首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polymerase chain reaction (PCR) is sensitive to mismatches between primer and template, and mismatches can lead to inefficient amplification of targeted regions of DNA template. In PCRs in which a degenerate primer pool is employed, each primer can behave differently. Therefore, inefficiencies due to different primer melting temperatures within a degenerate primer pool, in addition to mismatches between primer binding sites and primers, can lead to a distortion of the true relative abundance of targets in the original DNA pool. A theoretical analysis indicated that a combination of primer-template and primer-amplicon interactions during PCR cycles 3–12 is potentially responsible for this distortion. To test this hypothesis, we developed a novel amplification strategy, entitled “Polymerase-exonuclease (PEX) PCR”, in which primer-template interactions and primer-amplicon interactions are separated. The PEX PCR method substantially and significantly improved the evenness of recovery of sequences from a mock community of known composition, and allowed for amplification of templates with introduced mismatches near the 3’ end of the primer annealing sites. When the PEX PCR method was applied to genomic DNA extracted from complex environmental samples, a significant shift in the observed microbial community was detected. Furthermore, the PEX PCR method provides a mechanism to identify which primers in a primer pool are annealing to target gDNA. Primer utilization patterns revealed that at high annealing temperatures in the PEX PCR method, perfect match annealing predominates, while at lower annealing temperatures, primers with up to four mismatches with templates can contribute substantially to amplification. The PEX PCR method is simple to perform, is limited to PCR mixes and a single exonuclease step which can be performed without reaction cleanup, and is recommended for reactions in which degenerate primer pools are used or when mismatches between primers and template are possible.  相似文献   

2.
We have devised an improved method of genome walking, named rolling circle amplification of genomic templates for Inverse PCR (RCA–GIP). The method is based on the generation of circular genomic DNA fragments, followed by rolling circle amplification of the circular genomic DNA using ϕ29 DNA polymerase without need for attachment of anchor sequences. In this way from the circular genomic DNA fragments, after RCA amplification, a large amount of linear concatemers is generated suitable for Inverse PCR template that can be amplified, sequenced or cloned allowing the isolation of the 3′- and 5′- of unknown ends of genomic sequences. To prove the concept of the proposed methodology, we used this procedure to isolate the promoter regions from different species. Herein as an example we present the isolation of four promoter regions from Crocus sativus, a crop cultivated for saffron production.  相似文献   

3.
A simple approach is described to synthesize and clone an inexhaustible supply of any homozygous and/or heterozygous controls diluted with yeast genomic DNA to mimic human genome equivalents for use throughout the entire multiplex mutation assay. As a proof of principle, the 25 cystic fibrosis mutation panel selected by the American College of Medical Genetics and four additional mutant sequences were prepared as a single control mixture. The 29 CFTR mutations were incorporated into 17 gene fragments by PCR amplification of targeted sequences using mutagenic primers on normal human genomic DNA template. Flanking primers selected to bind beyond all published PCR primer sites amplified controls for most assay platforms. The 17 synthesized 433-933-bp CFTR fragments each with one to four homozygous mutant sequences were cloned into nine plasmid vectors at the multiple cloning site and bidirectionally sequenced. Miniplasmid preps from these nine clones were mixed and diluted with genomic yeast DNA to mimic the final nucleotide molar ratio of two CFTR genes in 6 x 10(9) bp total human genomic DNA. This mixture was added to control PCR reactions prior to amplification as the only positive control sample. In this fashion >200 multiplex clinical PCR analyses of >4,000 clinical patient samples have been controlled simultaneously for PCR amplification and substrate specificity for 29 tested mutations without cross contamination. This clinically validated multiplex cystic fibrosis control can be modified readily for different test formats and provides a robust means to control for all mutations instead of rotating human genomic controls each with a fraction of the mutations. This approach allows scores of additional mutation controls from any gene loci to be added to the same mixture annually.  相似文献   

4.
5.
6.
DNA covalently bound to an uncharged nylon membrane was used for consecutive amplifications of several different genes by PCR. Successful PCR amplifications were obtained for membrane-bound genomic and plasmid DNA. Membrane-bound genomic DNA templates were re-used at least 15 times for PCR with specific amplification of the desired gene each time. PCR amplifications of specific sequences of p53, p16, CYP1A1, CYP2D6, GSTM1 and GSTM3 were performed independently on the same strips of uncharged nylon membrane containing genomic DNA. PCR products were subjected to restriction fragment length polymorphism analysis, single-strand conformational polymorphism analysis and/or dideoxy sequencing to confirm PCR-amplified gene sequences. We found that PCR fragments obtained by amplification from bound genomic DNA as template were identical in sequence to those of PCR products obtained from free genomic DNA in solution. PCR was performed using as little as 5 ng genomic or 4 fg plasmid DNA bound to membrane. These results suggest that DNA covalently bound to membrane can be re-used for sample-specific PCR amplifications, providing a potentially unlimited source of DNA for PCR.  相似文献   

7.
A simple isothermal nucleic-acid amplification reaction, primer generation–rolling circle amplification (PG–RCA), was developed to detect specific nucleic-acid sequences of sample DNA. This amplification method is achievable at a constant temperature (e.g. 60°C) simply by mixing circular single-stranded DNA probe, DNA polymerase and nicking enzyme. Unlike conventional nucleic-acid amplification reactions such as polymerase chain reaction (PCR), this reaction does not require exogenous primers, which often cause primer dimerization or non-specific amplification. Instead, ‘primers’ are generated and accumulated during the reaction. The circular probe carries only two sequences: (i) a hybridization sequence to the sample DNA and (ii) a recognition sequence of the nicking enzyme. In PG–RCA, the circular probe first hybridizes with the sample DNA, and then a cascade reaction of linear rolling circle amplification and nicking reactions takes place. In contrast with conventional linear rolling circle amplification, the signal amplification is in an exponential mode since many copies of ‘primers’ are successively produced by multiple nicking reactions. Under the optimized condition, we obtained a remarkable sensitivity of 84.5 ymol (50.7 molecules) of synthetic sample DNA and 0.163 pg (~60 molecules) of genomic DNA from Listeria monocytogenes, indicating strong applicability of PG–RCA to various molecular diagnostic assays.  相似文献   

8.
Polymerase chain reaction (PCR) has become the mainstay of DNA sequence analysis. Yet there is always uncertainty concerning the source of the template DNA that gave rise to a particular PCR product. The risks of contamination, biased amplification, and product redundancy are especially high when limited amounts of template DNA are used. We have developed and applied molecular encoding principles to solve this source-uncertainty problem for DNA sequences generated by standard PCR. Batch-stamps specify the date and sample identity, and barcodes detect template redundancy. Our approach thus enables classification of each PCR-derived sequence as valid, contaminant, or redundant, and provides a measure of sequence diversity. We recommend that batch-stamps and barcodes be used when amplifying irreplaceable DNAs and cDNAs available for forensic, clinical, single cell, and ancient DNA analyses.  相似文献   

9.
Several whole genome amplification strategies have been developed to preamplify the entire genome from minimal amounts of DNA for subsequent molecular genetic analysis. However, none of these techniques has proven to amplify long products from very low (nanogram or picogram) quantities of genomic DNA. Here we report a new whole genome amplification protocol using a degenerate primer (DOP-PCR) that generates products up to about 10 kb in length from less than 1 ng genomic template DNA. This new protocol (LL-DOP-PCR) allows in the subsequent PCR the specific amplification, with high fidelity, of DNA fragments that are more than 1 kb in length. LL-DOP-PCR provides significantly better coverage for microsatellites and unique sequences in comparison to a conventional DOP-PCR method.  相似文献   

10.
We describe a simple PCR-based method for the isolation of genomic DNA that lies adjacent to a known DNA sequence. The method is based on the directional cloning of digested genomic DNA into the multiple cloning site of a pUC-based plasmid to generate a limited genomic library. The library is plated onto a number of selective LA plates which are incubated overnight, and recombinant plasmid DNA is then isolated from resistant colonies pooled from each plate. PCR amplification is performed on the pooled recombinant plasmid DNAs using primers specific for the pUC vector and the known genomic sequence. The combination of efficient directional cloning and bacterial transformation gives relative enrichment for the genomic sequence of interest and generates a simple DNA template, enabling easy amplification by PCR.  相似文献   

11.
We show that DNA molecules amplified by PCR from DNA extracted from animal bones and teeth that vary in age between 25 000 and over 50 000 years carry C→T and G→A substitutions. These substitutions can reach high proportions among the molecules amplified and are due to the occurrence of modified deoxycytidine residues in the template DNA. If the template DNA is treated with uracil N-glycosylase, these substitutions are dramatically reduced. They are thus likely to result from deamination of deoxycytidine residues. In addition, ‘jumping PCR’, i.e. the occurrence of template switching during PCR, may contribute to these substitutions. When DNA sequences are amplified from ancient DNA extracts where few template molecules initiate the PCR, precautions such as DNA sequence determination of multiple clones derived from more than one independent amplification are necessary in order to reduce the risk of determination of incorrect DNA sequences. When such precautionary measures are taken, errors induced by damage to the DNA template are unlikely to be more frequent than ~0.1% even under the unlikely scenario where each amplification starts from a single template molecule.  相似文献   

12.
While standard DNA‐sequencing approaches readily yield genotypic sequence data, haplotype information is often of greater utility for population genetic analyses. However, obtaining individual haplotype sequences can be costly and time‐consuming and sometimes requires statistical reconstruction approaches that are subject to bias and error. Advancements have recently been made in determining individual chromosomal sequences in large‐scale genomic studies, yet few options exist for obtaining this information from large numbers of highly polymorphic individuals in a cost‐effective manner. As a solution, we developed a simple PCR‐based method for obtaining sequence information from individual DNA strands using standard laboratory equipment. The method employs a water‐in‐oil emulsion to separate the PCR mixture into thousands of individual microreactors. PCR within these small vesicles results in amplification from only a single starting DNA template molecule and thus a single haplotype. We improved upon previous approaches by including SYBR Green I and a melted agarose solution in the PCR, allowing easy identification and separation of individually amplified DNA molecules. We demonstrate the use of this method on a highly polymorphic estuarine population of the copepod Eurytemora affinis for which current molecular and computational methods for haplotype determination have been inadequate.  相似文献   

13.

Background

Identification of DNA sequence diversity is a powerful means for assessing the species present in environmental samples. The most common molecular strategies for estimating taxonomic composition depend upon PCR with universal primers that amplify an orthologous DNA region from a range of species. The diversity of sequences within a sample that can be detected by universal primers is often compromised by high concentrations of some DNA templates. If the DNA within the sample contains a small number of sequences in relatively high concentrations, then less concentrated sequences are often not amplified because the PCR favours the dominant DNA types. This is a particular problem in molecular diet studies, where predator DNA is often present in great excess of food-derived DNA.

Results

We have developed a strategy where a universal PCR simultaneously amplifies DNA from food items present in DNA purified from stomach samples, while the predator's own DNA is blocked from amplification by the addition of a modified predator-specific blocking primer. Three different types of modified primers were tested out; one annealing inhibiting primer overlapping with the 3' end of one of the universal primers, another annealing inhibiting primer also having an internal modification of five dI molecules making it a dual priming oligo, and a third elongation arrest primer located between the two universal primers. All blocking primers were modified with a C3 spacer. In artificial PCR mixtures, annealing inhibiting primers proved to be the most efficient ones and this method reduced predator amplicons to undetectable levels even when predator template was present in 1000 fold excess of the prey template. The prey template then showed strong PCR amplification where none was detectable without the addition of blocking primer. Our method was applied to identifying the winter food of one of the most abundant animals in the world, the Antarctic krill, Euphausia superba. Dietary item DNA was PCR amplified from a range of species in krill stomachs for which we had no prior sequence knowledge.

Conclusion

We present a simple, robust and cheap method that is easily adaptable to many situations where a rare DNA template is to be PCR amplified in the presence of a higher concentration template with identical PCR primer binding sites.  相似文献   

14.
ras proto-oncogenes are activated by point mutation in a wide variety of human and animal tumors, making ras gene analysis a major area of clinical and basic cancer research. Activating point mutations, in each of the three ras genes (Ha-, Ki-, or N-ras), usually occur in one of three specific codons (12, 13, or 61). Thus, an adequate assessment of activating ras gene mutations should include the analysis of at least nine codons. We have developed a rapid method for point mutation analysis of the ras genes, which involves simultaneous (multiplex) PCR amplification of all three homologous ras genes (in the regions surrounding codons 12-13 and codon 61) in a single reaction starting with only 1 microgram of genomic DNA. Although multiplex PCR has been previously used for unrelated sequences, we demonstrate here that multiplex PCR can also be used for highly homologous sequences. Importantly, after coamplification, each of the homologous ras genes can be individually and specifically sequenced even though the other two closely related genes are present in the same template mixture, by using high-stringency conditions permitted by Taq DNA polymerase. An automated multicycle DNA sequencing procedure is used to allow the double-stranded PCR products to be sequenced directly without the need to generate single-stranded templates, further simplifying the protocol. Our multiplex PCR amplification and direct DNA sequencing procedures should greatly facilitate more complete analyses of activating ras gene point mutations, particularly in studies involving many tumor samples.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Chang SS  Hsu HL  Cheng JC  Tseng CP 《PloS one》2011,6(5):e20303

Background

Bacterial DNA contamination in PCR reagents has been a long standing problem that hampers the adoption of broad-range PCR in clinical and applied microbiology, particularly in detection of low abundance bacteria. Although several DNA decontamination protocols have been reported, they all suffer from compromised PCR efficiency or detection limits. To date, no satisfactory solution has been found.

Methodology/Principal Findings

We herein describe a method that solves this long standing problem by employing a broad-range primer extension-PCR (PE-PCR) strategy that obviates the need for DNA decontamination. In this method, we first devise a fusion probe having a 3′-end complementary to the template bacterial sequence and a 5′-end non-bacterial tag sequence. We then hybridize the probes to template DNA, carry out primer extension and remove the excess probes using an optimized enzyme mix of Klenow DNA polymerase and exonuclease I. This strategy allows the templates to be distinguished from the PCR reagent contaminants and selectively amplified by PCR. To prove the concept, we spiked the PCR reagents with Staphylococcus aureus genomic DNA and applied PE-PCR to amplify template bacterial DNA. The spiking DNA neither interfered with template DNA amplification nor caused false positive of the reaction. Broad-range PE-PCR amplification of the 16S rRNA gene was also validated and minute quantities of template DNA (10–100 fg) were detectable without false positives. When adapting to real-time and high-resolution melting (HRM) analytical platforms, the unique melting profiles for the PE-PCR product can be used as the molecular fingerprints to further identify individual bacterial species.

Conclusions/Significance

Broad-range PE-PCR is simple, efficient, and completely obviates the need to decontaminate PCR reagents. When coupling with real-time and HRM analyses, it offers a new avenue for bacterial species identification with a limited source of bacterial DNA, making it suitable for use in clinical and applied microbiology laboratories.  相似文献   

16.
The polymerase chain reaction (PCR) has been used to amplify DNA fragments by using eucaryotic genomic DNA as a template. We show that bacterial genomic DNA can be used as a template for PCR amplification. We demonstrate that DNA fragments at least as large as 4,400 base pairs can be amplified with fidelity and that the amplified DNA can be used as a substrate for most operations involving DNA. We discuss problems inherent in the direct sequencing of the amplified product, one of the important exploitations of this methodology. We have solved the problems by developing an "asymmetric amplification" method in which one of the oligonucleotide primers is used in limiting amounts, thus allowing the accumulation of single-stranded copies of only one of the DNA strands. As an illustration of the use of PCR in bacteria, we have amplified, sequenced, and subcloned several DNA fragments carrying mutations in genes of the histidine permease operon. These mutations are part of a preliminary approach to studying protein-protein interactions in transport, and their nature is discussed.  相似文献   

17.
A chip was developed to store DNA for medical research. The optional restriction site fixed on the chip can randomly ligate with whole human genomic DNA treated by the corresponding restriction enzyme. PCR can then use the chip as template DNA. Moreover, a chip fixing two restriction sites (e.g. EcoRI and HindIII) showed the amplification by PCR for any location of genomic DNA. Repetitive PCRs have confirmed that a DNA chip can be stored by at –4 °C for 2 years.  相似文献   

18.
Effect of highly fragmented DNA on PCR.   总被引:3,自引:1,他引:2       下载免费PDF全文
We characterized the behavior of polymerase chain reactions (PCR) using degraded DNA as a template. We first demonstrated that fragments larger than the initial template fragments can be amplified if overlapping fragments are allowed to anneal and extend prior to routine PCR. Amplification products increase when degraded genomic DNA is pretreated by polymerization in the absence of specific primers. Secondly, we measured nucleotide uptake as a function of template DNA degradation. dNTP incorporation initially increases with increasing DNA fragmentation and then declines when the DNA becomes highly degraded. We demonstrated that dNTP uptake continues for >10 polymerization cycles and is affected by the quality and quantity of template DNA and by the amount of substrate dNTP. These results suggest that although reconstruction of degraded DNA may allow amplification of large fragments, reconstructive polymerization and amplification polymerization may compete. This was confirmed in PCR where the addition of degraded DNA reduced the resultant product. Because terminal deoxynucleotidyl transferase activity of Taq polymerase may inhibit 3' annealing and restrict the length of template reconstruction, we suggest modified PCR techniques which separate reconstructive and amplification polymerization reactions.  相似文献   

19.
While remarkably complex networks of connected DNA molecules can form from a relatively small number of distinct oligomer strands, a large computational space created by DNA reactions would ultimately require the use of many distinct DNA strands. The automatic synthesis of this many distinct strands is economically prohibitive. We present here a new approach to producing distinct DNA oligomers based on the polymerase chain reaction (PCR) amplification of a few random template sequences. As an example, we designed a DNA template sequence consisting of a 50-mer random DNA segment flanked by two 20-mer invariant primer sequences. Amplification of a dilute sample containing about 30 different template molecules allows us to obtain around 1011 copies of these molecules and their complements. We demonstrate the use of these amplicons to implement some of the vector operations that will be required in a DNA implementation of an analog neural network.  相似文献   

20.
Amplification of source DNA is a nearly universal requirement for molecular biology applications. The primary methods currently available to researchers are limited to in vivo amplification in Escherichia coli hosts and the polymerase chain reaction. Rolling-circle DNA replication is a well-known method for synthesis of phage genomes and recently has been applied as rolling circle amplification (RCA) of specific target sequences as well as circular vectors used in cloning. Here, we demonstrate that RCA using random hexamer primers with 29 DNA polymerase can be used for strand-displacement amplification of different vector constructs containing a variety of insert sizes to produce consistently uniform template for end-sequencing reactions. We show this procedure to be especially effective in a high-throughput plasmid production sequencing process. In addition, we demonstrate that whole bacterial genomes can be effectively amplified from cells or small amounts of purified genomic DNA without apparent bias for use in downstream applications, including whole genome shotgun sequencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号