首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Liang M  Davis E  Gardner D  Cai X  Wu Y 《Planta》2006,224(5):1185-1196
Laccase, EC 1.10.3.2 or p-diphenol:dioxygen oxidoreductase, has been proposed to be involved in lignin synthesis in plants based on its in vitro enzymatic activity and a close correlation with the lignification process in plants. Despite many years of research, genetic evidence for the role of laccase in lignin synthesis is still missing. By screening mutants available for the annotated laccase gene family in Arabidopsis, we identified two mutants for a single laccase gene, AtLAC15 (At5g48100) with a pale brown or yellow seed coat which resembled the transparent testa (tt) mutant phenotype. A chemical component analysis revealed that the mutant seeds had nearly a 30% decrease in extractable lignin content and a 59% increase in soluble proanthocyanidin or condensed tannin compared with wild-type seeds. In an in vitro enzyme assay, the developing mutant seeds showed a significant reduction in polymerization activity of coniferyl alcohol in the absence of H2O2. Among the dimers formed in the in vitro assay using developing wild-type seeds, 23% of the linkages were β-O-4 which resembles the major linkages formed in native lignin. The evidence strongly supports that AtLAC15 is involved in lignin synthesis in plants. To our knowledge, this is the first genetic evidence for the role of laccase in lignin synthesis. Changes in seed coat permeability, seed germination and root elongation were also observed in the mutant.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

2.
A strain of Pleurotus ostreatus was grown in tomato pomace as sole carbon source for production of laccase. The culture of P. ostreatus revealed a peak of laccase activity (147 U/L of fermentation broth) on the 4th day of culture with a specific activity of 2.8 U/mg protein. Differential chromatographic behaviour of laccase was investigated on affinity chromatographic matrices containing either urea, acetamide, ethanolamine or IDA as affinity ligands. Laccase exhibited retention on such affinity matrices and it was purified on a Sepharose 6B—BDGE—urea column with final enzyme recoveries of about 60%, specific activity of 6.0 and 18.0 U/mg protein and purification factors in the range of 14–46. It was also possible to demonstrate that metal-free laccase did not adsorb to Sepharose 6B—BDGE—urea column which suggests that adsorption of native laccase on this affinity matrix was apparently due to the specific interaction of carbonyl groups available on the matrix with the active site Cu (II) ions of laccase. The kinetic parameters (V max, K m , K cat, and K cat/K m ) of the purified enzyme for several substrates were determined as well as laccase stability and optimum pH and temperature of enzyme activity. This is the first report describing the production of laccase from P. ostreatus grown on tomato pomace and purification of this enzyme based on affinity matrix containing urea as affinity ligand.  相似文献   

3.
ACurvularia sp. isolated from soil was found to contain laccase activity toward guaiacol as substrate. The organism produced an extracellular laccase in a medium containing yeast extract, peptone and dextrose. Initial medium pH 4.0 and cultivation temperature 30°C were found to be most suitable for maximum enzyme production. The optimum pH and temperature for laccase activity were found to be 5.2 and 50°C, respectively. Under optimum conditions, the enzyme had aK m (guaiacol) of 0.75 mmol/L and aV of 1.50 CU min−1 ml−1. Some divalent metal ions inhibited laccase activity at very low concentrations.  相似文献   

4.
An attempt was made to use cyanobacterial biomass of water bloom, groundnut shell (GNS) and dye effluent as culture medium for laccase enzyme production by Coriolus versicolor. Laccase production was found to be 10.15 ± 2.21 U/ml in the medium containing groundnut shell and cyanobacterial bloom in a ratio of 9:1 (dry weight basis) in submerged fermentation at initial pH 5.0 and 28 ± 2 °C temperature. Half life of enzyme was found to be 74 min at 60 °C. Kinetic analysis of laccase when made with substrate ABTS, Km and Vmax were found to be 0.29 mM and 9.49 μmol/min respectively. Azide and hydroxylamine were found to exert significant inhibition on thermostable laccase. Inhibitor constant (ki) for azide and hydroxylamine were 1.33 and 0.18 mM respectively. This study forms the first report on the potential application of waste water cyanobacterial bloom and dyeing effluent as a medium for laccase production by C. versicolor MTCC138.  相似文献   

5.
 An extracellular laccase capable of oxidizing ABTS (the diammonium salt of 2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonic acid) was detected in ligninolytic cultures of Penicillium chrysogenum. By contrast, no lignin peroxidase, manganese-dependent peroxidase or aryl-alcohol oxidase was detected at any time during culturing. Both ABTS laccase activity and mineralization of dehydrogenative polymerizate of coniferyl alcohol were regulated by the C/N ratio in the medium and partially inhibited in the presence of thioglycolic acid, suggesting that both events are associated. In the presence of several known laccase inducers neither ABTS laccase activity nor mineralization rates were enhanced. However, a new laccase was detected in P. chrysogenum, able to oxidize 2,6-dimethoxyphenol but not involved in lignin mineralization. Studies with the known ligninolytic basidiomycete Trametes villosa suggest that lignin degradation by this fungus also involves the action of laccase. Received: 6 July 1995/Received revision: 28 October 1995/Accepted: 6 November 1995  相似文献   

6.
Laccases have great biotechnological potential in diverse industries as they catalyze the oxidation of a broad variety of chemical compounds. Production of laccases by basidiomycetes has been broadly studied as they secrete the enzymes, grow on cheap substrates, and they generally produce more than one isoenzyme (constitutive and/or inducible). Laccase production and isoenzyme profile can be modified through medium composition and the use of inducers. The objective of this work was to increase laccase production by Pleurotus ostreatus CP-50 through culture medium optimization and the simultaneous use of copper and lignin as inducers. Increased fungal growth was obtained through the use of a factorial fractional experimental design 26–2 where the influence of the nature and concentration of carbon and nitrogen sources was assessed. Although specific laccase production (U/mg biomass) decreased when malt extract medium was supplemented with carbon and nitrogen sources, fungal growth and laccase volumetric activity increased four and sixfold, respectively. The effect of media supplementation with copper and/or lignin on laccase production by P. ostreatus CP-50 was studied. A positive synergistic effect between copper and lignin was observed on laccase production. Overall, the use of an optimized medium and the simultaneous addition of copper and lignin improved growth, laccase volumetric activity, and process productivity by 4-, 60-, and 10-fold, respectively.  相似文献   

7.
We have investigated the abilities of extracellular enzymes from dark-grown cell-suspension cultures of sycamore maple (Acer pseudoplatanus L.) to oxidize monolignols, the precursors for lignin biosynthesis in plants, as well as a variety of other lignin-related compounds. Laccase and peroxidase both exist as a multiplicity of isoenzymes in filtrates of spent culture medium, but their abilities to produce water-insoluble, dehydrogenation polymers (DHPs) from the monolignols (in the presence of hydrogen peroxide for the peroxidase reaction) appear identical whether or not the enzymes are purified from the concentrated filtrates or left in a crude mixture. The patterns of bonds formed in these DHPs are identical to those found in DHPs synthesized using horseradish peroxidase or fungal laccase, and many of these bonds are found in the natural lignins extracted from different plant sources. On the other hand, sycamore maple laccase is very much less active on phenolic substrates containing multiple aromatic rings than is sycamore maple peroxidase. We suggst that whereas laccase may function during the early stages of lignification to polymerize monolignols into oligo-lignols, cell-wall peroxidases may function when H2O2 is produced during the later stages of xylem cell development or in response to environmental stresses.Abbreviations DHP dehydrogenation polymer - IEF isoelectric focuring - NMR nuclear magnetic resonance - PAGE polyacrylamide gel electrophoresis The authors wish to thank Dr. Masahiro Samejima (University of Tokyo) for provision of lignin model compounds and Dr. Göran Gellerstadt (Royal Institute of Technology, Sweden) for helpful suggestions regarding stilbene formation and light spectroscopy. Monolignols were prepared by Mr. Nate Weymouth with help from Dr. Herb Morrison (USDA/ARS, Richard B. Russell Research Center, Athens, GA). Thanks also to Ms. Izabella Poppe of the Complex Carbohydrate Research Center (CCRC) for assistance with carbohydrate analyses, and Mr. Vincent Sorrentino for help with the growth of cell-suspension cultures.  相似文献   

8.
Summary An ascomycete Monocillium indicum Saxena producing extracellular laccase was isolated. The culture filtrate on native polyacrylamide gel electrophoresis (PAGE) revealed four bands of activity, one of which was a major one. The major laccase band, a glycoprotein, was purified and characterized. Gel filtration chromatography showed that the relative molecular weight (Mr) of laccase was 100 000. On sodium dodecyl sulphate (SDS)-PAGE the major laccase band further resolved into three proteins of Mr 72 000, 56 000 and 24 000. The enzyme had a pH optimum of 3.0 and was active on a number of o-phenols and aromatic acids. The 72 000 Mr protein was found to share common immunological properties with laccases of Coriolus versicolor, Agaricus bisporus and lignin peroxidase of Phanerochaete chrysosporium. Correspondence to: K. Koteswara Rao  相似文献   

9.
Summary The white rot fungus Coriolus versicolor MTCC 138 has been identified as an excellent producer of the industrially important enzyme laccase. The basal medium containing glucose gave laccase activity of 155 U/ml. Screening of different media components and their effects on laccase production by Coriolus versicolor was studied using one factor at a time and L9 (34) orthogonal array method. A two-fold increase (305 U/ml) in laccase production was observed using a combination of glucose and starch as carbon source and yeast extract as nitrogen source. This activity is very high as compared to most of the reported strains. Hence this strain was explored for enhancement in laccase. The formation of extracellular laccase could be considerably stimulated by the addition of copper in the optimized medium. Addition of 1 mM copper enhanced laccase activity to 460 U/ml. Laccase production was further enhanced using different aromatic inducers. Among different inducers used 2,5-xylidine was found to be the best, and gave maximum laccase activity of 820 U/ml with 1 mM concentration. Thus, this strain could be an efficient and attractive source for laccase production.  相似文献   

10.
Extracellular lignin peroxidase (LiP) was not detected during decoloration of the azo dye, Amaranth, by Trametes versicolor. Approximately twice as much laccase and manganese peroxidase (MnP) was produced by decolorizing cultures compared to when no dye was added. At a low Mn2+ concentration (3 M), N-limited (1.2 mM NH4 +) cultures decolorized eight successive additions of Amaranth with no visible sorption to the mycelial biomass. At higher Mn2+ concentrations (200 M), production of MnP increased and that of laccase decreased, but the rate or number of successive Amaranth decolorations was unaffected. There was always a 6-h to 8-h lag prior to decoloration of the first aliquot of Amaranth, regardless of MnP and laccase concentrations. Although nitrogen-rich (12 mM NH4 +) cultures at an initial concentration of 200 M Mn2+ produced high laccase and MnP levels, only three additions of Amaranth were decolorized, and substantial mycelial sorption of the dye occurred. While the results did not preclude roles for MnP and laccase, extracellular MnP and laccase alone were insufficient for decoloration. The cell-free supernatant did not decolorize Amaranth, but the mycelial biomass separated from the whole broth and resuspended in fresh medium did. This indicates the involvement of a mycelial-bound, lignolytic enzyme or a H2O2-generating mechanism in the cell wall. Nitrogen limitation was required for the expression of this activity. Received: 19 May 1998 / Received revision: 22 October 1998 / Accepted: 7 November 1998  相似文献   

11.
During dye decoloration by Trametes versicolor ATCC 20869 in modified Kirk’s medium, manganese peroxidase (MnP) and laccase were produced, but not lignin peroxidase, cellobiose dehydrogenase or manganese-independent peroxidase. Purified MnP decolorized azo dyes [amaranth, reactive black 5 (RB5) and Cibacron brilliant yellow] in Mn2+-dependent reactions but did not decolorize an anthraquinone dye [Remazol brilliant blue R (RBBR)]. However, the purified laccase decolorized RBBR five to ten times faster than the azo dyes and the addition of a redox mediator, 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), did not alter decoloration rates. Amaranth and RB5 were decolorized the most rapidly by MnP since they have a hydroxyl group in an ortho position and a sulfonate group in the meta position relative to the azo bond. During a typical batch decoloration with the fungal culture, the ratio of laccase:MnP was 10:1 to 20:1 (based on enzyme activity) and increased to greater than 30:1 after decoloration was complete. Since MnP decolorized amaranth about 30 times more rapidly than laccase per unit of enzyme activity, MnP should have contributed more to decoloration than laccase in batch cultures.  相似文献   

12.
The potential of Bacillus SF spore laccase for coupling aromatic amines to lignin model molecules as a way of creating a stable reactive surface was investigated. The Bacillus spore laccase was shown to be active within the neutral to alkaline conditions (pH 7–8.5) and was more resistant to common laccase inhibitors than fungal laccases. Using this enzyme, tyramine was successfully covalently coupled onto syringylglycerol β-guaiacylether via a 4-O-5 bond, leaving the –NH2 group free for further attachment of functional molecules. This study demonstrates the potential of Bacillus SF spore laccase for application in lignocellulose surface functionalization and other coupling reactions which can be carried out at neutral to alkaline pH under extreme conditions which normally inhibit fungal laccases.  相似文献   

13.
Laccases (EC 1.10.3.2) are multicopper oxidases able to oxidize various substrates, such as phenolic subunits of lignin. The substrate range can be widened to non-phenolic units by the use of mediators. Since discovery of the laccase-mediator system, direct reactions of lignin and laccase without mediated electron-transfer have gained much less attention. The objective of this study was to investigate lignin as a substrate for fungal laccases by using lignin model compounds. These model compounds contained guaiacylic and syringylic moieties and also compounds of guaiacylic origin at a higher oxidation level. Some of these compounds are commercially available, but most of them were synthesized. The oxidation reaction rates of the lignin model compounds were studied by monitoring consumption of the co-substrate oxygen, in reactions catalyzed by laccases from two different fungi; Melanocarpus albomyces and Trametes hirsuta, possessing different molecular and catalytic properties. These reaction rate studies were compared to physicochemical properties of the lignin model compounds: relative redox potentials determined using cyclic voltammetry and pKa-values. Docking of syringylic and biphenylic compounds to the active sites of both laccases was performed and the resulting model complex structures were used to further interpret the reaction rate results. Reaction rates of laccases are mainly affected by the ability of a lignin model compound to be oxidized and the pKa-value of the substrate seems to be less important. As a consequence, syringylic compounds are oxidized with the highest rates and compounds at a higher oxidation level and redox-potential, such as vanillin, are oxidized at a much lower rate. Both guaiacylic and syringylic type compounds fit well in the active sites of both laccases. Only for a biphenylic compound, steric clashes were observed, and they are likely to have an effect on the reaction rate. When the oxidation rates on the selected model compounds with the two different laccases were compared, the redox-potential difference between laccases T1 copper and the lignin model compound (ΔE) was not the only property that determined the oxidation rate. In the case of lignin model substrates, also the selectivity of a specific laccase, reflected in the kcat/Km value, plays an important role.  相似文献   

14.
Two nitrogen-deregulated mutants of Phanerochaete chrysosporium, der8-2 and der8-5, were isolated by subjecting wild type conidia to gamma irradiation, plating on Poly-R medium containing high levels of nitrogen, and identifying colonies that are able to decolorize Poly-R. The mutants showed high levels of ligninolytic activity (14C-synthetic lignin 14CO2), and lignin peroxidase, manganese peroxidase and glucose oxidase activities in both low nitrogen (2.4 mM) and high nitrogen (24 mM) media. The wild type on the otherhand displayed these activities in low nitrogen medium but showed little or no activities in high nitrogen medium. Fast protein liquid chromatographic analyses showed that the wild type as well as the der mutants produce three major lignin peroxidase peaks (designated L1, L2 and L3) with lignin peroxidase activity in low nitrogen medium. Furthermore, in low nitrogen medium, mutant der8-5 produced up to fourfold greater lignin peroxidase activity than that produced by the wild type. In high nitrogen medium, the wild type produced no detectable lignin peroxidase peaks whereas the mutants produced peaks L1 and L2, but not L3, and a new lignin peroxidase protein peak designated LN. Mutants der8-2 and der8-5 also produced high levels of glucose oxidase, an enzyme known to be associated with secondary metabolism and an important source of H2O2 in ligninolytic cultures, both in low and high nitrogen media. In contrast, the wild type produced high levels of glucose oxidase in low nitrogen medium and only trace amounts of this enzyme in high nitrogen medium. The results of this study indicate that the der mutants are nitrogen-deregulated for the production of a set of secondary metabolic activities associated with lignin degradation such as lignin peroxidases, manganese peroxidases and glucose oxidase.  相似文献   

15.
Although field studies have demonstrated an ecosystem-specific effect of experimental atmospheric nitrogen (N) deposition on litter decomposition, a mechanistic understanding of how ligninolytic microbial communities respond to atmospheric deposition is lacking. Because high levels of inorganic N suppress lignin decomposition by some basidiomycetes, it is plausible that the abundance and activity of these key microorganisms underlies differential ecosystem responses of decomposition to atmospheric N deposition. We hypothesize that: (a) atmospheric N deposition will cause an ecosystem-specific reduction in basidiomycete activity and abundance with greatest decreases in ecosystems with lignin-rich forest litter and (b) the abundance of lignin degrading basidiomycetes will be positively correlated with ligninolytic enzyme activity. To test these hypotheses, we measured the effects of experimental N deposition on the potential activity of phenol oxidase enzymes, and the abundance of basidiomycete genes encoding laccase, a primary phenol oxidase enzyme, in three hardwood forests spanning a range of leaf litter lignin content. The black oak-white oak (BOWO) contains high lignin litter, the sugar maple-basswood (SMBW) has low lignin litter, and the sugar maple-red oak (SMRO) is intermediate. An ecosystem by N deposition interaction significantly influenced phenol oxidase activity in the surface soil (P = 0.05), where phenol oxidase activity decreased with increasing experimental N deposition in the BOWO ecosystem. No consistent response to N deposition was evident for surface soil phenol oxidase activity within either the SMRO or SMBW ecosystem. This interaction did not influence laccase gene abundance. Instead, basidiomycete laccase gene abundance was reduced by experimental N deposition (main effect) in surface soil. There was only a weak correlation between basidiomycete laccase gene abundance and potential phenol oxidase enzyme activity, suggesting that the abundance of organisms possessing laccase genes may not control phenol oxidase activity in soil. Our results suggest that the regulation of laccase gene expression may mediate the decomposition response to atmospheric N deposition.  相似文献   

16.
17.
High-molecular-weight polymers were produced by a crude concentrated supernatant from ligninolytic Phanerochaete chrysosporium cultures in a reaction mixture containing pentachlorophenol and a humic acid precursor (ferulic acid) in the presence of a detergent and H2O2. Pure manganese peroxidase, lignin peroxidase, and laccase were also shown to catalyze the reaction.  相似文献   

18.
Growth parameters, ligninolytic enzyme activities and ability to degrade polycyclic aromatic hydrocarbons by the fungus Irpex lacteus were characterized and compared with those of other white rot fungi capable of rapid decolorization of poly R-478 and Remazol Brilliant Blue R dyes. I. lacteus was able to grow on mineral and complex media and efficiently colonized sterile and non-sterile soil by exploratory mycelium growing from a wheat straw inoculum. In shallow stationary cultures growing on high nitrogen mineral medium containing 45 mM ammonium as nitrogen source, the fungus produced lignin peroxidase (LIP), Mn-dependent peroxidase (MnP) and laccase simultaneously, the respective maximal activities of 70, 970 and 36 U/l being attained around day 18. Growing in nitrogen-limited medium (2.4 mM ammonium), no LIP was formed and levels of MnP and laccase decreased significantly. During growth in sterile soil, the fungus synthesized LIP and laccase but not MnP. I. lacteus efficiently removed three- and four-ringed PAHs from liquid media and artificially spiked soil. The variety of ligninolytic enzymes, robust growth, capability of soil colonization and resistance to inhibitory action of soil bacteria make I. lacteus a suitable fungal organism for use in bioremediation. Received: 30 March 2000 / Accepted: 19 May 2000  相似文献   

19.
The production of extracellular laccase by the Grammothele subargentea CLPS no. 436 strain in liquid cultures grown on a carbon-limited basal medium was significantly enhanced when culture conditions, including the addition of CuSO4·5H2O or veratryl alcohol, were consecutively optimized. A laccase activity as high as 1954.5 mU ml−1 of liquid medium was obtained under optimum conditions, which corresponded to non-agitated cultures supplemented with 0.6 mM CuSO4·5H2O. Veratryl alcohol at 1 mM was less effective than CuSO4·5H2O for increasing laccase activity levels; the supplementation of veratryl alcohol resulted only in maximum levels of 44 mU ml−1 in non-agitated cultures. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Ganoderma lucidum, a white rot basidiomycete widely distributed worldwide, was studied for the production of the lignin-modifying enzymes laccase, manganese-dependent peroxidase (MnP), and lignin peroxidase (LiP). Laccase levels observed in high-nitrogen (HN; 24 mM N) shaken cultures were much greater than those seen in low-nitrogen (2.4 mM N), malt extract, or wood-grown cultures and those reported for most other white rot fungi to date. Laccase production was readily seen in cultures grown with pine or poplar (100-mesh-size ground wood) as the sole carbon and energy source. Cultures containing both pine and poplar showed 5- to 10-fold-higher levels of laccase than cultures containing pine or poplar alone. Since syringyl units are structural components important in poplar lignin and other hardwoods but much less so in pine lignin and other softwoods, pine cultures were supplemented with syringic acid, and this resulted in laccase levels comparable to those seen in pine-plus-poplar cultures. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of concentrated extracellular culture fluid from HN cultures showed two laccase activity bands (Mr of 40,000 and 66,000), whereas isoelectric focusing revealed five major laccase activity bands with estimated pIs of 3.0, 4.25, 4.5, 4.8, and 5.1. Low levels of MnP activity (~100 U/liter) were detected in poplar-grown cultures but not in cultures grown with pine, with pine plus syringic acid, or in HN medium. No LiP activity was seen in any of the media tested; however, probing the genomic DNA with the LiP cDNA (CLG4) from the white rot fungus Phanerochaete chrysosporium showed distinct hybridization bands suggesting the presence of lip-like sequences in G. lucidum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号