首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
PTH is a potent bone anabolic agent in vivo but anabolic effects on osteoblast differentiation in vitro are difficult to demonstrate. This study examined the role of cyclooxygenase (COX)-2 and prostaglandin (PG) production in the effects of PTH on osteoblast differentiation in vitro using marrow stromal cell (MSC) and calvarial osteoblast (COB) cultures from COX-2 knockout (KO) and wild type (WT) mice. Cells were treated with PTH (10 nM) or vehicle throughout culture. Alkaline phosphatase (ALP) and osteocalcin (OCN) mRNA levels were measured at days 14 and 21, respectively, and mineralization at day 21. cAMP concentrations were measured in the presence of a phosphodiesterase inhibitor. PTH did not stimulate differentiation in cultures from WT mice but significantly increased ALP and OCN mRNA expression 6- to 7-fold in KO MSC cultures and 2- to 4-fold in KO COB cultures. PTH also increased mineralization in both KO MSC and COB cultures. Effects in KO cells were mimicked in WT MSC cultures treated with NS-398, an inhibitor of COX-2 activity. PTH increased cAMP concentrations similarly in WT and KO COBs. Differential gene responses to PTH in COX-2 KO COBs relative to WT COBs included greater fold-increases in the cAMP-mediated early response genes, c-fos and Nr4a2; increased IGF-1 mRNA expression; and decreased mRNA expression of MAP kinase phosphatase-1. PTH inhibited SOST mRNA expression 91% in COX-2 KO MSC cultures compared to 67% in WT cultures. We conclude that endogenous PGs inhibit the anabolic responses to PTH in vitro, possibly by desensitizing cAMP pathways.  相似文献   

3.
Age-related osteoporosis is accompanied by an increase in marrow adiposity and a reduction in serum insulin-like growth factor-1 (IGF-1) and the binding proteins that stabilize IGF-1. To determine the relationship between these proteins and bone marrow adiposity, we evaluated the adipogenic potential of marrow-derived mesenchymal stromal cells (MSCs) from mice with decreased serum IGF-1 due to knockdown of IGF-1 production by the liver or knock-out of the binding proteins. We employed 10–16-week-old, liver-specific IGF-1-deficient, IGFBP-3 knock-out (BP3KO) and acid-labile subunit knock-out (ALSKO) mice. We found that expression of the late adipocyte differentiation marker peroxisome proliferator-activated receptor γ was increased in marrow isolated from ALSKO mice. When induced with adipogenic media, MSC cultures from ALSKO mice revealed a significantly greater number of differentiated adipocytes compared with controls. MSCs from ALSKO mice also exhibited decreased alkaline-phosphatase positive colony size in cultures that were stimulated with osteoblast differentiation media. These osteoblast-like cells from ALSKO mice failed to induce osteoclastogenesis of control cells in co-culture assays, indicating that impairment of IGF-1 complex formation with ALS in bone marrow alters cell fate, leading to increased adipogenesis.  相似文献   

4.
5.
Fibroblast growth factor (FGF)-2 and parathyroid hormone (PTH) are potent inducers of osteoclast (OCL) formation, and PTH increases FGF-2 mRNA and protein expression in osteoblasts. To elucidate the role of endogenous FGF-2 in PTH responses, we examined PTH-induced OCL formation in bone marrow cultures from wild type and mice with a disruption of the Fgf2 gene. FGF-2-induced OCL formation was similar in marrow culture from both genotypes. In contrast, PTH-stimulated OCL formation in bone marrow cultures or co-cultures of osteoblast-spleen cells from Fgf2-/mice was significantly impaired. PTH increased RANKL mRNA expression in osteoblasts cultures from both genotypes. After 6 days of treatment, osteoprotegerin protein in cell supernatants was 40-fold higher in vehicle-treated and 30-fold higher in PTH-treated co-cultures of osteoblast and spleen cells from Fgf2-/mice compared with Fgf2+/+ mice. However, a neutralizing antibody to osteoprotegerin did not rescue reduced OCL formation in response to PTH. Injection of PTH caused hypercalcemia in Fgf2+/+ but not Fgf2-/mice. We conclude that PTH stimulates OCL formation and bone resorption in mice in part by endogenous FGF-2 synthesis by osteoblasts. Because RANKL- and interleukin-11-induced OCL formation was also reduced in bone marrow cultures from Fgf2-/mice, we further conclude that endogenous FGF-2 is necessary for maximal OCL formation by multiple bone resorbing factors.  相似文献   

6.
7.
FGF-2对人骨髓间充质干细胞增殖和向成骨细胞分化的影响   总被引:4,自引:0,他引:4  
探讨体外培养条件下,成纤维细胞生长因子-2(FGF-2)和地塞米松(Dex)对第7代人骨髓间充质干细胞(MSCs)增殖和向成骨细胞分化的作用以及两者联合使用的效应。MSCs经含FGF-2或/和Dex的培养液作用后,于不同时间采用MTT法测定细胞增殖情况;对硝基苯磷酸(pNPP)法测定碱性磷酸酶(ALP)活性;ELISA法测定骨钙蛋白(OC)含量;茜素红S染色法对沉积的钙盐进行染色。发现:(1)FGF-2组细胞的生长速度为对照组的1.31倍,Dex/FGF-2组细胞的生长速度为FGF-2组的1.12倍。(2)Dex组的ALP活性、OC含量和细胞外基质钙盐沉积分别为对照组的17.0倍、2.12倍和10.56倍,并能形成成熟的羟基磷灰石(HA)结晶和骨结节;FGF-2组的ALP活性比对照组降低了76.7%,虽然OC含量、钙盐沉积增加,但不能形成成熟的HA结晶和骨结节;FGF-2对Dex诱导的ALP活性增加和HA结晶形成有拮抗作用。由此证明:(1)FGF-2可促进MSCs的增殖,Dex对MSCs的增殖无明显作用;Dex能增强FGF-2对MSCs的促增殖效应。(2)Dex可使MSCs分化为成熟的成骨细胞,是一个有效的成骨细胞分化诱导剂;FGF-2可使MSCs分化为未成熟的成骨细胞;FGF-2拮抗Dex诱导MSCs分化为成熟的成骨细胞。  相似文献   

8.
Heat Shock Proteins (HSP) are molecular chaperones activated upon cellular stress/stimuli. HSP gene expression is regulated by Heat Shock Factors (HSF). We have recently demonstrated a functional role for heat shock factor-2 (HSF-2) in fibroblast growth factor-2 (FGF-2)-induced RANK ligand (RANKL), a critical osteoclastogenic factor expression on stromal/preosteoblast cells. In the present study, we show that FGF-2 treatment did not induce RANKL expression in HSF-2-/-stromal/preosteoblast cells. Interestingly, HSF-2 deficiency resulted in rapid induction of alkaline phosphatase (ALP) activity and osteocalcin mRNA expression in these cells. Furthermore, FGF-2 did not induce osteoclast formation in co-culture of normal mouse spleen cells and HSF-2-/-stromal/preosteoblast cells. Electron microscopy analysis demonstrated that osteoclasts from HSF-2-/-mice have poorly developed ruffled borders. These data further confirm that HSF-2 plays an important role in FGF-2-induced RANKL expression in stromal/preosteoblast cells. HSF-2 deficiency has pleotropic effects on gene expression during osteoblast differentiation and osteoclastogenesis in the bone microenvironment. Novel therapeutic agents that modulate HSF-2 activation may have therapeutic utility against increased levels of FGF-2 and bone destruction associated with pathologic conditions.  相似文献   

9.
10.
Over-expression of human FGF-2 cDNA linked to the phosphoglycerate kinase promoter in transgenic (TgFGF2) mice resulted in a dwarf mouse with premature closure of the growth plate and shortening of bone length. This study was designed to further characterize bone structure and remodeling in these mice. Bones of 1-6 month-old wild (NTg) and TgFGF2 mice were studied. FGF-2 protein levels were higher in bones of TgFGF2 mice. Bone mineral density was significantly decreased as early as 1 month in femurs from TgFGF2 mice compared with NTg mice. Micro-CT of trabecular bone of the distal femurs from 6-month-old TgFGF2 mice revealed significant reduction in trabecular bone volume, trabecular number (Tb.N), and increased trabecular separation (Tb.Sp). Osteoblast surface/bone surface, double-labeled surface, mineral apposition rate, and bone formation rates were all significantly reduced in TgFGF2 mice. There were fewer TRAP positive osteoclasts in calvaria from TgFGF2 mice. Quantitative histomorphometry showed that total bone area was similar in both genotypes, however percent osteoclast surface, and osteoclast number/bone surface were significantly reduced in TgFGF2 mice. Increased replication of TgFGF2 calvarial osteoblasts was observed and primary cultures of bone marrow stromal cells from TgFGF2 expressed markers of mature osteoblasts but formed fewer mineralized nodules. The data presented indicate that non-targeted over-expression of FGF-2 protein resulted in decreased endochondral and intramembranous bone formation. These results are consistent with FGF-2 functioning as a negative regulator of postnatal bone growth and remodeling in this animal model.  相似文献   

11.
12.
13.
Purmorphamine is a novel small molecule with osteogenesis-inducing activity in multipotent mesenchymal progenitor cells, but there has been no evaluation of its effect on human cells to date. The aim of this study was to investigate the induction of osteogenic activity by purmorphamine in human osteoblasts differentiated from bone marrow mesenchymal cells. Cells were cultured in 24-well plates at a density of 2x10(4)/well in medium containing 1, 2 or 3 microM purmorphamine, or vehicle. At 7, 14 and 21 days, cell proliferation, viability, and alkaline phosphatase (ALP) activity were evaluated. Bone-like nodule formation was evaluated at 21 days. Purmorphamine did not affect cell proliferation or viability, but increased ALP activity and bone-like nodule formation. These results indicate that events related to osteoblast differentiation, including increased ALP activity and bone-like nodule formation, are enhanced by purmorphamine.  相似文献   

14.
15.
Hyperprolactinemia is one of the risk factor of decrease in bone mass which has been believed to be mediated by hypogonadism. However, the presence of prolactin receptor in human osteosarcoma cell line and primary bone cell culture from mouse calvariae supported the hypothesis of a direct prolactin (PRL) action on bone cells. Therefore, the aim of this study was to investigate the role of PRL and its signal transduction pathway in the regulation of bone metabolism via osteoblast differentiation. Human pre‐osteoblasts (SV‐HFO) that differentiate in a 3‐week period from proliferating pre‐osteoblasts (days 2–7) to extracellular matrix producing cells (days 7–14) which is eventually mineralized (days 14–21) were used. Concentration of PRL mimicked a lactating period (100 ng/ml) was used to incubate SV‐HFO for 21 days in osteogenic medium. Human prolactin receptor mRNA and protein are expressed in SV‐HFO. PRL significantly decreased osteoblast number (DNA content) which was due to a decrease in proliferation. PRL increased osteogenic markers, RUNX2 and ALP in early stage of osteoblast differentiation while decreasing it later suggesting a bi‐directional effect. Calcium measurement and Alizarin red staining showed a reduction of mineralization by PRL while having neither an effect on osteoblast activity nor RANKL/OPG mRNA ratio. We also demonstrated that PRL action on mineralization was not via PI‐3 kinase pathway. The present study provides evidence of a direct effect of prolactin on osteoblast differentiation and in vitro mineralization. J. Cell. Biochem. 107: 677–685, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
TGF-β1 can regulate osteoblast differentiation not only positively but also negatively. However, the mechanisms of negative regulation are not well understood. We previously established the reproducible model for studying the suppression of osteoblast differentiation by repeated or high dose treatment with TGF-β1, although single low dose TGF-β1 strongly induced osteoblast differentiation. The mRNA expression and protein level of insulin-like growth factor-1 (IGF-1) were remarkably decreased by repeated TGF-β1 administration in human periodontal ligament cells, human mesenchymal stem cells, and murine preosteoblast MC3T3-E1 cells. Repeated TGF-β1 administration subsequently decreased alkaline phosphatase (ALP) activity and mRNA expression of osteoblast differentiation marker genes, such as RUNX2, ALP, and bone sialoprotein (BSP). Additionally, repeated administration significantly reduced the downstream signaling pathway of IGF-1, such as Akt phosphorylation in these cells. Surprisingly, exogenous and overexpressed IGF-1 recovered ALP activity and mRNA expression of osteoblast differentiation marker genes even with repeated TGF-β1 administration. These facts indicate that the key mechanism of inhibition of osteoblast differentiation induced by repeated TGF-β1 treatment is simply due to the down-regulation of IGF-1 expression. Inhibition of IGF-1 signaling using small interfering RNA (siRNA) against insulin receptor substrate-1 (IRS-1) suppressed mRNA expression of RUNX2, ALP, BSP, and IGF-1 even with single TGF-β1 administration. This study showed that persistence of TGF-β1 inhibited osteoblast differentiation via suppression of IGF-1 expression and subsequent down-regulation of the PI3K/Akt pathway. We think this fact could open the way to use IGF-1 as a treatment tool for bone regeneration in prolonged inflammatory disease.  相似文献   

17.
MAGP1 is an extracellular matrix protein that, in vertebrates, is a ubiquitous component of fibrillin-rich microfibrils. We previously reported that aged MAGP1-deficient mice (MAGP1Δ) develop lesions that are the consequence of spontaneous bone fracture. We now present a more defined bone phenotype found in MAGP1Δ mice. A longitudinal DEXA study demonstrated age-associated osteopenia in MAGP1Δ animals and μCT confirmed reduced bone mineral density in the trabecular and cortical bone. Further, MAGP1Δ mice have significantly less trabecular bone, the trabecular microarchitecture is more fragmented, and the diaphyseal cross-sectional area is significantly reduced. The remodeling defect seen in MAGP1Δ mice is likely not due to an osteoblast defect, because MAGP1Δ bone marrow stromal cells undergo osteoblastogenesis and form mineralized nodules. In vivo, MAGP1Δ mice exhibit normal osteoblast number, mineralized bone surface, and bone formation rate. Instead, our findings suggest increased bone resorption is responsible for the osteopenia. The number of osteoclasts derived from MAGP1Δ bone marrow macrophage cells is increased relative to the wild type, and osteoclast differentiation markers are expressed at earlier time points in MAGP1Δ cells. In vivo, MAGP1Δ mice have more osteoclasts lining the bone surface. RANKL (receptor activator of NF-κB ligand) expression is significantly higher in MAGP1Δ bone, and likely contributes to enhanced osteoclastogenesis. However, bone marrow macrophage cells from MAGP1Δ mice show a higher propensity than do wild-type cells to differentiate to osteoclasts in response to RANKL, suggesting that they are also primed to respond to osteoclast-promoting signals. Together, our findings suggest that MAGP1 is a regulator of bone remodeling, and its absence results in osteopenia associated with an increase in osteoclast number.  相似文献   

18.
Fibroblast growth factor-2 (FGF-2) enhances the formation of new alveolar bone, cementum, and periodontal ligament (PDL) in periodontal defect models. However, the mechanism through which FGF-2 acts in periodontal regeneration in vivo has not been fully clarified yet. To reveal the action mechanism, the formation of regenerated tissue and gene expression at the early phase were analyzed in a beagle dog 3-wall periodontal defect model. FGF-2 (0.3%) or the vehicle (hydroxypropyl cellulose) only were topically applied to the defect in FGF-2 and control groups, respectively. Then, the amount of regenerated tissues and the number of proliferating cells at 3, 7, 14, and 28 days and the number of blood vessels at 7 days were quantitated histologically. Additionally, the expression of osteogenic genes in the regenerated tissue was evaluated by real-time PCR at 7 and 14 days. Compared with the control, cell proliferation around the existing bone and PDL, connective tissue formation on the root surface, and new bone formation in the defect at 7 days were significantly promoted by FGF-2. Additionally, the number of blood vessels at 7 days was increased by FGF-2 treatment. At 28 days, new cementum and PDL were extended by FGF-2. Moreover, FGF-2 increased the expression of bone morphogenetic protein 2 (BMP-2) and osteoblast differentiation markers (osterix, alkaline phosphatase, and osteocalcin) in the regenerated tissue. We revealed the facilitatory mechanisms of FGF-2 in periodontal regeneration in vivo. First, the proliferation of fibroblastic cells derived from bone marrow and PDL was accelerated and enhanced by FGF-2. Second, angiogenesis was enhanced by FGF-2 treatment. Finally, osteoblastic differentiation and bone formation, at least in part due to BMP-2 production, were rapidly induced by FGF-2. Therefore, these multifaceted effects of FGF-2 promote new tissue formation at the early regeneration phase, leading to enhanced formation of new bone, cementum, and PDL.  相似文献   

19.
While the roles of the mammalian target of rapamycin (mTOR) signaling in regulation of cell growth, proliferation, and survival have been well documented in various cell types, its actions in osteoblasts are poorly understood. In this study, we determined the effects of rapamycin, a specific inhibitor of mTOR, on osteoblast proliferation and differentiation using MC3T3-E1 preosteoblastic cells (MC-4) and primary mouse bone marrow stromal cells (BMSCs). Rapamycin significantly inhibited proliferation in both MC-4 cells and BMSCs at a concentration as low as 0.1 nM. Western blot analysis shows that rapamycin treatment markedly reduced levels of cyclin A and D1 protein in both cell types. In differentiating osteoblasts, rapamycin dramatically reduced osteoblast-specific osteocalcin (Ocn), bone sialoprotein (Bsp), and osterix (Osx) mRNA expression, ALP activity, and mineralization capacity. However, the drug treatment had no effect on osteoblast differentiation parameters when the cells were completely differentiated. Importantly, rapamycin markedly reduced levels of Runx2 protein in both proliferating and differentiating but not differentiated osteoblasts. Finally, overexpression of S6K in COS-7 cells significantly increased levels of Runx2 protein and Runx2 activity. Taken together, our studies demonstrate that mTOR signaling affects osteoblast functions by targeting osteoblast proliferation and the early stage of osteoblast differentiation.  相似文献   

20.
目的:探讨阿司匹林对骨髓基质细胞成骨性分化的影响。方法:培养SD大鼠骨髓基质细胞(BMSCs),传代3次后进行成骨诱导分化,诱导培养基中加入不同浓度阿司匹林(0.5、1、2、5、10mmol/L),同时设立对照组。采用cck-8法分析细胞增殖情况。比较阿司匹林组与对照组在细胞碱性磷酸酶(ALP)活性、骨钙素(OC)分泌量、钙结节染色等方面的成骨性差异。结果:阿司匹林无促进细胞增殖活性,而高浓度阿司匹林能够强烈抑制细胞增殖。0.5、1、2mmol/L浓度阿司匹林可促进BMSCs的成骨性分化,中低浓度组碱性磷酸酶含量、骨钙素分泌量在不同阶段显著高于对照组。14天茜素红染色可见中低浓度组钙结节数量高于对照组。结论:中低浓度阿司匹林作用于骨髓基质细胞可促进其成骨细胞特性表达,这表明阿司匹林有促进骨代谢合成的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号