首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Copine1 is a ubiquitously expressed protein found in various tissues including the brain, but little is known about the physiological function of this protein. Here, we showed that copine1 is involved in neuronal differentiation. Over-expression of copine1 clearly increased neurite outgrowth and expression of Tuj1, a neuronal marker protein, in HiB5 cells. In addition, endogenous copine1 was transiently increased at the early time during neuronal differentiation of HiB5 cells. When the expression of endogenous copine1 was knocked-down by its specific shRNA, PDGF-mediated neurite outgrowth was clearly decreased in HiB5 cells. Furthermore, over-expression of copine1 increased phosphorylation of Akt and copine1-specific shRNA decreased phosphorylation of Akt during neuronal differentiation of HiB5 cells. Interestingly, the phosphorylation level of PI3K, generally known as an upstream protein of Akt, was not changed by copine1 expression. These results suggest that copine1 enhances neuronal differentiation of HiB5 cells not through the PI3K-Akt pathway, but by using another Akt activated signal pathway.  相似文献   

2.
3.
Brain-derived neurotrophic factor (BDNF) plays a key role in the differentiation and neuritogenesis of developing neurons, and in the synaptic plasticity of mature neurons, in the mammalian nervous system. BDNF binds to the receptor tyrosine kinase TrkB and transmits neurotrophic signals by activating neuron-specific tyrosine phosphorylation pathways. However, the neurotrophic function of BDNF in Aplysia neurons is poorly understood. We examined the specific effect of BDNF on neurite outgrowth and synaptic plasticity in cultured Aplysia neurons and a multipotent rat hippocampal stem cell line (HiB5). Our study indicates that mammalian BDNF has no significant effect on the neuritogenesis, neurotransmitter release, excitability, and synaptic plasticity of cultured Aplysia neurons in our experimental conditions. In contrast, BDNF in combination with platelet-derived growth factor (PDGF) increases the length of the neurites and the number of spine-like structures in cells of HiB5.  相似文献   

4.
Copine1 (CPNE1) has tandem C2 domains and an A domain and is known as a calcium-dependent membrane-binding protein that regulates signal transduction and membrane trafficking. We previously demonstrated that CPNE1 directly induces neuronal differentiation via Akt phosphorylation in the hippocampal progenitor cell line, HiB5. To determine which region of CPNE1 is related to HiB5 cell neurite outgrowth, we constructed several mutants. Our results show that over-expression of each C2 domain of CPNE1 increased neurite outgrowth and expression of the neuronal marker protein neurofilament (NF). Even though protein localization of the calcium binding-deficient mutant of CPNE1 was not affected by ionomycin, this mutant increased neurite outgrowth and NF expression in HiB5 cells. Furthermore, Akt phosphorylation was increased by over-expression of the calcium binding-deficient CPNE1 mutant. These results suggest that neither cellular calcium levels nor the localization of CPNE1 affect its function in neuronal differentiation. Collectively, our findings indicating that the C2 domains of CPNE1 play a calcium-independent role in regulating the neuronal differentiation of HiB5 cells.  相似文献   

5.
Molecular and cellular analysis of early mammalian development is compromised by the experimental inaccessibility of the embryo. Pluripotent embryonic stem (ES) cells are derived from and retain many properties of the pluripotent founder population of the embryo, the inner cell mass. Experimental manipulation of these cells and their environment in vitro provides an opportunity for the development of differentiation systems which can be used for analysis of the molecular and cellular basis of embryogenesis. In this review we discuss strengths and weaknesses of the available ES cell differentiation methodologies and their relationship to events in vivo. Exploitation of these systems is providing novel insight into embryonic processes as diverse as cell lineage establishment, cell progression during differentiation, patterning, morphogenesis and the molecular basis for cell properties in the early mammalian embryo.  相似文献   

6.
 To analyse the proliferative abilities of cells within particular regions of the zebrafish neural plate, injections of fluorescein-dextran were made into single cells at either medial or intermediary positions in the neural plate region of two-somite stage embryos. The resulting cell clones were analysed in 3.5-day-old embryos. Clones with similar compositions were found among those derived from injections in both regions, and these were grouped into classes. 78 clones 29 obtained following injections in the medial region, and 22 of 59 cell clones derived from injections in the intermediary region, were classifiable into 9 and 10 different classes, respectively, each comprising a variable number of clones. Several identified cell types, as well as each of the clone classes themselves, were specific for the regions of the neural plate from which they derived, i.e. they were not represented among the clones derived from the other region. These results suggest that the composition of the lineages derived from particular cells is constant in different animals. Received: 13 July 1998 / Accepted: 20 October 1998  相似文献   

7.
Cell cycle proteins are critical regulators of proliferation in dividing cells. Paradoxically, accumulating evidence supports the view that core components of the cell cycle also play key roles in the development of terminally differentiated postmitotic neurons. Distinct cell cycle proteins including cell cycle-dependent kinases may contribute to naturally occurring programmed neuronal cell death in the developing mammalian brain. In addition, recent studies have uncovered a novel role for the cell cycle-associated ubiquitination machinery in the control of axonal growth and patterning in the developing brain. The underlying molecular mechanisms regulating these distinct cell cycle-based developmental events in neurons are just beginning to be understood.  相似文献   

8.
干细胞是在机体分化过程中存在的具有自我增殖、更新能力,且能形成各种类型分化细胞的一类细胞的总称。它不但为细胞发育分化和细胞诱导研究提供了很好的模型,而且对于临床细胞替代疗法与细胞移植具有重要意义。作者综合干细胞研究的成果,从方法、机理及诱导得到的神经细胞的检查等几个方面对诱导干细胞向神经细胞分化的进展加以综述。  相似文献   

9.
Objectives: To characterize basal differentiation tendencies of a human embryonic stem (hES) cell line, KCL‐002. Materials and methods: In vitro specification and differentiation of hES cells were carried out using embryoid body (EB) cultures and tests of pluripotency and in vivo differentiation were performed by teratoma assays in SCID mice. Real‐time PCR, immunohistochemistry, flow cytometry and histological analyses were used to identify expression of genes and proteins associated with the ectodermal, endodermal and mesodermal germ layers. Results: Undifferentiated KCL‐002 cells expressed characteristic markers of pluripotent stem cells such as Nanog, Sox‐2, Oct‐4 and TRA 1‐60. When differentiated in vitro as EB cultures, expression of pluripotency, endodermal and ectodermal markers decreased rapidly. In contrast, mesodermal and mesenchymal markers such as VEGFR‐2, α‐actin and vimentin increased during EB differentiation as shown by qPCR, immunostaining and flow cytometric analyses. Teratoma formation in SCID mice demonstrated the potential to form all germ layers in vivo with a greater proportion of the tumours containing mesenchymal derivatives. Conclusions: The data presented suggest that the KCL‐002 hES cell line is pluripotent and harbours a bias in basal differentiation tendencies towards mesodermal and mesenchymal lineage cells. Characterizing innate differentiation propensities of hES cell lines is important for understanding heterogeneity between different cell lines and for further studies aimed at deriving specific lineages from hES cells.  相似文献   

10.
In Drosophila, primordial germ cells (PGCs) are set aside from somatic cells and subsequently migrate through the embryo and associate with somatic gonadal cells to form the embryonic gonad. During larval stages, PGCs proliferate in the female gonad, and a subset of PGCs are selected at late larval stages to become germ line stem cells (GSCs), the source of continuous egg production throughout adulthood. However, the degree of similarity between PGCs and the self-renewing GSCs is unclear. Here we show that many of the genes that are required for GSC maintenance in adults are also required to prevent precocious differentiation of PGCs within the larval ovary. We show that following overexpression of the GSC-differentiation gene bag of marbles (bam), PGCs differentiate to form cysts without becoming GSCs. Furthermore, PGCs that are mutant for nanos (nos), pumilio (pum) or for signaling components of the decapentaplegic (dpp) pathway also differentiate. The similarity in the genes necessary for GSC maintenance and the repression of PGC differentiation suggest that PGCs and GSCs may be functionally equivalent and that the larval gonad functions as a "PGC niche".  相似文献   

11.
12.
Neurogenesis persists in two germinal regions in the adult mammalian brain, the subventricular zone of the lateral ventricles and the subgranular zone in the hippocampal formation. Within these two neurogenic niches, specialized astrocytes are neural stem cells, capable of self-renewing and generating neurons and glia. Cues within the niche, from cell-cell interactions to diffusible factors, are spatially and temporally coordinated to regulate proliferation and neurogenesis, ultimately affecting stem cell fate choices. Here, we review the components of adult neural stem cell niches and how they act to regulate neurogenesis in these regions.  相似文献   

13.
Neuronal degeneration and the deterioration of neuronal communication lie at the origin of many neuronal disorders, and there have been major efforts to develop cell replacement therapies for treating such diseases. One challenge, however, is that differentiated cells are challenging to transplant due to their sensitivity both to being uprooted from their cell culture growth support and to shear forces inherent in the implantation process. Here, we describe an approach to address these problems. We demonstrate that rat hippocampal neurons can be grown on colloidal particles or beads, matured and even transfected in vitro, and subsequently transplanted while adhered to the beads into the young adult rat hippocampus. The transplanted cells have a 76% cell survival rate one week post-surgery. At this time, most transplanted neurons have left their beads and elaborated long processes, similar to the host neurons. Additionally, the transplanted cells distribute uniformly across the host hippocampus. Expression of a fluorescent protein and the light-gated glutamate receptor in the transplanted neurons enabled them to be driven to fire by remote optical control. At 1-2 weeks after transplantation, calcium imaging of host brain slice shows that optical excitation of the transplanted neurons elicits activity in nearby host neurons, indicating the formation of functional transplant-host synaptic connections. After 6 months, the transplanted cell survival and overall cell distribution remained unchanged, suggesting that cells are functionally integrated. This approach, which could be extended to other cell classes such as neural stem cells and other regions of the brain, offers promising prospects for neuronal circuit repair via transplantation of in vitro differentiated, genetically engineered neurons.  相似文献   

14.
15.
16.
Neural epidermal growth factor-like protein-like 2 (NELL2) is a secreted glycoprotein that is predominantly expressed in the nervous system, but little is known about the intracellular movement and secretion mechanism of this protein. By monitoring the localization and movements of enhanced green fluorescent protein (EGFP)-labeled NELL2 in living cultured hippocampal neuroprogenitor HiB5 cells, we determined the subcellular localization of NELL2 and its intracellular movement and secretion mechanism. Cterminal EGFP-fused NELL2 showed a typical expression pattern of secreted proteins, especially with respect to its localization in the endoplasmic reticulum, Golgi apparatus, and punctate structures. Vesicles containing NELL2 exhibited bidirectional movement in HiB5 cells. The majority of the vesicles (70.1%) moved in an anterograde direction with an average velocity of 0.454 μm/s, whereas some vesicles (28.7%) showed retrograde movement with an average velocity of 0.302 μm/s. The movement patterns of NELL2 vesicles were dependent upon the presence of microtubules in HiB5 cells. Anterograde movement of NELL2 did not lead to a detectable accumulation of NELL2 in the peripheral region of the cell, indicating that it was secreted into the culture medium. We also showed that the N-terminal 29 amino acids of NELL2 were important for secretion of this protein. Taken together, these results strongly suggest that the N-terminal region of NELL2 determines both the pattern of its intracellular expression and transport of NELL2 vesicles by high-velocity movement. Therefore, NELL2 may affect the cellular activity of cells in a paracrine or autocrine manner.  相似文献   

17.
Laminin-5 is an important basement membrane protein that regulates cell adhesion and motility. It was previously found that the gamma2 chain of laminin-5 is transiently expressed in embryonic cartilage. This suggests a possible role of laminin-5 in chondrogenesis. Here, we examined this possibility using the murine teratocarcinoma cell line ATDC5. ATDC5 cells transiently and weakly expressed laminin-5 when they were stimulated for differentiation. Exogenous laminin-5 in either insoluble or soluble form strongly inhibited the differentiation phenotypes, i.e. formation of cartilaginous cell aggregates and production of chondrogenic marker proteins through its integrin-binding domain LG3 in the alpha3 chain. Laminin-5 had no effect on cell growth. In addition, we found that the laminin-5 with the 105-kDa, processed gamma2 chain suppressed differentiation more strongly than one with the 150-kDa gamma2 chain. This indicated that the proteolytic processing of gamma2 chain regulated the activity of laminin-5. However, a gamma2 chain short arm fragment had no effect on the chondrogenesis, and it rather suppressed the differentiation at excessive concentrations. These results suggest that laminin-5 and its processing modulate chondrogenic differentiation during development.  相似文献   

18.
The activity of the P(CMV IE) promoter was studied during the differentiation of ES cells into neurons. In order to do this, stable embryonic stem (ES) cell lines that express enhanced green fluorescent protein (EGFP) under the control of P(CMV IE) were created and these ES cells were differentiated by aggregation of cells in the presence of retinoic acid (RA). Based on our observations that the activity of P(CMV IE) was highest in undifferentiated cells, and that cell-cell interaction and addition of RA that lead to enhanced cell proliferation also increased expression from P(CMV IE), we hypothesized that the activity of P(CMV IE) was positively regulated in cycling cells. However, when analysis was done at the single cell level it was found that BrdU label and EGFP expression were not correlated. EGFP expression was found to be down-regulated in many cells that were BrdU positive and conversely there were significant numbers of BrdU negative cells that were EGFP positive. Further, P(CMV IE) activity was not observed in cells that were nestin positive or in differentiated neurons, but P(CMV IE) was active in cells with a fibroblast-like morphology. Finally, several proteins present in undifferentiated ES cells were found to bind to regulatory regions of P(CMV IE). These were absent when cells were aggregated in the presence of RA. The above results have implications for expression of transgenes in ES cells as well as providing new insight into the mechanism of lineage restriction.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号