首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of Escherichia coli strains have been isolated from dogs with urinary tract infections. These strains have been characterised with respect to their O, K, H, and fimbrial antigens, colicin production, antibiotic resistance, plasmid content and their ability to haemagglutinate erythrocytes from various species. Crossed immunoelectrophoresis of fimbrial extracts, as well as the reaction of partly purified fimbriae of a number of these strains with monoclonal antibodies revealed homology or a strong crossereaction with an F12 fimbrial subunit protein of human uropathogenic E. coli strains. Unlike human F12 fimbriae producing strains, the dog isolates did agglutinate dog erythrocytes in the presence of D-mannose but not human erythrocytes, indicating that the adhesin carried by these strains is different from the adhesin on fimbriae of human uropathogenic E. coli. Similar indications were obtained from experiments with latex beads coated with the receptor for P-fimbriae. These beads were agglutinated by Escherichia coli strains from human urinary tract infections, but not by the dog isolates described here. Preliminary adhesion experiments of human and dog Escherichia coli to human bladder epithelial and canine kidney epithelial cells also showed differences in adhesion depending on the origin of the strain tested.  相似文献   

2.
An infection with E. coli is the most frequent cause of the urinary infections in childhood. Virulence depends on several factors out of which a principal role is played by the adhesion of bacteria to the urinary tract epithelium. Such a property have E. coli strains with adherence mannose-positive fimbriae of type P with antigens recognizing and binding glycolipid receptors on epithelial cells in the urinary tract. Children with such infections owe their "sensitivity+" (10% of the population) to genetically determined large number o receptors binding E. coli strains. Incidence and clinical course of the urinary tract infections have been analysed in the group of 184 children. Moreover, sequelae of the urinary tract infections with E. coli have been analysed in dependence on E. coli strain characteristics, i.e. presence or absence of adherent fimbriae from cases of cystitis and significant asymptomatic bacteriuria. Considering pathogenesis of the urinary tract infections as the result of interactions between bacteria and host, antigenic properties of adherent fimbriae might be used for preparation of a vaccine preventing such infections.  相似文献   

3.
The adherence of uropathogenic Escherichia coli to the urothelial surface, a critical first step in the pathogenesis of urinary tract infection (UTI), is controlled by three key elements: E. coli adhesins, host receptors, and host defense mechanisms. Although much has been learned about E. coli adhesins and their urothelial receptors, little is known about the role of host defense in the adherence process. Here we show that Tamm-Horsfall protein (THP) is the principal urinary protein that binds specifically to type 1 fimbriated E. coli, the main cause of UTI. The binding was highly specific and saturable and could be inhibited by d-mannose and abolished by endoglycosidase H treatment of THP, suggesting that the binding is mediated by the high-mannose moieties of THP. It is species-conserved, occurring in both human and mouse THPs. In addition, the binding to THP was much greater with an E. coli strain bearing a phenotypic variant of the type 1 fimbrial FimH adhesin characteristic of those prevalent in UTI isolates compared with the one prevalent in isolates from the large intestine of healthy individuals. Finally, a physiological concentration of THP completely abolished the binding of type 1 fimbriated E. coli to uroplakins Ia and Ib, two putative urothelial receptors for type 1 fimbriae. These results establish, on a functional level, that THP contains conserved high-mannose moieties capable of specific interaction with type 1 fimbriae and strongly suggest that this major urinary glycoprotein is a key urinary anti-adherence factor serving to prevent type 1 fimbriated E. coli from binding to the urothelial receptors.  相似文献   

4.
FimH is a bacterial adhesin protein located at the tip of Escherichia coli fimbria that functions to adhere bacteria to host cells. Thus, FimH is a critical factor in bacterial infections such as urinary tract infections and is of interest in drug development. It is also involved in vaccine development and as a model for understanding shear-enhanced catch bond cell adhesion. To date, over 60 structures have been deposited in the Protein Data Bank showing interactions between FimH and mannose ligands, potential inhibitors, and other fimbrial proteins. In addition to providing insights about ligand recognition and fimbrial assembly, these structures provide insights into conformational changes in the two domains of FimH that are critical for its function. To gain further insights into these structural changes, we have superposed FimH's mannose binding lectin domain in all these structures and categorized the structures into five groups of lectin domain conformers using RMSD as a metric. Many structures also include the pilin domain, which anchors FimH to the fimbriae and regulates the conformation and function of the lectin domain. For these structures, we have also compared the relative orientations of the two domains. These structural analyses enhance our understanding of the conformational changes associated with FimH ligand binding and domain-domain interactions, including its catch bond behavior through allosteric action of force in bacterial adhesion.  相似文献   

5.
Escherichia coli strains causing urinary tract infections in dogs produce fimbriae composed of fimbrial subunits closely related to the F12 and F13 fimbriae of human uropathogenic strains [4]. The adhesins carried by the fimbriae of human and canine isolates differ, however, as concluded from a different hemagglutination pattern and from the fact that the dog strains do not agglutinate latex beads coated with P-fimbriae receptor. This possible difference in adhesive specificity was confirmed by experiments in which the adhesion of human and dog isolates to dog kidney epithelial cells (MDCK cells) and human bladder epithelial cells (T24 cells) was compared. Dog uropathogenic strains, in contrast to human uropathogenicE. coli strains, adhere to MDCK cells but hardly to T24 cells. Adhesion to MDCK cells correlates with the presence of F12 or F13 fimbriae on the dog strains. These results suggest that homologous fimbrial subunits can carry different adhesin molecules and that these adhesin molecules can be responsible for species-specific adherence. On the contrary, adhesion of a number of dog uropathogenicProteus mirabilis strains to MDCK and T24 cells was not species specific; it depended on the mere presence of fimbriae.  相似文献   

6.
Since Escherichia coli isolated from compromised patients with symptomatic urinary tract infections (UTIs) express fewer virulence factors than those isolated from healthy controls, the question arises whether this is also the case for diabetic patients with asymptomatic bacteriuria (ASB). Polymerase chain reaction (PCR) assays were conducted on 111E. coli strains, isolated from the urine of diabetic women with ASB, using primers for the major subunit A and the G-adhesin (I, II, and III) of P fimbriae, type 1 fimbriae, S fimbriae, afimbrial adhesin, cytotoxic necrotizing factor (CNF), and aerobactin. Phenotypically, hemolysis, mannose-sensitive hemagglutination, mannose-resistant hemagglutination and O:K:H-serotypes were determined. Furthermore, we investigated the associations between virulence factors and patient characteristics (including deterioration of renal function). Type 1 fimbriae were the most prevalent virulence factor (86% by genotyping and 59% phenotypically). Except for a lower prevalence of known uropathogenic O-serotypes, we found the same number of virulence factors in our compromised patient group as listed in the literature in noncompromised patients with ASB. Certain virulence factors (type 1 and S fimbriae and CNF) of the causative E. colicorrelated with the risk of a decline in renal function. In conclusion, the number of virulence factors in E. coli isolated from the urine of diabetic women with ASB are comparable with the results found in other (noncompromised) patients with ASB. Furthermore, certain virulence factors of E. colimight contribute to a decline in renal function.  相似文献   

7.
The first step in the bacterial colonization and infection of uropathogenic Escherichia coli is adherence to uroepithelium. Over 80% of all urinary tract infections are caused by E. coli. Uropathogenic E. coli express several adherence factors including type 1 and P fimbriae, which mediate attachment to the uroepithelium through specific binding to different glycoconjugate receptors. We showed that P and type 1 fimbriae are not the sole adhesins on uropathogenic E. coli and sialic acid also mediates nonspecific bacterial adherence of uropathogenic E. coli and urinary bladder epithelium.  相似文献   

8.
Type 3 fimbriae are adhesive organelles found in enterobacterial pathogens. The fimbriae promote biofilm formation on biotic and abiotic surfaces; however, the exact identity of the receptor for the type 3 fimbriae adhesin, MrkD, remains elusive. We analyzed naturally occurring structural and functional variabilities of the MrkD adhesin from Klebsiella pneumoniae and Escherichia coli isolates of diverse origins. We identified a total of 33 allelic variants of mrkD among 90 K. pneumoniae isolates and 10 allelic variants among 608 E. coli isolates, encoding 11 and 9 protein variants, respectively. Based on the level of accumulated silent variability between the alleles, mrkD was acquired a relatively long time ago in K. pneumoniae but recently in E. coli. However, unlike K. pneumoniae, mrkD in E. coli is actively evolving under a strong positive selection by accumulation of mutations, often targeting the same positions in the protein. Several naturally occurring MrkD protein variants from E. coli were found to be significantly less adherent when tested in a mannan-binding assay and showed reduced biofilm-forming capacity. Functional examination of the MrkD adhesin in flow chamber experiments determined that it interacts with Saccharomyces cerevisiae cells in a shear-dependent manner, i.e., the binding is catch-bond-like and enhanced under increasing shear conditions. Homology modeling strongly suggested that MrkD has a two-domain structure, comprising a pilin domain anchoring the adhesin to the fimbrial shaft and a lectin domain containing the binding pocket; this is similar to structures found in other catch-bond-forming fimbrial adhesins in enterobacteria.  相似文献   

9.
The F17-G adhesin at the tip of flexible F17 fimbriae of enterotoxigenic Escherichia coli mediates binding to N-acetyl-beta-D-glucosamine-presenting receptors on the microvilli of the intestinal epithelium of ruminants. We report the 1.7 A resolution crystal structure of the lectin domain of F17-G, both free and in complex with N-acetylglucosamine. The monosaccharide is bound on the side of the ellipsoid-shaped protein in a conserved site around which all natural variations of F17-G are clustered. A model is proposed for the interaction between F17-fimbriated E. coli and microvilli with enhanced affinity compared with the binding constant we determined for F17-G binding to N-acetylglucosamine (0.85 mM-1). Unexpectedly, the F17-G structure reveals that the lectin domains of the F17-G, PapGII and FimH fimbrial adhesins all share the immunoglobulin-like fold of the structural components (pilins) of their fimbriae, despite lack of any sequence identity. Fold comparisons with pilin and chaperone structures of the chaperone/usher pathway highlight the central role of the C-terminal beta-strand G of the immunoglobulin-like fold and provides new insights into pilus assembly, function and adhesion.  相似文献   

10.
FimH is the type?1 fimbrial tip adhesin and invasin of Escherichia coli. Its ligands are the glycans on specific proteins enriched in membrane microdomains. FimH binding shows high-affinity recognition of paucimannosidic glycans, which are shortened high-mannose glycans such as oligomannose-3 and -5. FimH can recognize equally the (single) high-mannose glycan on uroplakin Ia, on the urinary defence protein uromodulin or Tamm-Horsfall glycoprotein and on the intestinal GP2 glycoprotein present in Peyer's patches. E. coli bacteria may attach to epithelial cells via hundreds of fimbriae in a multivalent fashion. This binding is considered to provoke conformational changes in the glycoprotein receptor that translate into signalling in the cytoplasm of the infected epithelial cell. Bladder cell invasion by the uropathogenic bacterium is the prelude to recurrent and persistent urinary tract infections in humans. Patients suffering from diabetes mellitus are more prone to contract urinary tract infections. In a study of women, despite longer treatments with a more potent antibiotic, these patients also have more often recurrences of urinary tract infections compared with women without diabetes. Type?1 fimbriae are the most important virulence factors used not only for adhesion of E. coli in the urinary tract, but also for the colonization by E. coli in patients with Crohn's disease or ulcerative colitis. It appears that the increased prevalence of urinary tract infections in diabetic women is not the result of a difference in the bacteria, but is due to changes in the uroepithelial cells leading to an increased adherence of E. coli expressing type?1 fimbriae. Hypothetically, these changes are in the glycosylation of the infected cells. The present article focuses on possible underlying mechanisms for glycosylation changes in the uroepithelial cell receptors for FimH. Like diabetes, bacterial adhesion induces apoptosis that may bring the endoplasmic reticulum membrane with immature mannosylated glycoproteins to the surface. Indicatively, clathrin-mediated vesicle trafficking of glucose transporters is disturbed in diabetics, which would interfere further with the biosynthesis and localization of complex N-linked glycans.  相似文献   

11.
Urinary tract infections (UTIs) affect millions of people each year. Escherichia coli is the most common organism associated with asymptomatic bacteriuria (ABU) in humans. Persons affected by ABU may carry a particular E. coli strain for extended periods of time without any symptoms. In contrast to uropathogenic E. coli (UPEC) that cause symptomatic UTI, very little is known about the mechanisms by which these strains colonize the urinary tract. Here, we have investigated the growth characteristics in human urine as well as adhesin repertoire of nine ABU strains; the ability of ABU strains to compete against the UPEC strain CFT073 was also studied. The different ABU strains displayed a wide variety of the measured characteristics. Half of the ABU strains displayed functional type 1 fimbriae while only one expressed functional P fimbriae. A good correlation between the growth rate of a particular strain and the survival of the strain in competition against CFT073 was observed. Our results support the notion that for strains with reduced capacity to express fimbriae, the ability to grow fast in human urine becomes crucial for colonization of the urinary tract.  相似文献   

12.
Escherichia coli is the common causative agent of urinary tract infections. Sixty-one strains ofE. coli isolated from children with urinary tract infections were tested by colony hybridization for the presence of genes determining P and S fimbriae and hemolysin. Of these strains, 46 possess a gene for hemolysin, 44 for P fimbriae and 28 for S fimbriae. Only 30 strains formed lytic zones around the colonies on plates with sheep erythrocytes. The results indicated that simultaneous occurrence of genes in urinaryE. coli was highest for P fimbriae and hemolysin and lower for other combinations of the tested genes.  相似文献   

13.
Binding of P fimbriae of uropathogenic Escherichia coli to purified human fibronectin and human placental type IV collagen was studied. In an enzyme immunoassay, purified P fimbriae bound strongly to immobilized intact fibronectin and to the aminoterminal 30-kDa fragment and the 120-140-kDa carboxyterminal fragments of fibronectin. Binding to the gelatin-binding 40-kDa fragment of fibronectin was considerably weaker. No binding to immobilized type IV collagen was seen. The interaction between P fimbriae and immobilized fibronectin was not inhibited by alpha-D-Gal-(1-4)-beta-D-Gal-1-O-Me, a receptor analog of P fimbriae. Moreover, a mutated P fimbria lacking the lectin activity behaved similarly in the adherence assays. Recombinant strains expressing the corresponding cloned fimbriae genes bound to immobilized fibronectin, but no binding to soluble 125I-labelled fibronectin was found. The results suggest that P fimbriae interact with immobilized fibronectin and that the binding mechanism does not involve the lectin activity of the fimbriae.  相似文献   

14.
Immobilization of plasminogen via its lysine-binding sites is regarded as a prerequisite for its activation and function in fibrinolysis and pericellular proteolysis. In the present study, the interaction of plasminogen with fimbriae found on Escherichia coli strains causing invasive human infections was studied. Plasminogen displayed concentration-dependent and saturable binding to immobilized type 1 fimbriae and, several fold lower binding to P and S fimbriae. The binding to fimbriae was effectively inhibited by -aminocaproic acid indicating that it was mediated by the lysine-binding sites of plasminogen. Binding studies with mutated fimbriae and inhibition tests indicated that the interaction was not dependent on the lectin subunit of the fimbriae. These results indicate the existence of a novel type of host-microbe interaction which may be important in the invasion by bacteria of host tissues.  相似文献   

15.
Post-weaning diarrhea and edema disease caused by F18 fimbriated E. coli are important diseases in newly weaned piglets and lead to severe production losses in farming industry. Protective treatments against these infections have thus far limited efficacy. In this study we generated nanobodies directed against the lectin domain of the F18 fimbrial adhesin FedF and showed in an in vitro adherence assay that four unique nanobodies inhibit the attachment of F18 fimbriated E. coli bacteria to piglet enterocytes. Crystallization of the FedF lectin domain with the most potent inhibitory nanobodies revealed their mechanism of action. These either competed with the binding of the blood group antigen receptor on the FedF surface or induced a conformational change in which the CDR3 region of the nanobody displaces the D″-E loop adjacent to the binding site. This D″-E loop was previously shown to be required for the interaction between F18 fimbriated bacteria and blood group antigen receptors in a membrane context. This work demonstrates the feasibility of inhibiting the attachment of fimbriated pathogens by employing nanobodies directed against the adhesin domain.  相似文献   

16.
The first step in the colonization of the human urinary tract by pathogenic Escherichia coli is the mannose-sensitive binding of FimH, the adhesin present at the tip of type 1 pili, to the bladder epithelium. We elucidated crystallographically the interactions of FimH with D-mannose. The unique site binding pocket occupied by D-mannose was probed using site-directed mutagenesis. All but one of the mutants examined had greatly diminished mannose-binding activity and had also lost the ability to bind human bladder cells. The binding activity of the mono-saccharide D-mannose was delineated from this of mannotriose (Man(alpha 1-3)[Man(alpha 1-6)]Man) by generating mutants that abolished D-mannose binding but retained mannotriose binding activity. Our structure/function analysis demonstrated that the binding of the monosaccharide alpha-D-mannose is the primary bladder cell receptor for uropathogenic E. coli and that this event requires a highly conserved FimH binding pocket. The residues in the FimH mannose-binding pocket were sequenced and found to be invariant in over 200 uropathogenic strains of E. coli. Only enterohaemorrhagic E. coli (EHEC) possess a sequence variation within the mannose-binding pocket of FimH, suggesting a naturally occurring mechanism of attenuation in EHEC bacteria that would prevent them from being targeted to the urinary tract.  相似文献   

17.
Type 1 fimbriae have been implicated as virulence factors in animal models of urinary tract infection (UTI), but the function in human disease remains unclear. This study used a human challenge model to examine if type 1 fimbriae trigger inflammation in the urinary tract. The asymptomatic bacteriuria strain Escherichia coli 83972, which fails to express type 1 fimbriae, due to a 4.25 kb fimB-fimD deletion, was reconstituted with a functional fim gene cluster and fimbrial expression was monitored through a gfp reporter. Each patient was inoculated with the fim+ or fim- variants on separate occasions, and the host response to type 1 fimbriae was quantified by intraindividual comparisons of the responses to the fim+ or fim- isogens, using cytokines and neutrophils as end-points. Type 1 fimbriae did not promote inflammation and adherence was poor, as examined on exfoliated cells in urine. This was unexpected, as type 1 fimbriae enhanced the inflammatory response to the same strain in the murine urinary tract and as P fimbrial expression by E. coli 83972 enhances adherence and inflammation in challenged patients. We conclude that type 1 fimbriae do not contribute to the mucosal inflammatory response in the human urinary tract.  相似文献   

18.
Extra-intestinal pathogenic Escherichia coli (ExPEC) belong to a critical priority group of antibiotic resistant pathogens. ExPEC establish gut reservoirs that seed infection of the urinary tract and bloodstream, but the mechanisms of gut colonisation remain to be properly understood. Ucl fimbriae are attachment organelles that facilitate ExPEC adherence. Here, we investigated cellular receptors for Ucl fimbriae and Ucl expression to define molecular mechanisms of Ucl-mediated ExPEC colonisation of the gut. We demonstrate differential expression of Ucl fimbriae in ExPEC sequence types associated with disseminated infection. Genome editing of strains from two common sequence types, F11 (ST127) and UTI89 (ST95), identified a single nucleotide polymorphism in the ucl promoter that changes fimbriae expression via activation by the global stress-response regulator OxyR, leading to altered gut colonisation. Structure-function analysis of the Ucl fimbriae tip-adhesin (UclD) identified high-affinity glycan receptor targets, with highest affinity for sialyllacto-N-fucopentose VI, a structure likely to be expressed on the gut epithelium. Comparison of the UclD adhesin to the homologous UcaD tip-adhesin from Proteus mirabilis revealed that although they possess a similar tertiary structure, apart from lacto-N-fucopentose VI that bound to both adhesins at low-micromolar affinity, they recognize different fucose- and glucose-containing oligosaccharides. Competitive surface plasmon resonance analysis together with co-structural investigation of UcaD in complex with monosaccharides revealed a broad-specificity glycan binding pocket shared between UcaD and UclD that could accommodate these interactions. Overall, our study describes a mechanism of adaptation that augments establishment of an ExPEC gut reservoir to seed disseminated infections, providing a pathway for the development of targeted anti-adhesion therapeutics.  相似文献   

19.
Proteus mirabilis is a common causative agent of cystitis and pyelonephritis in patients with urinary catheters or structural abnormalities of the urinary tract. Several types of fimbriae, which are potentially involved in adhesion to the uroepithelium, can be expressed simultaneously by P. mirabilis: mannose-resistant/Proteus-like (MR/P) fimbriae, P. mirabilis fimbriae (PMF), uroepithelial cell adhesin (UCA), renamed by some authors nonagglutinating fimbriae (NAF), and ambient-temperature fimbriae (ATF). Proteus mirabilis is a common cause of biofilm formation on catheter material and MR/P fimbriae are involved in this process. The considerable serious pathology caused by P. mirabilis in the urinary tract warrants the development of a prophylactic vaccine, and several studies have pointed to MR/P fimbriae as a potential target for immunization. This article reviews P. mirabilis fimbriae with regard to their participation in uropathogenesis, biofilm formation and as vaccine targets.  相似文献   

20.
Cells of the gram-negative bacterium Escherichia coli are able to attach to various host cells by means of a mannose-specific adhesin associated with type 1 fimbriae. Here we show that fragmentation of type 1 fimbriae by freezing and thawing results in increased mannose-binding activity as demonstrated by increased hemagglutination, increased stimulation of human lymphocyte proliferation, and increased binding of the mannose-containing enzyme horseradish peroxidase. Increased activity in all three assays was mannose sensitive and was not exhibited by FimH- mutant type 1 fimbriae lacking the adhesin. Scatchard analysis of the data from peroxidase binding assays showed that unfrozen and frozen fimbriae contain binding sites displaying two classes of affinity. Frozen and thawed fimbriae expressed an increase in the number of high-affinity binding sites. These results show that fragmentation of the fimbrial structure exposes cryptic mannose-binding activity associated with type 1 fimbriae, presumably that of internally located adhesin molecules. Our data support earlier observations that adhesin moieties of type 1 fimbriae are located both at the tips and at intervals along the length of the fimbriae. In addition, our data suggest that only the adhesin moieties that are located at the fimbrial tips are functional in binding mannose. Adhesins located along the length of the fimbriae have their mannose-binding activity buried within the fimbrial structure and hence are not functional. We propose an updated model for the structure of type 1 fimbriae that is in agreement with the above observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号