首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Marine sediments of coastal margins are important sites of carbon sequestration and nitrogen cycling. To determine the metabolic potential and structure of marine sediment microbial communities, two cores were collected each from the two stations (GMT at a depth of 200 m and GMS at 800 m) in the Gulf of Mexico, and six subsamples representing different depths were analyzed from each of these two cores using functional gene arrays containing approximately 2,000 probes targeting genes involved in carbon fixation; organic carbon degradation; contaminant degradation; metal resistance; and nitrogen, sulfur, and phosphorous cycling. The geochemistry was highly variable for the sediments based on both site and depth. A total of 930 (47.1%) probes belonging to various functional gene categories showed significant hybridization with at least 1 of the 12 samples. The overall functional gene diversity of the samples from shallow depths was in general lower than those from deep depths at both stations. Also high microbial heterogeneity existed in these marine sediments. In general, the microbial community structure was more similar when the samples were spatially closer. The number of unique genes at GMT increased with depth, from 1.7% at 0.75 cm to 18.9% at 25 cm. The same trend occurred at GMS, from 1.2% at 0.25 cm to 15.2% at 16 cm. In addition, a broad diversity of geochemically important metabolic functional genes related to carbon degradation, nitrification, denitrification, nitrogen fixation, sulfur reduction, phosphorus utilization, contaminant degradation, and metal resistance were observed, implying that marine sediments could play important roles in biogeochemical cycling of carbon, nitrogen, phosphorus, sulfate, and various metals. Finally, the Mantel test revealed significant positive correlations between various specific functional genes and functional processes, and canonical correspondence analysis suggested that sediment depth, PO(4)(3-), NH(4)(+), Mn(II), porosity, and Si(OH)(4) might play major roles in shaping the microbial community structure in the marine sediments.  相似文献   

2.
3.
4.
The Japan Trench land slope at a depth of 6,400 m is the deepest cold-seep environment with Calyptogena communities. Sediment samples from inside and beside the Calyptogena communities were collected, and the microbial diversity in the sediment samples was studied by molecular phylogenetic techniques. From DNA extracted directly from the sediment samples, 16S rDNAs were amplified by the polymerase chain reaction method. The sequences of the amplified 16S rDNAs selected by restriction fragment length polymorphism analysis were determined and compared with sequences in DNA databases. The results showed that 33 different bacterial 16S rDNA sequences from the two samples analyzed fell into similar phylogenetic categories, the α-, γ-, δ-, and ɛ-subdivisions of Proteobacteria, Cytophaga, and gram-positive bacteria; some of the 16S rDNA sequences were common to both samples. δ- and ɛ-Proteobacteria-related sequences were abundant in both sediments. These sequences are mostly related to sulfate-reducing or sulfur-reducing bacteria and epibionts, respectively. Eight different archaeal 16S rDNA sequences were cloned from the sediments. The majority of the archaeal 16S rDNA sequences clustered in Crenarchaeota and showed high similarities to marine group I archaeal rDNA. A Methanococcoides burtonii–related sequence obtained from the sediment clustered in the Euryarchaeota indicating that M. burtonii–related strains in the area of Calyptogena communities may contribute to production of methane in this environment. From these results, we propose a possible model of sulfur circulation within the microbial community and that of Calyptogena clams in the cold-seep environment. Received June 15, 1998; accepted November 10, 1998.  相似文献   

5.
Viruses were found to be very abundant in the top layer of the sediments of Lac Gilbert, Québec. Viruses were extracted from the sediments using pyrophosphate buffer, and viruses from the diluted extracts were pelleted onto grids and enumerated using transmission electron microscopy. Viral abundance in the sediments ranged from 6.5 × 108 to 1.83 × 1010 ml–1, which is 10- to 1,000-fold greater than the number observed in the water column. This increase corresponds well with the 100- to 1,000-fold increase in bacterial abundance in the sediments. Viral abundance differed significantly among the surface sediment samples taken at different bottom depths and among samples taken at different depths of the water column. Viral abundance also varied significantly between the oxic and anoxic zones of the water column and the sediments. The virus-to-bacteria ratio varied greatly among the different sediment sites but not among depths in the water column. Viral abundance in the water column was related to bacterial abundance and chlorophyll concentration, whereas viruses in the sediments were most abundant in sediments with high organic matter content. Elevated viral abundance and their erratic distribution in the sediments suggest that viruses might play an important role in sediment microbial dynamics. Correspondence to: Roxane Maranger  相似文献   

6.
Abstract Two chronosequences of unsaturated, buried loess sediments, ranging in age from <10,000 years to >1 million years, were investigated to reconstruct patterns of microbial ecological succession that have occurred since sediment burial. The relative importance of microbial transport and survival to succession was inferred from sediment ages, porewater ages, patterns of abundance (measured by direct counts, counts of culturable cells, and total phospholipid fatty acids), activities (measured by radiotracer and enzyme assays), and community composition (measured by phospholipid fatty acid patterns and Biolog substrate usage). Core samples were collected at two sites 40 km apart in the Palouse region of eastern Washington State, near the towns of Washtucna and Winona. The Washtucna site was flooded multiple times during the Pleistocene by glacial outburst floods; the Winona site elevation is above flood stage. Sediments at the Washtucna site were collected from near surface to 14.9 m depth, where the sediment age was approximately 250 ka and the porewater age was 3700 years; sample intervals at the Winona site ranged from near surface to 38 m (sediment age: approximately 1 Ma; porewater age: 1200 years). Microbial abundance and activities declined with depth at both sites; however, even the deepest, oldest sediments showed evidence of viable microorganisms. Same-age sediments had equal quantities of microorganisms, but different community types. Differences in community makeup between the two sites can be attributed to differences in groundwater recharge and paleoflooding. Estimates of the microbial community age can be constrained by porewater and sediment ages. In the shallower sediments (<9 m at Washtucna, <12 m at Winona), the microbial communities are likely similar in age to the groundwater; thus, microbial succession has been influenced by recent transport of microorganisms from the surface. In the deeper sediments, the populations may be considerably older than the porewater ages, since microbial transport is severely restricted in unsaturated sediments. This is particularly true at the Winona site, which was never flooded.  相似文献   

7.
Like hydrothermal vents along oceanic ridges, cold seeps are patchy and isolated ecosystems along continental margins, extending from bathyal to abyssal depths. The Atlantic Equatorial Belt (AEB), from the Gulf of Mexico to the Gulf of Guinea, was one focus of the Census of Marine Life ChEss (Chemosynthetic Ecosystems) program to study biogeography of seep and vent fauna. We present a review and analysis of collections from five seep regions along the AEB: the Gulf of Mexico where extensive faunal sampling has been conducted from 400 to 3300m, the Barbados accretionary prism, the Blake ridge diapir, and in the Eastern Atlantic from the Congo and Gabon margins and the recently explored Nigeria margin. Of the 72 taxa identified at the species level, a total of 9 species or species complexes are identified as amphi-Atlantic. Similarity analyses based on both Bray Curtis and Hellinger distances among 9 faunal collections, and principal component analysis based on presence/absence of megafauna species at these sites, suggest that within the AEB seep megafauna community structure is influenced primarily by depth rather than by geographic distance. Depth segregation is observed between 1000 and 2000m, with the middle slope sites either grouped with those deeper than 2000m or with the shallower sites. The highest level of community similarity was found between the seeps of the Florida escarpment and Congo margin. In the western Atlantic, the highest degree of similarity is observed between the shallowest sites of the Barbados prism and of the Louisiana slope. The high number of amphi-atlantic cold-seep species that do not cluster according to biogeographic regions, and the importance of depth in structuring AEB cold-seep communities are the major conclusions of this study. The hydrothermal vent sites along the Mid Atlantic Ridge (MAR) did not appear as “stepping stones” for dispersal of the AEB seep fauna, however, the south MAR and off axis regions should be further explored to more fully test this hypothesis.  相似文献   

8.
Three types of Miocene claystones (amorphous, lamellar, and transitional) were aseptically sampled from depths of 30 m and 150 m below the soil surface. Respiration of these sediments was measured under conditions that prevented inoculation by other microorganisms not indigenous to the claystones in situ. Microbial respiration was higher in lamellar than amorphous claystones and was not affected by sampling depth. During cultivation, microbial biomass (as indicated by PLFA) significantly increased. Microbial biomass after cultivation was significantly higher in sediments from 30 m than from 150 m depth. Both microbial respiration and biomass increased after glucose addition.  相似文献   

9.
1. The hyporheic zone plays a key role in hydrological exchange and biogeochemical processes in streambed sediments. The clogging of sediments caused by the deposition of particles in the bed of streams and rivers can decrease sediment permeability and hence greatly affect hyporheic microbial processes. 2. The main objective of this study was to determine the influence of sediment clogging on hyporheic microbial processes in three French rivers (the Usses, Drôme and Isère). In each river, microbial abundance and activity were studied at three depths (10, 30 and 50 cm) in the sediment at one unclogged (high porosity) and one clogged site (low porosity). 3. The results showed that the sediment clogging had inconsistent effects on microbial processes in the three rivers. Increases (Usses) or decreases (Drôme and Isère) in both aerobic and anaerobic processes were detected at the clogged sites compared to unclogged sites. These results suggest that microbial changes because of the sediment clogging are mainly mediated by the residence time of water within the hyporheic sediments. 4. A single model predicting the effect of clogging on hyporheic microbial processes cannot be applied generally to all rivers because the degree of clogging creates heterogeneous effects on flow rates between surface and interstitial waters. As a consequence, the influence of heterogeneous clogging on surface water–hyporheic exchanges needs to be evaluated by water tracing and hydraulic modelling to determine the links between microbial processes and hydraulic heterogeneity induced by clogging in hyporheic sediments.  相似文献   

10.
Abstract

Microbial community structure reflects the surrounding natural environment and changes to that environment. Although the subsurface at 5–100?m depth is important for human activities and there are potential risks of environmental pollution in this region, there have been only a few reports of subsurface microbial community structures in terrestrial areas. We investigated the diversity and community compositions of Bacteria and Archaea in boring cores collected from various depths at three different sites in the southern Kanto Plain, Japan. The results of 16S rRNA gene amplicon sequencing using MiSeq showed that the microbial community composition varied with the geological unit. Proteobacteria (Alphaproteobacteria and Gammaproteobacteria) were dominant members within sediments accumulated during the Pleistocene in the Musashino Upland. In contrast, Acidobacteria and Chloroflexi characteristically appeared in the Holocene layers of the Arakawa Lowland. These data suggest that the subsurface microbial composition is controlled by the geological features of the sediments.  相似文献   

11.
Cold seep environments such as sediments above outcropping hydrate at Hydrate Ridge (Cascadia margin off Oregon) are characterized by methane venting, high sulfide fluxes caused by the anaerobic oxidation of methane, and the presence of chemosynthetic communities. Recent investigations showed that another characteristic feature of cold seeps is the occurrence of methanotrophic archaea, which can be identified by specific biomarker lipids and 16S rDNA analysis. This investigation deals with the diversity and distribution of sulfate-reducing bacteria, some of which are directly involved in the anaerobic oxidation of methane as syntrophic partners of the methanotrophic archaea. The composition and activity of the microbial communities at methane vented and nonvented sediments are compared by quantitative methods including total cell counts, fluorescence in situ hybridization (FISH), bacterial production, enzyme activity, and sulfate reduction rates. Bacteria involved in the degradation of particulate organic carbon (POC) are as active and diverse as at other productive margin sites of similar water depths. The availability of methane supports a two orders of magnitude higher microbial biomass (up to 9.6 2 10 10 cells cm m 3 ) and sulfate reduction rates (up to 8 w mol cm m 3 d m 1 ) in hydrate-bearing sediments, as well as a high bacterial diversity, especially in the group of i -proteobacteria including members of the branches Desulfosarcina/Desulfococcus , Desulforhopalus , Desulfobulbus , and Desulfocapsa . Most of the diversity of sulfate-reducing bacteria in hydrate-bearing sediments comprises seep-endemic clades, which share only low similarities with previously cultured bacteria.  相似文献   

12.
The bacterial community composition of marine surface sediments originating from various regions of the Eastern Mediterranean Sea (12 sampling sites) was compared by parallel use of three fingerprinting methods: analysis of 16S rRNA gene fragment heterogeneity by denaturing gradient electrophoresis (DGGE), terminal restriction fragment length polymorphism (T-RFLP), and analysis of phospholipid-linked fatty acid composition (PLFA). Sampling sites were located at variable depths (30–2860 m; water column depth above the sediments) and the sediments differed greatly also in their degree of petroleum contamination (0.4–18 μg g−1), organic carbon (0.38–1.5%), and chlorophyll a content (0.01–7.7 μg g−1). Despite a high degree of correlation between the three different community fingerprint methods, some major differences were observed. DGGE banding patterns showed a significant separation of sediment communities from the northern, more productive waters of the Thermaikos Gulf and the oligotrophic waters of the Cretan, S. Ionian, and Levantine Sea. T-RFLP analysis clearly separated the communities of deep sediments (>1494 m depth) from their shallow (<617 m) counterparts. PLFA analysis grouped a shallow station from the productive waters of the north with the deep oligotrophic sediments from the Ionian and Levantine Sea, with low concentrations of PLFAs, and hence low microbial biomass, as the common denominator. The degree of petroleum contamination was not significantly correlated to the apparent composition of the microbial communities for any of the three methods, whereas organic carbon content and sediment chlorophyll a were important in this regard.  相似文献   

13.
Sienkiewicz  Nathan  Bier  Raven L.  Wang  Jing  Zgleszewski  Laura  Lutgen  Alyssa  Jiang  Grant  Mattern  Katie  Inamdar  Shreeram  Kan  Jinjun 《Biogeochemistry》2020,148(3):271-290

Streambank legacy sediments may be important sources of sediment and nutrients from Mid-Atlantic watersheds. However, little is known about the nutrient processing roles of microorganisms that inhabit legacy sediments, let alone their composition, diversity, and distributions. In this study, we sampled 15 streambanks at multiple depths throughout four watersheds in the Mid-Atlantic Region of the USA. High throughput sequencing of 16S ribosomal RNA genes indicated that streambank microbial community composition varied within site depth and across contemporary land uses. Collectively, the most abundant microbial taxa in legacy sediments included Acidobacteria (25–45%), Proteobacteria (15–40%), Nitrospirae (2–10%), Chloroflexi (1–5%), and Actinobacteria (1–10%). Bacterial community composition was distinct between agriculture and urban sites as well as suburban and urban sites. There was significant variation in community composition between the top (1–25%), upper-middle (26–50%), and bottom layers (76–100%) of sediments, while the relative abundances differed between layers for only Acidobacteria and Proteobacteria. Several streambank chemistry variables (metals, %TC, and %TN) had weak positive correlations with community composition. Compared to ammonia-oxidizing bacteria, nitrifying archaea were more predominant. This study provides the first insights into detailed microbial composition of legacy sediments and identifies environmental drivers for community structure and nitrogen processing. Future studies should consider exploring the role of this unique microbial environment for nutrient processing and leaching from legacy sediments and its implications for watershed water quality.

  相似文献   

14.
Dissimilatory nitrate reduction (denitrification) in subsurface sediments by indigenous microflora was investigated in samples obtained over a range of depths from 0 to 289 m. Denitrifying activity in sediment samples retrieved from similar stratigraphic horizons at four different sites was determined by measuring the accumulation of N2O using the acetylene blockage technique. Denitrification was detected in unamended samples which received only prereduced deionized water at almost all depths in all sediments sampled. The surface sediments showed the highest denitrification activity. In the deeper sediments, denitrifying activity was much higher in saturated sandy samples and lower or absent in drier clay samples. Addition of nitrate enhanced denitrification activity in all samples from below the water table down to the maximum depth sampled (289 m), while addition of a carbon (succinate) source in general had no stimulatory effect. These results show that denitrifying microorganisms were present in all of the deep subsurface sediments tested in this study. Furthermore, these results suggest that adequate supplies of metabolizable organic carbon were available to support denitrifying activity. However, denitrification may be limited by inadequate supplies of nitrate in the sediments.  相似文献   

15.
Microbial communities in cores obtained from methane hydrate-bearing deep marine sediments (down to more than 300 m below the seafloor) in the forearc basin of the Nankai Trough near Japan were characterized with cultivation-dependent and -independent techniques. Acridine orange direct count data indicated that cell numbers generally decreased with sediment depth. Lipid biomarker analyses indicated the presence of viable biomass at concentrations greater than previously reported for terrestrial subsurface environments at similar depths. Archaeal lipids were more abundant than bacterial lipids. Methane was produced from both acetate and hydrogen in enrichments inoculated with sediment from all depths evaluated, at both 10 and 35 degrees C. Characterization of 16S rRNA genes amplified from the sediments indicated that archaeal clones could be discretely grouped within the Euryarchaeota and Crenarchaeota domains. The bacterial clones exhibited greater overall diversity than the archaeal clones, with sequences related to the Bacteroidetes, Planctomycetes, Actinobacteria, Proteobacteria, and green nonsulfur groups. The majority of the bacterial clones were either members of a novel lineage or most closely related to uncultured clones. The results of these analyses suggest that the microbial community in this environment is distinct from those in previously characterized methane hydrate-bearing sediments.  相似文献   

16.
Due to sampling difficulties, little is known about microbial communities associated with sinking marine snow in the twilight zone. A drifting sediment trap was equipped with a viscous cryogel and deployed to collect intact marine snow from depths of 100 and 400 m off Cape Blanc (Mauritania). Marine snow aggregates were fixed and washed in situ to prevent changes in microbial community composition and to enable subsequent analysis using catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). The attached microbial communities collected at 100 m were similar to the free-living community at the depth of the fluorescence maximum (20 m) but different from those at other depths (150, 400, 550, and 700 m). Therefore, the attached microbial community seemed to be “inherited” from that at the fluorescence maximum. The attached microbial community structure at 400 m differed from that of the attached community at 100 m and from that of any free-living community at the tested depths, except that collected near the sediment at 700 m. The differences between the particle-associated communities at 400 m and 100 m appeared to be due to internal changes in the attached microbial community rather than de novo colonization, detachment, or grazing during the sinking of marine snow. The new sampling method presented here will facilitate future investigations into the mechanisms that shape the bacterial community within sinking marine snow, leading to better understanding of the mechanisms which regulate biogeochemical cycling of settling organic matter.  相似文献   

17.
Bacterial diversity in deep-sea sediments from different depths   总被引:38,自引:0,他引:38  
Seven sediment samples have been examined, taken from different depths of the deep-sea in the range of 1159m to 6482m. A total of 75 different 16S rDNA sequences (149 clones) analyzed clustered into the Proteobacteria, Gram-positive bacteria, Cytophaga, Planctomyces, and Actinomycetes and many sequences were from microorganisms that showed no phylogenetic affiliation with known bacteria. Clones identical to 16S rDNA sequences of members of the genus Pseudomonas were observed in all of the sediments examined. The second group of common sequences cloned from six sediment samples was related to the 16S rDNA sequence of a chemoautotrophic bacterium, the Solemya velum symbiont. Five 16S rDNA sequences from three sediments were related to those of the Alvinella pompejana epibiont which is a member of the -Proteobacteria. Only one sequence was obtained that was closely related to the 16S rDNA of the barophilic bacterium, Shewanella benthica, which might be a minor population in the deeper sediments. -Proteobacteria-related sequences were cloned from sediments obtained from sites near man-made garbage deposits and a Calyptogena community. These environments obviously would be richer in nutrients than other sites, and might be expected to show more types of bacteria than other deep-sea sediments. A large number of cloned sequences in this study showed very low identity to known sequences. These sequences may represent communities of as-yet-uncultivated microorganisms in the sediments.  相似文献   

18.
19.
Mahoney Lake, British Columbia, Canada, is a stratified, 15-m deep saline lake with a euxinic (anoxic, sulfidic) hypolimnion. A dense plate of phototrophic purple sulfur bacteria is found at the chemocline, but to date the rest of the Mahoney Lake microbial ecosystem has been underexamined. In particular, the microbial community that resides in the aphotic hypolimnion and/or in the lake sediments is unknown, and it is unclear whether the sulfate reducers that supply sulfide for phototrophy live only within, or also below, the plate. Here we profiled distributions of 16S rRNA genes using gene clone libraries and PhyloChip microarrays. Both approaches suggest that microbial diversity is greatest in the hypolimnion (8 m) and sediments. Diversity is lowest in the photosynthetic plate (7 m). Shallower depths (5 m, 7 m) are rich in Actinobacteria, Alphaproteobacteria, and Gammaproteobacteria, while deeper depths (8 m, sediments) are rich in Crenarchaeota, Natronoanaerobium, and Verrucomicrobia. The heterogeneous distribution of Deltaproteobacteria and Epsilonproteobacteria between 7 and 8 m is consistent with metabolisms involving sulfur intermediates in the chemocline, but complete sulfate reduction in the hypolimnion. Overall, the results are consistent with the presence of distinct microbial niches and suggest zonation of sulfur cycle processes in this stratified system.  相似文献   

20.
From boxcore and dredge samples taken along a depth transect across the Faroe Shetland Channel (FSC) in 1997 and 1999, molluscs were sorted and identified. On the basis of their numerical abundance, the stations could be clustered into three groups, reflecting the depth extension of the main water masses in the FSC. Between 400 and 500 m depth, both the number of taxa per sample and the number of specimens, were highest. Bivalves were mainly caught by the boxcorer and the dredge was best suited to collect the epifaunal gastropods. According to the literature, at mid-slope depths, resuspension is increased by the action of internal waves, which leads to the development of intermediate nepheloid layers. This increased concentration of suspended matter may serve as a food source of low quality. Likewise the low amounts of suspended matter with a relatively high quality of particulate organic matter, such as from ∼400 and ∼700 m may act similarly and explain the relative high abundance of filter feeders at these depths. However, in the various multivariate analyses we could not distinguish the fauna from these depths from that collected from other sites. We observed, however, a pattern in the depth distribution of feeding guilds across the slope of the FSC. Deposit feeders demonstrated a trend of decreasing numbers with depth. Filter-feeding taxa were found to have peaks at depths of approximately 350 m, between 500 and 600 m and between 700 and 800 m. This observation supports the idea that the fauna at the deep sites reflects the locally high cross-slope currents and the subsequent increased amounts or availability of food with a better quality, which seems to be related to resuspension events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号