified CCM (MCCM), respectively]. The increase in the percentage of acrosome reaction (AR) was slower at 20 degrees C than at 37 degrees C. In addition, the percentage of viable acrosome reacted spermatozoa increased significantly from 19 +/- 5 and 22 +/- 3 in non-bound sperm to 27 +/- 4 and 30 +/- 6 in zona pellucida bound sperm (diluted in EXT-2 and MCCM, respectively). We conclude that the composition of the spermatozoa diluent has a marked effect on the incidence of the acrosome reaction. Therefore, both the media used to dilute dog sperm and the temperature at which the spermatozoa are handled are important factors to consider when processing spermatozoa for artificial insemination, IVF procedures or preservation.  相似文献   

19.
The ability of a range of extenders to cryopreserve ram spermatozoa was tested. The extenders were modified by the inclusion of citrate, Tris buffer, trehalose, and EDTA. Ejaculates from three Pampinta rams were evaluated and pooled at 30 degrees C. The semen was diluted to contain 1 x 10(9) cells/mL, cooled to 5 degrees C, loaded into 0.25-mL straws, frozen and stored in liquid nitrogen. Evaluation was based on the hypoosmotic swelling test (HOS test), electron microscopy, and biochemical parameters such as lipid peroxidation and reduced and total glutathione levels, all measured after thawing. The HOS test indicated that the percentage of intact plasma membranes after freezing and thawing was significantly higher for the hypertonic extender containing trehalose (T), compared with an extender containing trehalose+EDTA (TE) or an isotonic Tris extender (B) (p < 0.05). Membrane evaluation by ultramicroscopy also indicated better sperm cryopreservation in extender T compared with the others, and there was a significant reduction in the number of damaged membranes (27%, p < 0.0002). The level of reduced glutathione was significantly higher after sperm cryopreservation in either hypertonic diluent (T and TE) with respect to the isotonic extender B, immediately after thawing (12%) and after a 3-h post-thawing thermotolerance test at 37 degrees C (17%, p = 0.007). Total glutathione levels did not show statistical differences among the extenders. After 3h post-thawing incubation at 37 degrees C, lipid peroxide levels in spermatozoa were statistically lower for T than TE (35%) or isotonic extender B (44%) (p = 0.002). Taken together these results indicate a reduction in the oxidative stress provoked by freezing and thawing when semen is cryopreserved in extender T. The antioxidant properties of extender T may be related to its effectiveness in membrane cryopreservation.  相似文献   

20.
The effect of various thawing velocities on the motility and acrosomal maintenance of ram spermatozoa frozen at 20 degrees C/min (optimal) or 2 degrees C/min (suboptimal) was studied. The freeze-thaw motility and the percentage of intact acrosomes of spermatozoa frozen at 20 degrees C/min increased progressively with the thawing velocity. In semen frozen at 2 degrees C/min, motility of spermatozoa and the percentage of intact acrosomes declined drastically when the thawing velocity obtained in air at 20 degrees C was increased by thawing in water at 20 degrees C. Thawing at higher temperatures markedly increased both motility and acrosomal preservation, but the best results with semen frozen at 2 degrees C/min were lower than those obtained with semen frozen at 20 degrees C/min. The optimal freeze-thaw conditions for semen protected by 4% glycerol were freezing at 20 degrees C/min and thawing in water at 60 or 80 degrees C for 8 or 5 sec, respectively. Semen collected from rams exposed to a decreasing photoperiod exhibited higher motility after freezing and thawing than those exposed to an increasing photoperiod. However, there was no effect on acrosomal preservation after freezing at 20 degrees C/min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号