首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pinewood nematode, Bursaphelenchus xylophilus, was inoculated into established native jack and red pines (Pinus banksiana and P. resinosa) and exotic Austrian pine (P. nigra) in Minnesota and Wisconsin forests during summer 1981. The nematode isolates did not kill established nonstressed pine trees growing in the forest. However, the same nematode isolates killed pine seedlings under greenhouse conditions. Girdling the main stem of some trees to induce stress resulted in the death of the majority of inoculated and noninoculated branches of Austrian and jack pines, but no branch death was observed on red pine. Greater numbers of nematodes were extracted from branches of inoculated, girdled trees than from nongirdled trees. The mean number of nematodes extracted from branches of inoculated, nongirdled trees was 0.3 - 14 nematodes per gram of wood.  相似文献   

2.
Bacteria were isolated from the surface of two samples of American pine wood nematodes to identify methods of controlling pine wilt disease. The dominant bacterial strains were identified, and their toxicity and pathogenicity, in addition to their competitiveness with other pathogenic bacteria, were measured to ascertain how bacteria on the surface of American pine wood nematodes might be used to prevent and control pine wilt disease. The bacterial isolates show that the dominant bacteria carried by the two samples of pine wood nematodes are US4, US5, Smal‐007 and Rrad‐006. Based on routine staining, morphological observation and 16S rDNA sequence analysis, the four strains were identified as Delftia lacustris, Pseudomonas putida, Stenotrophomonas maltophilia and Rhizobium nepotum. The incubation of four dominant bacterial strains and Chinese dominant bacterial strains on the surface of aseptic nematodes and in nutrient broth showed that Smal‐007 and Rrad‐006 have strong competitiveness on the surface of pine wood nematodes. Using a bacterial culture medium to measure the propensity of pine seedlings to wilt, all the American dominant bacterial strains were shown to be less toxic than the Chinese dominant strains. If pine seedlings are inoculated with both bacterial and aseptic pine wood nematodes, American dominant bacterial strains present less pathogenicity than the Chinese dominant bacterial strains. In particular, Smal‐007 and Rrad‐006 show the lowest pathogenicity. If pine seedlings are inoculated with both bacterial and wild pine wood nematodes, American dominant bacterial strains significantly reduce the pathogenicity of wild pine wood nematodes isolated from Zhejiang Province, China. The effects of Smal‐007 and Rrad‐006 are confirmed as the most prominent. The American dominant strains Smal‐007 and Rrad‐006 satisfy two main requirements: excellent repulsion performance and low pathogenicity. Therefore, they can be used as candidate strains for biocontrol bacteria.  相似文献   

3.
A total of 33 pine trees with symptoms of decline were collected in Jeonnam Province, South Korea, and were examined for the presence of nematodes. About 20% of the trees sampled were positive with Bursaphelenchus species. All Bursaphelenchus species were found in recently dead or dying trees. Based on morphological observations, the nematode extracted from the declining pine trees was identified as B. mucronatus. The highly pathogenic pine wood nematode B. xylophilus was not found in any pine trees sampled. B. mucronatus was easily reared on fungus Botrytis cinerea. Twenty one fungal isolates were isolated from dead trees, fallen twigs, and healthy pine trees. The fungal isolates belonged to Trichoderma genus and were dominant in the wood of partially declining pines. The blue‐stain fungi transmitted by the Monochamus beetle were not detected. The B. mucronatus population decreased markedly on Auxarthron reticulatum DY‐2 isolated from soils. The number of nematodes also reduced on Verticillium saksenae A‐1, a nematophagous fungus, and Beauveria bassiana, an entomopathogenic fungus. This observation suggested the fungal production of nematicidal activity against B. mucronatus. When the fungal culture filtrates were also used for nematicidal activity on B. mucronatus, the culture filtrates of A‐1, DY‐2 and B. bassiana showed over 50% mortality within 48 h exposure. The fungi BC4, BC5 and BC6 isolated from declining pine trees inhibited the reproduction of B. mucronatus, and their culture filtrates also expressed nematicidal activity, indicating a possible interaction between the fungi in pine trees and nematodes at microhabitat level.  相似文献   

4.
Mature trees of eastern white, jack, Scotch, and shortleaf pines were inoculated with 25,000-34,000 pinewood nematodes, Bursaphelenchus xylophilus, isolated from infected Scotch pines in Missouri. Equal numbers of trees of each species inoculated with distilled water served as controls. Nine of fifteen Scotch pines died within 4 months of nematode infection or during the winter and early spring following infection. A single eastern white and shortleaf pine died. No jack pines died. A single Scotch pine control died, apparently the result of natural nematode infection. No other controls died. Mean oleoresin flow did not differ among nematode-inoculated jack and shortleaf pines and their respective controls. Oleoresin flow in nematode-inoculated eastern white and Scotch pines was significantly lower than in their controls. Oleoresin flow was temporarily reduced in mortality-resistant eastern white and Scotch pines following nematode infection. Thus a sublethal impact of nematode infection on mortality-resistant host trees was documented.  相似文献   

5.
Pinewood nematode (PWN), Bursaphelenchus xylophilus, is the causative agent of pine wilt disease (PWD) of pine trees and is transmitted by cerambycid beetles belonging to the genus Monochamus. PWN is believed to have been introduced into Japan from North America at the beginning of the 20th century. In this article, we first provide an outline of the PWD system and the range expansion of PWN in Japan and then review the literature, focusing on the virulence of PWN. Virulence is a heritable trait in PWN, with high virulence being closely related to a high rate of reproduction and within-tree dispersal. When two PWN isolates with different virulence levels are inoculated into pine seedlings, the more virulent nematodes always dominate in dead seedlings. In a laboratory setting, many more virulent nematodes board the insect vectors than avirulent ones. The age at which vectors transmit the most abundant PWNs to pine twigs changes during the course of a PWD epidemic. However, the relation between virulence and transmission of PWN remains as yet relatively unknown. Such information would enable ecologists to predict the evolution of the PWD system. In this review we also compare ecological traits between the PWN and the avirulent congener, B. mucronatus.  相似文献   

6.
The progression of events in the development of pine wilt disease following the invasion by Bursaphelenchus xylophilus is reviewed from early migration through pine tissues until symptom development on foliage. Disease resistance in pines, especially the hypersensitive reaction that is successful in controlling many potential pests and pathogens, is explored. Pathologies resulting from the activities of pinewood nematode include cortical trails and cavities; formation of cambial gaps and traumatic resin cysts; browning and death of cortex, phloem, cambium, and ray tissues; granulation and shrinkage of cell cytoplasm in rays; and destruction of resin canal epithelial and ray parenchyma cells. Death of parenchyma, production of toxins, and leakage of oleoresins and other material into tracheids are typical of the hypersensitive reaction occurring in pines following migration of small numbers of pinewood nematodes. The hypothesis presented is that a spreading hypersensitive reaction results in some of the observed pathologies and symptoms and eventually causes pine death. The growth-differentiation balance hypothesis is used to help explain predisposition, oleoresin production and toxicity, susceptibility and resistance, and the effects of variation in climate on host pines as related to pinewilt disease.  相似文献   

7.
Gliocladium virens was isolated from slash pine trees symptomatic and asymptomatic for pine wilt disease with frequencies of 24% and 10%, respectively. Populations of Bursaphelenchus xylophilus, the nematode incitant of this disease, reproduced on this fungus and inhibited its growth. Growth inhibition of the fungus was characterized by an absence of sporulation and by the formation of chains of dark, thick-walled, chlamydospore-like cells. Population increase during a 12-day period following infestation of cultures of the fungus with 10,000 nematodes averaged 3-fold at 16 C, 9-fold at 20 C, and 24-fold at 24 C. In greenhouse studies, nematode recovery from slash pine seedlings coinoculated with both organisms was significantly greater than that obtained from seedlings inoculated with the nematode alone.  相似文献   

8.
Seven-month-old Scots pine seedlings were inoculated with water or culture filtrate (controls), with 10,000, or 20,000 (experiment 1), and with 2,500 (experiment 2) Bursaphelenchus xylophilus B.C. isolate nematodes and maintained under defined experimental conditions. Controls did not develop pine wilt disease over a 2-month period. In experiment 1, less than 50% of the inoculum was recovered from the nematode-inoculated seedlings in the first 48 hours, after which the nematode population of both treatments increased exponentially resulting in pine death and approximately equal populations at 216 hours after inoculation. In the second experiment, plant mortality, which was always preceded by 2-3 days of chlorosis and associated stem vascular necrosis, first occurred 14 days after inoculation. The nematode population increased until about day 40 after inoculation and declined thereafter. Nematodes extracted from the roots 2 weeks after inoculation accounted for ca.15% of the total number of nematodes per pine. The study indicates that the rate of nematode reproduction is a factor in pine wilt disease. However, the lack of a linear correlation between the number of nematodes and the timing of pine mortality suggests that the timing of pine death may also depend on the location of nematode damage to the host tissue.  相似文献   

9.
Viability and pathogenicity of Esteya vermicola in pine trees   总被引:1,自引:0,他引:1  
Esteya vermicola, as the first reported endoparasitic fungus of pinewood nematode (PWN), exhibited high infectivity in vitro and has been patented based on its potential as a bio-control agent against PWN. The isolation substrates and taxonomic status suggested E. vermicola is associated with beetles, saprotrophic and kills nematodes in trees. However, the direct experimental evidence for this was still lacking. In the present studies, beta-tubulin gene was applied to confirm the taxonomic identification of E. vermicola. Furthermore, our results showed that E. vermicola survived resin and other chemicals secreted by pine trees, and reproduced with new lunate conidia to parasitize other migratory PWNs. In order to confirm the pathogenicity of E. vermicola, pine seedlings and large pine trees were inoculated with 300 µL and 40 mL conidia suspensions (109 mL?1). The results showed that all treated pine trees were healthy with no differences compared to the controls. Furthermore, necrosis or discoloration caused by this fungus was not observed on wood slices. Basal knowledge was provided for the application of E. vermicola to control PWN in vivo.  相似文献   

10.
Scanning electron microscopy (SEM) was applied to paraffin-embedded wood sections to study the histopathology of pine seedlings inoculated with the pinewood nematode (PWN), Bursaphelenchus xylophilus. The sections, which had been previously prepared and observed by light microscopy (LM) on glass slides, were originally obtained from experiments in which pine seedlings had been inoculated with PWN. The cover glass was removed by soaking the glass slide in xylene for 3 to 5 days. The glass slides were cut into small pieces so that each piece contained one wood section. Each piece of the glass slide was attached with double adhesive tape to an aluminum stub. The specimens were sputter-coated with gold and examined with a scanning electron microscope (JEOL-JSM 5200). Compared to LM (as documented in previous reports) SEM provided greater depth of focus and resolution of the damaged wood tissues, nematodes and associated bacteria. SEM made it possible to observe the relationship between bacterial distribution and nematode distribution in wood tissues. SEM observations also suggested the possibility of documenting the death of ray cells and other parenchyma cells in relation to disease development. Finally, the current study of PWN in pine seedlings demonstrated that glass slides prepared for LM observations more than 25 years earlier could be successfully processed for examination by SEM.  相似文献   

11.
Transmission of pinewood nematode, Bursaphelenchus xylophilus, to mature, field grown Scots pines through feeding wounds of Monochamus carolinensis was investigated by caging nematode-infested beetles on pine branches for 24 hours. Nematodes were transmitted to 31 of 64 branches. Frequency of successful transmission was independent of the sex of the beetle but dependent upon beetle age. Transmission frequencies were highest for beetles 2, 3, and 4 weeks after emergence as adults. The number of nematodes transmitted per branch was low and did not differ between beetle sexes or among beetle age categories. The number of nematodes extracted per branch was correlated with the number of nematodes carried per beetle but was not correlated with the feeding area on the branch.  相似文献   

12.
Among important nematode species occurring in Japan, current research achievements with the following four nematodes are reviewed: 1) Soybean cyst nematode (SCN), Heterodera glycines - breeding for resistance, race determination, association with Cephalosporium gregatum in azuki bean disease, and isolation of hatching stimulant. 2) Potato-cyst nematode (PCN), Globodera rostochiensis - pathotype determination (Ro 1), breeding for resistance, and control recommendations. 3) Pinewood nematode (PWN), Bursaphelenchus xylophilus - primary pathogen in pine wilt disease, life cycle exhibiting a typical symbiosis with Japanese pine sawyer, Monochamus alternatus, and project for control. 4) Rice root nematodes (RRN), Hirschmanniella imamuri and H. oryzae - distribution of species, population levels in roots, and role of these nematodes in rice culture.  相似文献   

13.
欧阳革成  张润杰 《生态学报》2005,25(10):2658-2661
松材线虫病是重要的森林病害,该病与松材线虫携带的病原菌和松树的内生病原菌密切相关。在室内条件下,初步研究了从人工培养的松材线虫上分离到的菌株C对松材线虫病的抑制作用。在健康的水培马尾松枝上分别接种松材线虫接种液、菌株C接种液、松材线虫与菌株C的混合接种液。处理后松枝的相对重量与相对蒸腾强度均为:接种菌株C的松枝>混合接种的松枝>接种线虫的松枝。处理后15d时,接种线虫的松枝与混合接种的松枝的相对重量有显著性差异(p<0.05)。接种线虫松枝的存活期显著短于其它处理松枝的存活期(p<0.05)。接种菌株C的针叶褐变株数少于接种线虫的松枝,两者有显著性差异(p<0.05)。从接种线虫和混合接种的所有松枝中都分离到松材线虫,且分离出的线虫量没有显著性差异。将8个月生的断根马尾松苗插入菌株C的查彼培养液的滤液中培养,6d后松苗的平均感病指数和感病株率均显著少于对照(p<0.05)。这表明,菌株C对松材线虫病有抑制作用,菌株C培养液中产生的某些代谢物质有利于松苗的抗病和存活。菌株C可能抑制了松树上的内生病原菌和松材线虫携带的病原微生物,或提高了松树的生长力和抗逆能力。经电子显微镜观察并参照AP I 20 C AUX鉴定系统鉴定,菌株C为季也蒙假丝酵母C and id a gu ilierm ond ii。  相似文献   

14.
Evaluation of enzyme activities in combination with taxonomic analyses may help define the mechanisms involved in microbial decomposition of orgaic amendments and biological control of soilborne pathogens. In this study, powdered pine bark was added to nematode-infested soil at rates of 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 g kg–1. Total fungal populations did not differ among treatments immediately after application of pine bark. After 7 days, fungal populations were positively correlated with increasing levels of pine bark. This increase was sustained through 14 and 21 days.Penicillium chrysogenum andPaecilomves variotii were the predominant fungal species isolated from soil amended with pine bark. Total bacterial populations did not change with addition of pine bark at 0, 7, and 14 days after treatment. At 21 and 63 days, total bacterial populations declined in soil receiving the highest rates of pine bark. Addition of pine bark powder to soil caused a shift in predominant bacterial genera fromBacillus spp. in nonamended soil, toPseudomonas spp. in amended soil. Soil enzyme activities were positively correlated with pine bark rate at all sampling times. Trehalase activity was positively correlated with total fungal populations and with predominant fungal species, but was not related to bacterial populations. The number of non-parasitic (non-stylet bearing) nematodes andMeloidogyne arenaria in soil and roots were not correlated with pine bark rate. However,Heterodera glycines juveniles in roots, and the number of cysts g–1 root, declined with increasing levels of pine bark.Journal Series Series No. 18-933598 Alabama Agricultural Experiment Station  相似文献   

15.
CcrM is one of the solitary bacterial DNA methyltransferases which does not have corresponding restriction enzymes. We established a stable ccrM-overexpressing mutant of Mesorhizobium loti, MlccrM-OX, and performed molecular and phenotypic characterization of this strain. In the M. loti MlccrM-OX infected plants, nodulation was apparently delayed at 7 days after inoculation (dai), however, the nodules that eventually formed on the MlccrM-OX roots showed nitrogen fixing ability by at least 21 dai. These results suggest that the initial morphogenic events were affected by ccrM-overexpression and that the correct pattern of DNA methylation of the bacterial genome is not essential for plant-microbe symbiosis, but are required for efficient nodulation.  相似文献   

16.
The effects of chicken litter on Meloidogyne incognita in cotton, Gossypium hirsutum cv. DPL50 were determined in field microplots. Litters (manure and pine-shaving bedding) from a research facility and a commercial broiler house were used. Treatments consisted of 0.25%, 0.5%, and 1% litter by dry weight of soil for each kind of litter. Three control treatments consisted of soil not amended with litter, with and without nematodes, and one treatment to which mineral fertilizer was added at a nitrogen rate equivalent to that of the 0.5% litter rate, with nematodes. Microplots were inoculated at planting with 900 eggs/100 cm³ soil in 1993 and 1,000 eggs/100 cm³ soil in 1994. At 92 and 184 days after planting, nematode population densities decreased linearly with increasing rates of litter. Nematode numbers at midseason were larger in plots treated with mineral fertilizer than in plots treated with a rate of litter equivalent to the 0.5% rate. Fungal and bacterial population densities fluctuated throughout the growing season. Bacterial numbers had a positive linear relationship, with increasing rates of litter only in October 1993; however, significant positive relationships were observed throughout the 1994 growing season. In 1994, nematode population density at 92 days after planting decreased linearly with increasing bacterial numbers 30 days after planting. No other significant relationships between nematode densities and microbial densities were observed. Fungi and bacteria isolated from the litter and litter-amended soil were identified. Fungal genera isolated included Acremonium, Aspergillus, Eurotium, Paecilomyces, Petriella, and Scopulariopsis, whereas bacteria genera included Arthrobacter, Bacillus, and Pseudomonus.  相似文献   

17.
Maximum and minimum xylem pressure potentials of needles were measured to evaluate water status of Pinus thunbergii Parl. after inoculation with the virulent or avirulent populations of Bursaphelenchus xylophilus or B. mucronatus. In virulent B. xylophilus-inoculated pines, the water status changed abruptly and needle chlorosis occurred by day 29 after inoculation. Similar changes were not seen in B. mucronatus-inoculated and uninoculated control pines. Oleoresin flow ceased in virulent B. xylophilus-inoculated pines. Avirulent B. xylophilus-inoculated pines responded very little to nematode invasion by a slight decrease in oleoresin flow. Oleoresin flow did not vary in B. mucronatus-inoculated and uninoculated control pines. A decrease in soil water potential below field capacity seemed to accelerate the development of pine wilt disease.  相似文献   

18.
【目的】由松材线虫导致的松树萎蔫病是松树的毁灭性病害,也是我国最主要的林业病害之一。本研究测评了在农业上广泛使用的、我国微生物肥料行业主要菌种资源之一——贝莱斯芽孢杆菌,对松材线虫的潜在抑杀性能。【方法】选用贝莱斯芽孢杆菌的代表性菌株FZB42为材料,测定对不同条件下的菌液上清、不同菌株的菌液上清、细菌素plantazolicin的提取物以及菌体直接接触等方式,对松材线虫死亡率/存活率的影响,并构建FZB42生物膜合成缺损菌株,测定比较其对松材线虫存活率的影响。【结果】相比于Landy培养基,使用LB培养基得到的菌液上清,对松材线虫具有明显抑杀性,培养48h的菌液上清比培养24h的菌液上清抑杀性更强,同时,菌液上清的抑杀效能随浓度升高及处理时间增长而有所增加。其中,使用培养48h后收集的LB菌液上清处理48h,松材线虫死亡率可高达约50%。之前报道对秀丽隐杆线虫有杀线虫活性的细菌素plantazolicin,经不同突变株上清以及plantazolicin提取物测试,被证实对松材线虫无抑制作用。直接接触实验表明,尽管FZB42的生物膜形成作用会刺激松材线虫提高抗胁迫能力,但整体而言,菌体接触对松材线虫亦有明显抑杀效果。【结论】本研究通过严格细致的测试证明,贝莱斯芽孢杆菌FZB42对松材线虫具有抑杀性,该抑杀作用的分子基础和作用机理有待深入挖掘,但其与plantazolicin无关。作为安全性好、研究开发程度高的一类生防菌株,贝莱斯芽孢杆菌在防治松材线虫病方面的潜在价值值得关注。  相似文献   

19.
Bursaphelenchus mucronatus is a plant–parasitic nematode widely existing in Eurasian pine forests. To analyze the diversity and role of bacteria associated with the nematode, culture-dependent and culture-independent methods were used to identify and characterize the composition of bacterial community. A total of 13 bacterial isolates were obtained from B. mucronatus by the culture-dependent method. Sixty-four species of bacteria were identified from two 16S rDNA clone libraries constructed from the nematodes of a Chinese and a Japanese population. These bacteria were clustered into four groups: Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Bacteroidetes. Comparison of the two libraries showed that the Chinese library had a higher diversity than that of the Japanese library, and the dominant group and species in each library were also different. In the Japanese library, Alphaproteobacteria group was obviously dominant (60.3%), and Rhizobium sp. was the most dominant species. Whereas in the Chinese library the proportion of each group was similar (from 19.4 to 23.6%), and Pedobacter sp. was a slightly dominant species. Moreover, 18 operational taxonomic units (OTUs) were obtained from each of the two libraries according to a 97% sequence similarity. Metabolic analysis showed that 61.5 and 38.5% of the bacterial isolates could have protease and lipase activities, respectively. But only one had cellulase activity. Testing of reproductive parameter showed that the wild-type nematodes (bacteria carried) could produce more progeny than the bacterium-free nematodes did. So, we speculated that bacteria could promote the propagation and development of the nematode B. mucronatus.  相似文献   

20.
Transmission of pinewood nematode through Monochamus carolinensis oviposition wounds was documented. Nematode transmission was measured as the average number of nematodes isolated per oviposition wound excavated and also as the percentage of oviposition wounds from which nematodes were isolated. The influence of three factors that might affect nematode transmission was investigated: age of the beetle vector, number of nematodes carried per beetle, and egg deposition in the oviposition wound. Only the number of nematodes carried by the beetle was found to have a significant effect on transmission. Nematodes were transmitted more frequently and in slightly greater numbers by beetles carrying more nematodes. The influence of pinewood on nematode exit from beetles were investigated by comparing nematode exit from beetles placed over pine chips with those placed over distilled water. Nematodes exited in greater numbers and at a higher frequency from beetles over pine chips than from beetles over distilled water. Apparently, the nematodes are able to detect a factor from the pine chips that promotes their exit from the beetles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号