首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have isolated a single step spontaneous mutant of S. cerevisiae resistant simultaneously to oligomycin, venturicidin, chloramphenicol, cycloheximide and triethyltin. This multiple drug resistance results from the interaction of two genetic factors showing both chromosomal location and episomal characteristics. One factor (π) confers oligomycin resistance, the other (τ) confers the other resistances. π can be lost spontaneously while τ can be completely eliminated with ethidium bromide. All π+ strains, whether grande or petite, τ+ or τ?, carry a covalently closed circular DNA while π? strains are devoid of it. We hypothesise that this circular DNA may play an informational role in the biogenesis and/or function of membranes.  相似文献   

2.
Dimitri Gilis  Serge Massar  Nicolas J Cerf  Marianne Rooman 《Genome biology》2001,2(11):research0049.1-research004912

Background

The genetic code is known to be efficient in limiting the effect of mistranslation errors. A misread codon often codes for the same amino acid or one with similar biochemical properties, so the structure and function of the coded protein remain relatively unaltered. Previous studies have attempted to address this question quantitatively, by estimating the fraction of randomly generated codes that do better than the genetic code in respect of overall robustness. We extended these results by investigating the role of amino-acid frequencies in the optimality of the genetic code.

Results

We found that taking the amino-acid frequency into account decreases the fraction of random codes that beat the natural code. This effect is particularly pronounced when more refined measures of the amino-acid substitution cost are used than hydrophobicity. To show this, we devised a new cost function by evaluating in silico the change in folding free energy caused by all possible point mutations in a set of protein structures. With this function, which measures protein stability while being unrelated to the code's structure, we estimated that around two random codes in a billion (109) are fitter than the natural code. When alternative codes are restricted to those that interchange biosynthetically related amino acids, the genetic code appears even more optimal.

Conclusions

These results lead us to discuss the role of amino-acid frequencies and other parameters in the genetic code's evolution, in an attempt to propose a tentative picture of primitive life.  相似文献   

3.
The discovery of diverse codon reassignment events has demonstrated that the canonical genetic code is not universal. Studying coding reassignment at the molecular level is critical for understanding genetic code evolution, and provides clues to genetic code manipulation in synthetic biology. Here we report a novel reassignment event in the mitochondria of Ashbya (Eremothecium) gossypii, a filamentous-growing plant pathogen related to yeast (Saccharomycetaceae). Bioinformatics studies of conserved positions in mitochondrial DNA-encoded proteins suggest that CUU and CUA codons correspond to alanine in A. gossypii, instead of leucine in the standard code or threonine in yeast mitochondria. Reassignment of CUA to Ala was confirmed at the protein level by mass spectrometry. We further demonstrate that a predicted is transcribed and accurately processed in vivo, and is responsible for Ala reassignment. Enzymatic studies reveal that is efficiently recognized by A. gossypii mitochondrial alanyl-tRNA synthetase (AgAlaRS). AlaRS typically recognizes the G3:U70 base pair of tRNAAla; a G3A change in Ashbya abolishes its recognition by AgAlaRS. Conversely, an A3G mutation in Saccharomyces cerevisiae confers tRNA recognition by AgAlaRS. Our work highlights the dynamic feature of natural genetic codes in mitochondria, and the relative simplicity by which tRNA identity may be switched.  相似文献   

4.
Ecological relationships between sulfate-reducing and methane-producing bacteria in mud of Lake Vechten have been studied by continuous culture studies using the chemostat technique. The maximum specific growth rate (μ max) and saturation constant (K s) were, respectively, 0.36 hr−1 and 0.047 mM for lactate-limited growth ofDesulfovibrio desulfuricans and 0,011 hr−1 and 0.17 mM for acetate-limited growth ofMethanobacterium sp. Calculated values for the true molar growth yieldsY G) and maintenance coefficients (m) were 30.6 g bacterial mass/mole of lactate and 0.53 g substrate/g dry wt hr forD. desulfuricans and 37.8 g bacterial mass/mole of acetate and 0.54 g substrate/g dry wt hr forMethanobacterium. No growth ofMethanobacterium was observed at apS2− value (the hydrogen sulfide potential) of more than 11 and there was no effect on the growth atpS2− values above 13. In mixed continuous culture experiments the concentration of acetate decreased in the secondstage growth vessel, whereas that of methane increased stoichiometrically. If the substrate concentration in the reservoirs (S r) was increased from 0.1 to 0.5 mg/ml, the population ofDesulfovibrio increased and that ofMethanobacterium was washed out of the culture vessel, since the concentration of hydrogen sulfide reached apS2− value of 10.5. From the mixed continuous culture experiments a commensalism between the two species can be described, i.e., the acetate-fermentingMethanobacterium benefits from the acetate released byDesulfovibrio which is, in turn, not affected in the presence of the former.  相似文献   

5.
The standard genetic code is used by most living organisms, yet deviations have been observed in many genomes, suggesting that the genetic code has been evolving. In certain yeast mitochondria, CUN codons are reassigned from leucine to threonine, which requires an unusual tRNAThr with an enlarged 8-nt anticodon loop (). To trace its evolutionary origin we performed a comprehensive phylogenetic analysis which revealed that evolved from yeast mitochondrial tRNAHis. To understand this tRNA identity change, we performed mutational and biochemical experiments. We show that Saccharomyces cerevisiae mitochondrial threonyl-tRNA synthetase (MST1) could attach threonine to both and the regular , but not to the wild-type tRNAHis. A loss of the first nucleotide (G−1) in tRNAHis converts it to a substrate for MST1 with a Km value (0.7 μM) comparable to that of (0.3 μM), and addition of G−1 to allows efficient histidylation by histidyl-tRNA synthetase. We also show that MST1 from Candida albicans, a yeast in which CUN codons remain assigned to leucine, could not threonylate , suggesting that MST1 has coevolved with . Our work provides the first clear example of a recent recoding event caused by alloacceptor tRNA gene recruitment.  相似文献   

6.
The difference between progeny from selected and unselected parents (T) was experimentally partitioned into net genetic change (GA), temporary favorable epistatic combinations (GEP) and egg-transmitted maternal environment (M) in two strains of Leghorns selected over 14 years for early pure-strain egg production. Differences among progeny from selected sires and dams, selected sires only, selected dams only, unselected sires and dams and the parental generation were equated to expected GA, GEP and M responses for each trait. Total response was 3.3% for early egg number, 3.7% for total egg number, 0.5% for egg weight, 3.8% for early egg mass and 4.2% for total egg mass. Among progeny that survived the test period and were judged to be normal, total response was 2.6% for total number of eggs, 3.0% for early egg mass and 3.1% for total egg mass. The percentage of T attributed to GA was 9% for early egg number, 24% for total egg number, 43% for early egg mass and 47% for total egg mass; but 52% for total egg number, 98% for early egg mass and 71% for total egg mass of normal survivors. Temporary maternal selection responses (M) were (1) positive for number of eggs and egg masses, (2) greater for all progeny than for normal survivors, and (3) increased with progeny age. The results suggest that M was caused by reduced egg-transmitted disease. Epistatic selection response was positive for earlier sexual maturity and for number of eggs, but negative for egg weight and thus was small for egg masses. Temporary epistatic and maternal responses can explain overestimation of additive genetic response from offspring-parent regression or from replicated single-generation selection and apparent superiority of mass selection over family or combined selection.  相似文献   

7.
Problems in Protein Biosynthesis   总被引:1,自引:0,他引:1  
Outline of the steps in protein synthesis. Nature of the genetic code. The use of synthetic oligo- and polynucleotides in deciphering the code. Structure of the code: relatedness of synonym codons. The wobble hypothesis. Chain initiation and N-formyl-methionine. Chain termination and nonsense codons. Mistakes in translation: ambiguity in vitro. Suppressor mutations resulting in ambiguity. Limitations in the universality of the code. Attempts to determine the particular codons used by a species. Mechanisms of suppression, caused by (a) abnormal aminoacyl-tRNA, (b) ribosomal malfunction. Effect of streptomycin. The problem of "reading" a nucleic acid template. Different ribosomal mutants and DNA polymerase mutants might cause different mistakes. The possibility of involvement of allosteric proteins in template reading.  相似文献   

8.
At earlier stages in the evolution of the universal genetic code, fewer than 20 amino acids were considered to be used. Although this notion is supported by a wide range of data, the actual existence and function of the genetic codes with a limited set of canonical amino acids have not been addressed experimentally, in contrast to the successful development of the expanded codes. Here, we constructed artificial genetic codes involving a reduced alphabet. In one of the codes, a tRNAAla variant with the Trp anticodon reassigns alanine to an unassigned UGG codon in the Escherichia coli S30 cell-free translation system lacking tryptophan. We confirmed that the efficiency and accuracy of protein synthesis by this Trp-lacking code were comparable to those by the universal genetic code, by an amino acid composition analysis, green fluorescent protein fluorescence measurements and the crystal structure determination. We also showed that another code, in which UGU/UGC codons are assigned to Ser, synthesizes an active enzyme. This method will provide not only new insights into primordial genetic codes, but also an essential protein engineering tool for the assessment of the early stages of protein evolution and for the improvement of pharmaceuticals.  相似文献   

9.
Thermally induced aggregates of α-chymotrypsinogen A and bovine granulocyte-colony stimulating factor in acidic solutions were characterized by a combination of static and dynamic light scattering, spectroscopy, transmission electron microscopy, and monomer loss kinetics. The resulting soluble, high-molecular weight aggregates (∼103-105 kDa) are linear, semiflexible polymer chains that do not appreciably associate with one another under the conditions at which they were formed, with classic power-law scaling of the radius of gyration and hydrodynamic radius with weight-average molecular weight (Mw). Aggregates in both systems are composed of nonnative monomers with elevated levels of β-sheet secondary structure, and bind thioflavine T. In general, the aggregate size distributions showed low polydispersity by light scattering. Together with the inverse scaling of Mw with protein concentration, the results clearly indicate that aggregation proceeds via nucleated (chain) polymerization. For α-chymotrypsinogen A, the scaling behavior is combined with the kinetics of aggregation to deduce separate values for the characteristic timescales for nucleation (τn) and growth (τg), as well as the stoichiometry of the nucleus (x). The analysis illustrates a general procedure to noninvasively and quantitatively determine τn, τg, and x for soluble (chain polymer) aggregates, as well as the relationship between τn/τg and aggregate Mw.  相似文献   

10.
The dynamics of the opening-closing of the constituent base-pairs as well as of the exchange kinetics of the base-paired imino and amino protons with water in a DNA-RNA hybrid, [5′r(G1A2U3U4G5A6A7)3′]:5′p[d(T8C9A10A11T12C13)]3′-Pzn] duplex (I), are reported here in details for the first time. The exchange kinetics of amino and imino protons in the DNA-RNA hybrid (duplex I) have been compared with identical studies on the following B-DNA duplexes: d(C1G2T3A4C5G6)2 (II), d[p(5′T1G2T3T4T5G6 G7C8)3′]:d[p(5′C9C10A11A12A13C14A15)3′] (III), d(C5G6C7G8A9A10T11T12C13G14C15G16)2 (IV) and d(C1G2C3G4C5G6C7G8A9A10T11T12C13G14C15G16C17G18C19G20)2 (V). This comparative study shows that the life-times τo of various base-pairs in the DNA-RNA hybrid (I) varies in the range of ∼ 1 ms, and they are quite comparable to those of the shorter B-DNA duplexes (II) and (III), but very different from the τo of the larger duplexes (IV) and (V): the τo for the base pair of T11 and T12 residues in the 20-mer (duplex V) are 2.9 ± 2.3 ms and 23.2 ± 8.9 ms, respectively, while the corresponding τo in the 12-mer (duplex IV) are 2.8 ± 2.2 ms and 17.4 ± 5.4 ms. It has also been shown that the total energy of activation (Ea) assessed from the exchange rates of both imino and amino protons, representing energetic contributions from both base-pair and helix opening-closing as well as from the exchange process of the imino protons from the open state with the bound water, is close to the Ea of the short B-DNA duplex (Ea ≈ 28–47 kcal/mol).  相似文献   

11.
Trypanosoma cruzi dihydroorotate dehydrogenase (TcDHODH) catalyzes the oxidation of l-dihydroorotate to orotate with concomitant reduction of fumarate to succinate in the de novo pyrimidine biosynthetic pathway. Based on the important need to characterize catalytic mechanism of TcDHODH, we have tailored a protocol to measure TcDHODH kinetic parameters based on isothermal titration calorimetry. Enzymatic assays lead to Michaelis-Menten curves that enable the Michaelis constant (KM) and maximum velocity (Vmax) for both of the TcDHODH substrates: dihydroorotate (KM = 8.6 ± 2.6 μM and Vmax = 4.1 ± 0.7 μM s-1) and fumarate (KM = 120 ± 9 μM and Vmax = 6.71 ± 0.15 μM s-1). TcDHODH activity was investigated using dimethyl sulfoxide (10%, v/v) and Triton X-100 (0.5%, v/v), which seem to facilitate the substrate binding process with a small decrease in KM. Arrhenius plot analysis allowed the determination of thermodynamic parameters of activation for substrates and gave some insights into the enzyme mechanism. Activation entropy was the main contributor to the Gibbs free energy in the formation of the transition state. A factor that might contribute to the unfavorable entropy is the hindered access of substrates to the TcDHODH active site where a loop at its entrance regulates the open-close channel for substrate access.  相似文献   

12.
The origin of the genetic code marked a major transition from a plausible RNA world to the world of DNA and proteins and is an important milestone in our understanding of the origin of life. We examine the efficacy of the physico-chemical hypothesis of code origin by carrying out simulations of code-sequence coevolution in finite populations in stages, leading first to the emergence of ten amino acid code(s) and subsequently to 14 amino acid code(s). We explore two different scenarios of primordial code evolution. In one scenario, competition occurs between populations of equilibrated code-sequence sets while in another scenario; new codes compete with existing codes as they are gradually introduced into the population with a finite probability. In either case, we find that natural selection between competing codes distinguished by differences in the degree of physico-chemical optimization is unable to explain the structure of the standard genetic code. The code whose structure is most consistent with the standard genetic code is often not among the codes that have a high fixation probability. However, we find that the composition of the code population affects the code fixation probability. A physico-chemically optimized code gets fixed with a significantly higher probability if it competes against a set of randomly generated codes. Our results suggest that physico-chemical optimization may not be the sole driving force in ensuring the emergence of the standard genetic code.  相似文献   

13.
The thermal stability and melting kinetics of the α-helical conformation within several regions of the rabbit myosin rod have been investigated. Cyanogen bromide cleavage of long myosin subfragment-2 produced one coiled-coil α-helical fragment corresponding to short subfragment-2 with molecular weight 90,000 (Mr = 45,000) and two fragments from the hinge region with molecular weights of 32,000 to 34,000 (Mr = 16,000 to 17,000) and 24,000 to 26,000 (Mr = 12,000 to 13,000). Optical rotation melting experiments and temperature-jump kinetic studies of long subfragment-2 and its cyanogen bromide fragments show that the hinge and the short subfragment-2 domains melt as quasi-independent co-operative units. The α-helical structure within the hinge has an appreciably lower thermal stability than the flanking short subfragment-2 and light meromyosin regions of the myosin rod. Two relaxation processes for helix-melting, one in the submillisecond range (τf) and the other in the millisecond range (τs), are observed in the light meromyosin and short subfragment-2 regions of the rod, but melting in the hinge domain is dominated by the fast (τf) process. Results suggest that the hinge domain of the subfragment-2 link may be the locus of force generation in a cycling cross-bridge.  相似文献   

14.
This paper is divided into two parts. Part I focuses on the manner in which the components of the face recognition system work together so that a perceiver, within several hundred milliseconds after seeing a familiar face, is able to both identify the face of the perceived and recall elements of the history of past encounters with the perceived. Face recognition plays a crucial role in enabling both human and nonhuman primates to interact in collaborative social groups. This critical function is accomplished through the unidirectional coded transfer of informational elements from one component to another. Although these informational elements themselves are not meaningful to the perceiving agent, they do nevertheless contain essential bits of information that are necessary for the final formation of the meaningful message. The structural components of the system are identified and the manner in which informational elements are coded and transferred sequentially from component to component in the brain of the perceiver is described. The independent, physically separated components in the face recognition system are bridged by an additional component, an “adaptor”, that mediates the transfer of informational elements from one component to another. The nature of the independent systems, and the manner by which the bridging or adaptor apparatus enables coded information transfer from one system to another is discussed. Part II focuses on the analysis of recognition in human-designed sign systems such as Braille and Morse code. Recognition in human-designed sign systems is notable for the stability of the link between sign and meaning. Face recognition is characterized as being subjective, indicating that the meaning of a sign (face) to a perceiver is variable and dependent on context, whereas human-devised sign recognition is characterized as being objective, indicating that the meaning of a sign is context independent and invariant. Human-designed sign systems require the presence in brain of a referent world. An example of a referent world is the set of letters of the alphabet. Representations of this set are installed in the brain through social mediated learning. Human-designed sets of signs (e.g., Braille, and written text) are created to correspond, via a code enabling adaptor structure, to referent worlds in the brain. Human-designed sign systems are the foundations for literacy, a capability only found in humans.  相似文献   

15.
Myricaria laxiflora, a riparian plant that naturally occurs in the riverbanks of the Yangtze River Valley, has become extinct across its entire geographical distribution range in the wild due to the construction of the Three Gorges Dam. The allozyme variation of M. laxiflora populations was investigated in the present study. Mean number of alleles per locus (A) was 2.35, and the observed heterozygosity (Ho) and expected heterozygosity (He) were 0.35 and 0.30, respectively. Six populations showed significant excesses of heterozygotes based on the examination of a multilocus fixation index (FIS). The population genetic divergence of M. laxiflora is high (GST = 0.144 and ?B = 0.131) and the analysis of molecular variance analysis shows that 19.71% of the total genetic variation is caused by the difference between populations. Based on the obtained genetic information, six management units have been identified, all of which are expected to enhance the effective management of the remaining and transplanted individuals of this endangered species in the future.  相似文献   

16.
Transverse water proton relaxation times (T2) have been measured as a function of time after deoxygenation of solutions containing hemoglobin S. The shortened T2 values observed upon deoxygenation of hemoglobin S result from an increase in the correlation time (τc) of the water fraction irrotationally bound to deoxyhemoglobin S as it polymerizes. Therefore, the change in τc as a function of time after deoxygenation can be used to measure the rate of polymer formation. The change in τc observed is reasonably fit by the first-order equation τ = τ0 (1 ? e?kt) + τoxy. At a total hemoglobin concentration of approximately 300 mg/ml, the pseudo-first-order rate constant in a heterozygous AS sample is 25 times slower than in a homozygous S sample, k = 0.019 and 0.47 s?1, respectively. Since the transit time for an erythrocyte in vivo is approximately 15 s, these results suggest that the heterozygous A/S erythrocyte would traverse the circulation and become reoxygenated before extensive polymerization and, therefore, cell sickling could occur. For the homozygous S/S erythrocyte, there is ample time for polymerization and for cell sickling during circulation.  相似文献   

17.
The micellar properties of gangliosides in water solutions were investigated by quasielastic light scattering measurements. GM1 and GD1a gangliosides were isolated from calf brain, purified to more than 99% and dissolved in 0.025 M Tris—HCI buffer (pH 6.8) at 37°C. The average intensity of scattered light and the intensity correlation function were measured by an apparatus including a 5145 Å argon laser and a real-time digital correlator. The scattered intensity data allowed the derivation of an upper limit to the critical micelle concentration (c0) and the evaluation of the molecular weight (M) of the micelle. The intensity correlation function gave the diffusion coefficient D, and hence the hydrodynamic radius RH, and also contained information on the polydispersity of the sample. We find co < 1 × 10?6 M for both GM1 and GD1a, M = 532 000 ± 50 000 and RH = 63.9 ± 2 A? for GM1, and M = 417 000 ± 40 000 and RH = 59.5 ± 2 A? for GD1a. The mixture 3:1 of the two gangliosides gave intermediate values for all examined parameters. The presence of cations, within the physiological concentration range. and, in particular of Ca2+, did not influence significantly the values of co and the main features of the micelle.  相似文献   

18.
The maternal protein diet during the perinatal period can program the health of adult offspring. This study in rats evaluated the effects of protein quantity and quality in the maternal diet during gestation and lactation on weight and adiposity in female offspring. Six groups of dams were fed a high-protein (HP; 47% protein) or normal-protein (NP; 19% protein) isocaloric diet during gestation (G) using either cow's milk (M), pea (P) or turkey (T) proteins. During lactation, all dams received the NP diet (protein source unchanged). From postnatal day (PND) 28 until PND70, female pups (n=8) from the dam milk groups were exposed to either an NP milk diet (NPMW) or to dietary self-selection (DSS). All other pups were only exposed to DSS. The DSS design was a choice between five food cups containing HPM, HPP, HPT, carbohydrates or lipids. The weights and food intakes of the animals were recorded throughout the study, and samples from offspring were collected on PND70. During the lactation and postweaning periods, body weight was lower in the pea and turkey groups (NPG and HPG) versus the milk group (P<.0001). DSS groups increased their total energy and fat intakes compared to the NPMW group (P<.0001). In all HPG groups, total adipose tissue was increased (P=.03) associated with higher fasting plasma leptin (P<.05). These results suggest that the maternal protein source impacted offspring body weight and that protein excess during gestation, irrespective of its source, increased the risk of adiposity development in female adult offspring.  相似文献   

19.
To elucidate how human DNA polymerase β (pol β) discriminates dATP from dCTP when processing 8-oxoguanine (8-oxoG), we analyze a series of dynamics simulations before and after the chemical step with dATP and dCTP opposite an 8-oxoG template started from partially open complexes of pol β. Analyses reveal that the thumb closing of pol β before chemistry is hampered when the incorrect nucleotide dATP is bound opposite 8-oxoG; the unfavorable interaction between active-site residue Tyr271 and dATP that causes an anti to syn change in the 8-oxoG (syn):dATP complex explains this slow motion, in contrast to the 8-oxoG (anti):dCTP system. Such differences in conformational pathways before chemistry for mismatched versus matched complexes help explain the preference for correct insertion across 8-oxoG by pol β. Together with reference studies with a nonlesioned G template, we propose that 8-oxoG leads to lower efficiency in pol β's incorporation of dCTP compared with G by affecting the requisite active-site geometry for the chemical reaction before chemistry. Furthermore, because the active site is far from ready for the chemical reaction after partial closing or even full thumb closing, we suggest that pol β is tightly controlled not only by the chemical step but also by a closely related requirement for subtle active-site rearrangements after thumb movement but before chemistry.  相似文献   

20.
Bacterial primase is stimulated by replicative helicase to produce RNA primers that are essential for DNA replication. To identify mechanisms regulating primase activity, we characterized primase initiation specificity and interactions with the replicative helicase for gram-positive Firmicutes (Staphylococcus, Bacillus and Geobacillus) and gram-negative Proteobacteria (Escherichia, Yersinia and Pseudomonas). Contributions of the primase zinc-binding domain, RNA polymerase domain and helicase-binding domain on de novo primer synthesis were determined using mutated, truncated, chimeric and wild-type primases. Key residues in the β4 strand of the primase zinc-binding domain defined class-associated trinucleotide recognition and substitution of these amino acids transferred specificity across classes. A change in template recognition provided functional evidence for interaction in trans between the zinc-binding domain and RNA polymerase domain of two separate primases. Helicase binding to the primase C-terminal helicase-binding domain modulated RNA primer length in a species-specific manner and productive interactions paralleled genetic relatedness. Results demonstrated that primase template specificity is conserved within a bacterial class, whereas the primase–helicase interaction has co-evolved within each species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号