首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The trans-Golgi network (TGN) is putatively the site where varicella-zoster virus is enveloped. gE is targeted to the TGN by selective retrieval from the plasmalemma in response to signaling sequences in its endodomain. gI lacks these sequences but forms a complex with gE. We now find that gI is targeted to the TGN and plasma membrane when expressed in Cos-7 cells; nevertheless, surface labeling revealed that gI is not retrieved from the plasma membrane. TGN targeting of gI depended on the T(338) of its endodomain and was lost when T(338) was deleted or mutated to A, S, or D. The endodomain of gI was sufficient, if it contained T(338), to target a fusion protein containing the ectodomain of the human interleukin-2 receptor to the TGN. A truncated protein consisting only of the gI ectodomain was secreted and taken up by nontransfected cells. This uptake of the secreted gI ectodomain was blocked by mannose 6-phosphate. Following cotransfection, both gI and gE were retrieved to the TGN from the plasma membrane in 26.7% of cells, neither gI nor gE was internalized in 18.3%, and gE was retrieved to the TGN while gI remained at the plasma membrane in 55%. We suggest that the T(338) of its endodomain is necessary to retain gI in the TGN; moreover, because gI and gE interact, the signaling sequences of each glycoprotein reinforce one another in ensuring that both glycoproteins are concentrated in the TGN yet remain on the cell surface.  相似文献   

2.
TGN38 and TGN41 are isoforms of an integral membrane protein (TGN38/41) that is predominantly localized to the trans-Golgi network (TGN) of normal rat kidney cells. Polyclonal antisera to TGN38/41 have been used to monitor its appearance at, and removal from, the surface of control and Brefeldin A (BFA)-treated cells. Antibodies that recognize the lumenal domain of TGN38/41 are capable of specific binding to the surface of both control and BFA-treated cells. In both control and BFA-treated cells internalized TGN38/41 is targeted to the TGN; however, there are differences in 1) the morphology of the intracellular structures through which TGN38/41 passes and 2) the kinetics of internalization. These data demonstrate that TGN38/41 cycles between the plasma membrane and the TGN in control and BFA-treated cells and suggest that recycling pathways between the plasma membrane and the TGN exist for predominantly TGN proteins as well as those that normally cycle to other intracellular compartments. They also demonstrate that addition of BFA not only alters the morphology and localization of the TGN but also the kinetics of endocytosis.  相似文献   

3.
Incubation of cultured cells at 20 degrees C blocks the transport of newly synthesized plasma membrane proteins, and the proteins accumulate intracellularly in a terminally glycosylated form. When baby hamster kidney cells are infected with the ts O45 mutant of vesicular stomatitis virus, and incubated at 20 degrees C, the terminally glycosylated spike glycoprotein G of the virus accumulates in the membranes of a tubular network localized on the trans side of the Golgi cisternae, the trans-Golgi network (TGN). We have used the G protein of ts O45 as a marker for the TGN and isolated a TGN fraction using a combination of conventional cell fractionation techniques and immunoisolation. The TGN was separated from the bulk of the endoplasmic reticulum, mitochondria, lysosomes, plasma membrane, and endosomes, while the activity of trans-Golgi marker galactosyltransferase copurified with the G protein. Using G protein as the TGN marker we have determined that the TGN was enriched 25-fold in the final fraction relative to the total homogenate. Several polypeptides (Mr 75,000, 87,000, 92,000, and 120,000) copurified with the G protein in the isolated TGN fraction and most likely represent resident markers of the compartment.  相似文献   

4.
Protein kinase D inhibits plasma membrane Na+/H+ exchanger activity   总被引:3,自引:0,他引:3  
The regulation of plasma membraneNa+/H+exchanger (NHE) activity by protein kinase D (PKD), a novel proteinkinase C- and phorbol ester-regulated kinase, was investigated. Todetermine the effect of PKD on NHE activity in vivo, intracellular pH(pHi) measurements were made inCOS-7 cells by microepifluorescence using the pH indicator cSNARF-1.Cells were transfected with empty vector (control), wild-type PKD, orits kinase-deficient mutant PKD-K618M, together with green fluorescentprotein (GFP). NHE activity, as reflected by the rate of acid efflux(JH), wasdetermined in single GFP-positive cells following intracellularacidification. Overexpression of wild-type PKD had no significanteffect on JH(3.48 ± 0.25 vs. 3.78 ± 0.24 mM/min in control atpHi 7.0). In contrast,overexpression of PKD-K618M increasedJH (5.31 ± 0.57 mM/min at pHi 7.0;P < 0.05 vs. control). Transfectionwith these constructs produced similar effects also in A-10 cells,indicating that native PKD may have an inhibitory effect on NHE in bothcell types, which is relieved by a dominant-negative action ofPKD-K618M. Exposure of COS-7 cells to phorbol ester significantlyincreased JH in control cells but failed to do so in cells overexpressing either wild-type PKD (due to inhibition by the overexpressed PKD) or PKD-K618M(because basal JHwas already near maximal). A fusion protein containing the cytosolicregulatory domain (amino acids 637-815) of NHE1 (the ubiquitousNHE isoform) was phosphorylated in vitro by wild-type PKD, but with lowstoichiometry. These data suggest that PKD inhibits NHE activity,probably through an indirect mechanism, and represents a novel pathwayin the regulation of the exchanger.

  相似文献   

5.
Small GTP-binding proteins of the rab family have been implicated as regulators of membrane traffic along the biosynthetic and endocytic pathways in eukaryotic cells. We have investigated the localization and function of rab8, closely related to the yeast YPT1/SEC4 gene products. Confocal immunofluorescence microscopy and immunoelectron microscopy on filter-grown MDCK cells demonstrated that, rab8 was localized to the Golgi region, vesicular structures, and to the basolateral plasma membrane. Two-dimensional gel electrophoresis showed that rab8p was highly enriched in immuno-isolated basolateral vesicles carrying vesicular stomatitis virus-glycoprotein (VSV-G) but was absent from vesicles transporting the hemagglutinin protein (HA) of influenza virus to the apical cell surface. Using a cytosol dependent in vitro transport assay in permeabilized MDCK cells we studied the functional role of rab8 in biosynthetic membrane traffic. Transport of VSV-G from the TGN to the basolateral plasma membrane was found to be significantly inhibited by a peptide derived from the hypervariable COOH-terminal region of rab8, while transport of the influenza HA from the TGN to the apical surface and ER to Golgi transport were unaffected. We conclude that rab8 plays a role in membrane traffic from the TGN to the basolateral plasma membrane in MDCK cells.  相似文献   

6.
Sorting of newly synthesized plasma membrane proteins to the apical or basolateral surface domains of polarized cells is currently thought to take place within the trans-Golgi network (TGN). To explore the relationship between protein localization to the TGN and sorting to the plasma membrane in polarized epithelial cells, we have expressed constructs encoding the TGN marker, TGN38, in Madin-Darby canine kidney (MDCK) cells. We report that TGN38 is predominantly localized to the TGN of these cells and recycles via the basolateral membrane. Analyses of the distribution of Tac-TGN38 chimeric proteins in MDCK cells suggest that the cytoplasmic domain of TGN38 has information leading to both TGN localization and cycling through the basolateral surface. Mutations of the cytoplasmic domain that disrupt TGN localization also lead to nonpolarized delivery of the chimeric proteins to both surface domains. These results demonstrate an apparent equivalence of basolateral and TGN localization determinants and support an evolutionary relationship between TGN and plasma membrane sorting processes.  相似文献   

7.
TGN38 is a type I integral membrane protein that constitutively cycles between the trans-Golgi network (TGN) and plasma membrane. The cytosolic domain of TGN38 interacts with AP2 clathrin adaptor complexes via the tyrosine-containing motif (-SDYQRL-) to direct internalization from the plasma membrane. This motif has previously been shown to direct both internalization and subsequent TGN targeting of TGN38. We have used the cytosolic domain of TGN38 in a two-hybrid screen, and we have identified the brain-specific F-actin binding protein neurabin-I as a TGN38-binding protein. We demonstrate a direct interaction between TGN38 and the ubiquitous homologue of neurabin-I, neurabin-II (also called spinophilin). We have used a combination of yeast two-hybrid and in vitro protein interaction assays to show that this interaction is dependent on the serine (but not tyrosine) residue of the known TGN38 trafficking motif. We show that TGN38 interacts with the coiled coil region of neurabin in vitro and binds preferentially with the dimeric form of neurabin. TGN38 and neurabin also interact in vivo as demonstrated by coimmunoprecipitation from stably transfected PC12 cells. These data suggest that neurabin provides a direct physical link between TGN38-containing membranes and the actin cytoskeleton.  相似文献   

8.
The effects of brefeldin A (BFA) on membrane traffic between the trans-Golgi network (TGN) and the plasma membrane were investigated in intact PC12 cells and in a cell-free system derived from PC12 cells. In intact cells, BFA caused a virtually complete block of constitutive secretion, as indicated by the lack of release from, and accumulation in, the cells of a [35S]sulfate-labeled heparan sulfate proteoglycan (hsPG). Pulse-chase experiments with [35S]sulfate followed by subcellular fractionation showed that this block was due to the inhibition of formation of constitutive secretory vesicles (CSVs) from the TGN. BFA did not block the depolarization-induced release of [35S]sulfate-labeled chromogranin B (CgB) and secretogranin II (SgII) from secretory granules formed prior to the addition of the drug, showing that BFA does not block secretory granule fusion with the plasma membrane. The presence of BFA did, however, prevent the appearance of [35S]sulfate-labeled CgB and SgII in secretory granules, indicating that the drug inhibits the formation of secretory granules from the TGN. Evidence for a direct block of vesicle formation by BFA was obtained using a cell-free system derived from [35S]sulfate-labeled PC12 cells. In this system, low concentrations of BFA (5 micrograms/ml) inhibited the formation of the hsPG-containing CSVs and that of the SgII-containing secretory granules from the TGN to the same extent (50-60%) as, and in a non-additive manner with, the nonhydrolyzable GTP analogue GTP gamma S. Consistent with the inhibitory effects of BFA on vesicle formation from the TGN, BFA treatment of intact PC12 cells led to the hypersialylation of CgB, which presumably was due to the increased residence time of the protein in the TGN. In conclusion, our data are consistent with, and allow the generalization of, the concept that the BFA-induced block of anterograde membrane traffic results from the inhibition of vesicle formation from a donor compartment.  相似文献   

9.
To maintain polarity, epithelial cells continuously sort transmembrane proteins to the apical or basolateral membrane domains during biosynthetic delivery or after internalization. During biosynthetic delivery, some cargo proteins move from the trans-Golgi network (TGN) into recycling endosomes (RE) before being delivered to the plasma membrane. However, proteins that regulate this transport step remained elusive. In this study, we show that Rab13 partially colocalizes with TGN38 at the TGN and transferrin receptors in RE. Knockdown of Rab13 with short hairpin RNA in human bronchial epithelial cells or overexpression of dominant-active or dominant-negative alleles of Rab13 in Madin-Darby canine kidney cells disrupts TGN38/46 localization at the TGN. Moreover, overexpression of Rab13 mutant alleles inhibits surface arrival of proteins that move through RE during biosynthetic delivery (vesicular stomatitis virus glycoprotein [VSVG], A-VSVG, and LDLR-CT27). Importantly, proteins using a direct route from the TGN to the plasma membrane are not affected. Thus, Rab13 appears to regulate membrane trafficking between TGN and RE.  相似文献   

10.
Phosphatidylinositol-4-phosphate (PI4P) plays a crucial role in cellular functions, including protein trafficking, and is mainly located in the cytoplasmic surface of intracellular membranes, which include the trans-Golgi network (TGN) and the plasma membrane. However, many PI4P-binding domains of membrane-associated proteins are localized only to the TGN because of the requirement of a second binding protein such as ADP-ribosylation factor 1 (ARF1) in order to be stably localized to the specific membrane. In this study, we developed new probes that were capable of detecting PI4P at the plasma membrane using the known TGN-targeting PI4P-binding domains. The PI4P-specific binding pleckstrin homology (PH) domain of various proteins including CERT, OSBP, OSH1, and FAPP1 was combined with the N-terminal moderately hydrophobic domain of the short-form of Aplysia phosphodiesterase 4 (S(N30)), which aids in plasma membrane association but cannot alone facilitate this association. As a result, we found that the addition of S(N30) to the N-terminus of the GFP-fused PH domain of OSBP (S(N30)-GFP-OSBP-PH), OSH1 (S(N30)-GFP-OSH1-PH), or FAPP1 (S(N30)-GFP-FAPP1-PH) could induce plasma membrane localization, as well as retain TGN localization. The plasma membrane localization of S(N30)-GFP-FAPP1-PH is mediated by PI4P binding only, whereas those of S(N30)-GFP-OSBP-PH and S(N30)-GFP-OSH1-PH are mediated by either PI4P or PI(4,5)P2 binding. Taken together, we developed new probes that detect PI4P at the plasma membrane using a combination of a moderately hydrophobic domain with the known TGN-targeting PI4P-specific binding PH domain.  相似文献   

11.
TGN38 luminal domain (TGN38LD) was expressed in Cos-7 cells to identify potential binding partners. The luminal domain was secreted but, surprisingly, a significant portion bound to the plasma membrane. Cells over-expressing TGN38LD or the full-length molecule detached from the substratum and left footprints positive for TGN38. Unexpectedly, in these cells, TGN38 colocalizes with integrin α5β1 at the Golgi, the cell surface or in the footprints and an increased amount of both integrin subunits on the plasma membrane was observed. Under physiological conditions when TGN38 is not overexpressed, it interacts with integrin β1. This was demonstrated by reciprocal co-immunoprecipitation of integrin β1 and TGN38. Functional analysis reveals that modification of the trafficking of TGN38 results in a parallel change in the distribution of integrin α5β1, leading to the conclusion that TGN38 is involved in the trafficking of integrin β1.  相似文献   

12.
Gangliosides, complex glycosphingolipids containing sialic acids, have been found to reside in glycosphingolipid-enriched microdomains (GEM) at the plasma membrane. They are synthesized in the lumen of the Golgi complex and appear unable to translocate from the lumenal toward the cytosolic surface of Golgi membrane to access the monomeric lipid transport. As a consequence, they can only leave the Golgi complex via the lumenal surface of transport vesicles. In this work we analyzed the exocytic transport of the disialo ganglioside GD3 from trans-Golgi network (TGN) to plasma membrane in CHO-K1 cells by immunodetection of endogenously synthesized GD3. We found that ganglioside GD3, unlike another luminal membrane-bounded lipid (glycosylphosphatidylinositol-anchored protein), did not partition into GEM domains in the Golgi complex and trafficked from TGN to plasma membrane by a brefeldin A-insensitive exocytic pathway. Moreover, a dominant negative form of Rab11, which prevents exit of vesicular stomatitis virus glycoprotein from the Golgi complex, did not influence the capacity of GD3 to reach the cell surface. Our results strongly support the notion that most ganglioside GD3 traffics from the TGN to the plasma membrane by a non-conventional vesicular pathway where lateral membrane segregation of vesicular stomatitis virus glycoprotein (non-GEM resident) and glycosylphosphatidylinositol-anchored proteins (GEM resident) from GD3 is required before exiting TGN.  相似文献   

13.
Furin and TGN38 are menbrane proteins that cycle between the plasma membrane and the trans-Golgi network (TGN), each maintaining a predominant distribution in the TGN. We have used chimeric proteins with an extracellular Tac domain and the cytoplasmic domain of TGN38 or furin to study the trafficking of these proteins in endosomes. Previously, we demonstrated that the postendocytic trafficking of Tac-TGN38 to the TGN is via the endocytic recycling pathway (Ghosh, R.N.,W.G. Mallet,T.T. Soe,T.E.McGraw, and F.R. Maxfield.1998.J.Cell Biol.142:923-936).Here we show that internalized Tac-furin is delivered to the TGN through late endosomes, bypassing the endocytic recycling compartment. The transport of Tac-furin from late endosomes to the TGN appears to proceed via an efficient, single-pass mechanism. Delivery of Tac-furin but not Tac-TGN38 to the TGN is blocked by nocodazole, and the two pathways are also differentially affected by wortmannin. These studies demonstrate the existence of two independentpathways for endosomal transport of proteins to the TGN from the plasma membrane.  相似文献   

14.
The Niemann-Pick C1 (NPC1) protein regulates cholesterol transport from late endosomes-lysosomes to other intracellular compartments. In this article, cholesterol transport to caveolin-1 and caveolin-2 containing compartments, such as the trans-Golgi network (TGN) and plasma membrane caveolae, was examined in normal (NPC+/+), NPC heterozygous (NPC+/-), and NPC homozygous (NPC-/-) human fibroblasts. The expression and distribution of NPC1 in each cell type were similar, and characterized by a finely dispersed, granular staining pattern. The expression of caveolin-1 and caveolin-2 was increased in NPC+/- and NPC-/- fibroblasts, although the distribution in each cell type was similar and characterized by predominant staining of the TGN and plasma membrane. The TGN in NPC+/+ fibroblasts was relatively cholesterol-enriched, whereas the TGN in NPC+/- and NPC-/- fibroblasts was partially or completely cholesterol-deficient, respectively. Consistent with studies demonstrating the transport of cholesterol from the TGN to plasma membrane caveolae, the concentration of cholesterol in plasma membrane caveolae isolated from NPC+/- and NPC-/- fibroblasts was significantly decreased, even though the total concentration of plasma membrane cholesterol in each cell type was similar.These studies demonstrate that NPC1 regulates cholesterol transport to caveolin-1 and caveolin-2 containing compartments such as the TGN and plasma membrane caveolae.  相似文献   

15.
Epithelial cell polarity depends on mechanisms for targeting proteins to different plasma membrane domains. Here, we dissect the pathway for apical delivery of several raft-associated, glycosyl phosphatidylinositol (GPI)-anchored proteins in polarized MDCK cells using live-cell imaging and selective inhibition of apical or basolateral exocytosis. Rather than trafficking directly from the trans-Golgi network (TGN) to the apical plasma membrane as previously thought, the GPI-anchored proteins followed an indirect, transcytotic route. They first exited the TGN in membrane-bound carriers that also contained basolateral cargo, although the two cargoes were laterally segregated. The carriers were then targeted to and fused with a zone of lateral plasma membrane adjacent to tight junctions that is known to contain the exocyst. Thereafter, the GPI-anchored proteins, but not basolateral cargo, were rapidly internalized, together with endocytic tracer, into clathrin-free transport intermediates that transcytosed to the apical plasma membrane. Thus, apical sorting of these GPI-anchored proteins occurs at the plasma membrane, rather than at the TGN.  相似文献   

16.
Sec6/8 complex regulates delivery of exocytic vesicles to plasma membrane docking sites, but how it is recruited to specific sites in the exocytic pathway is poorly understood. We identified an Sec6/8 complex on trans-Golgi network (TGN) and plasma membrane in normal rat kidney (NRK) cells that formed either fibroblast- (NRK-49F) or epithelial-like (NRK-52E) intercellular junctions. At both TGN and plasma membrane, Sec6/8 complex colocalizes with exocytic cargo protein, vesicular stomatitis virus G protein (VSVG)-tsO45. Newly synthesized Sec6/8 complex is simultaneously recruited from the cytosol to both sites. However, brefeldin A treatment inhibits recruitment to the plasma membrane and other treatments that block exocytosis (e.g., expression of kinase-inactive protein kinase D and low temperature incubation) cause accumulation of Sec6/8 on the TGN, indicating that steady-state distribution of Sec6/8 complex depends on continuous exocytic vesicle trafficking. Addition of antibodies specific for TGN- or plasma membrane-bound Sec6/8 complexes to semiintact NRK cells results in cargo accumulation in a perinuclear region or near the plasma membrane, respectively. These results indicate that Sec6/8 complex is required for several steps in exocytic transport of vesicles between TGN and plasma membrane.  相似文献   

17.
Do lipids such as sphingomyelin (SM) that are known to assemble into specific membrane domains play a role in the organization and function of transmembrane proteins? In this paper, we show that disruption of SM homeostasis at the trans-Golgi network (TGN) by treatment of HeLa cells with d-ceramide-C6, which was converted together with phosphatidylcholine to short-chain SM and diacylglycerol by SM synthase, led to the segregation of Golgi-resident proteins from each other. We found that TGN46, which cycles between the TGN and the plasma membrane, was not sialylated by a sialyltransferase at the TGN and that this enzyme and its substrate TGN46 could not physically interact with each other. Our results suggest that SM organizes transmembrane proteins into functional enzymatic domains at the TGN.  相似文献   

18.
The trans-Golgi network (TGN) is the major sorting station in the secretory pathway of all eukaryotic cells. How the TGN sorts proteins and lipids to generate the enrichment of sphingolipids and sterols at the plasma membrane is poorly understood. To address this fundamental question in membrane trafficking, we devised an immunoisolation procedure for specific recovery of post-Golgi secretory vesicles transporting a transmembrane raft protein from the TGN to the cell surface in the yeast Saccharomyces cerevisiae. Using a novel quantitative shotgun lipidomics approach, we could demonstrate that TGN sorting selectively enriched ergosterol and sphingolipid species in the immunoisolated secretory vesicles. This finding, for the first time, indicates that the TGN exhibits the capacity to sort membrane lipids. Furthermore, the observation that the immunoisolated vesicles exhibited a higher membrane order than the late Golgi membrane, as measured by C-Laurdan spectrophotometry, strongly suggests that lipid rafts play a role in the TGN-sorting machinery.  相似文献   

19.
Newly synthesized membrane proteins are sorted in the trans-Golgi network (TGN) on the basis of sorting signals carried in their cytoplasmic domains and delivered to their final destinations in the secretory and endocytic pathways. Although previous studies have suggested the involvement of early endosomes in the biosynthetic pathway of transmembrane proteins, the precise trafficking routes followed by the newly synthesized plasma membrane proteins, such as transferrin receptors (TfRs), after exit from the TGN remain unclear. In this report, first, we demonstrated the advantages of photoactivating PA-GFP, a variant of the Aequorea victoria green fluorescent protein (GFP), with multiphoton laser light rather than single-photon laser light, in terms of photoactivation efficiency and spatial resolution. We then applied the multiphoton photoactivation technique to selectively photoactivate the TfR tagged with PA-GFP (PA-GFP-TfR) at the TGN, and monitored the movement of the photoactivated PA-GFP-TfR in live cells. We observed that the PA-GFP-TfR photoactivated at the TGN are transported to the Tfn(+)EEA1(+) endosomal compartments after exiting the TGN. These data support the notion that early endosomes can serve as a sorting station for not only internalized plasma membrane proteins in the endocytic pathway but also newly synthesized membrane proteins in the post-Golgi secretory pathway.  相似文献   

20.
Several GTPases of the Rab family, known to be regulators of membrane traffic between organelles, have been described and localized to various intracellular compartments. Rab11 has previously been reported to be associated with the pericentriolar recycling compartment, post-Golgi vesicles, and the trans-Golgi network (TGN). We compared the effect of overexpression of wild-type and mutant forms of Rab11 on the different intracellular transport steps in the endocytic/degradative and the biosynthetic/exocytic pathways in HeLa cells. We also studied transport from endosomes to the Golgi apparatus using the Shiga toxin B subunit (STxB) and TGN38 as reporter molecules. Overexpression of both Rab11 wild-type (Rab11wt) and mutants altered the localization of the transferrrin receptor (TfR), internalized Tf, the STxB, and TGN38. In cells overexpressing Rab11wt and in a GTPase-deficient Rab11 mutant (Rab11Q70L), these proteins were found in vesicles showing characteristics of sorting endosomes lacking cellubrevin (Cb). In contrast, they were redistributed into an extended tubular network, together with Cb, in cells overexpressing a dominant negative mutant of Rab11 (Rab11S25N). This tubularized compartment was not accessible to Tf internalized at temperatures <20 degrees C, suggesting that it is of recycling endosomal origin. Overexpression of Rab11wt, Rab11Q70L, and Rab11S25N also inhibited STxB and TGN38 transport from endosomes to the TGN. These results suggest that Rab11 influences endosome to TGN trafficking primarily by regulating membrane distribution inside the early endosomal pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号