首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influence of the relA gene on lipopolysaccharide (LPS) biosynthesis and release by Escherichia coli and Salmonella typhimurium was investigated. Similar results were obtained with both species. The incorporation of [3H]galactose into LPS by galE mutants was inhibited by at least 50% (as compared with normal growing controls) during amino acid deprivation of relA+ strains. This inhibition could be prevented by the treatment of the amino acid-deprived relA+ bacteria with chloramphenicol, a known antagonist of the stringent control mechanism. Furthermore, LPS biosynthesis was not inhibited during amino acid deprivation of isogenic relA mutant strains. These results indicate that LPS synthesis is regulated by the stringent control mechanism. Normal growing cells of both relA+ and relA strains released LPS into the culture fluid at low rates. Amino acid deprivation stimulated the rate of LPS release by relA mutants but not by relA+ bacteria. Chloramphenicol treatment markedly stimulated the release of cell-bound LPS by amino acid-deprived relA+ cells. Thus, a low rate of LPS release was characteristic of normal growth and could be increased in nongrowing cells by relaxing the control of LPS synthesis.  相似文献   

2.
The penicillin tolerance of amino acid-deprived relA+ Escherichia coli is attributed to the stringent response; i.e., relaxation of the stringent response suppresses penicillin tolerance. The beta-lactam-induced lysis of amino acid-deprived bacteria resulting from relaxation of the stringent response was inhibited by cerulenin, or by glycerol deprivation in the case of a gpsA mutant (defective in the biosynthetic sn-glycerol 3-phosphate dehydrogenase). Therefore, beta-lactam-induced lysis of amino acid-deprived cells was dependent on phospholipid synthesis. The lysis process during amino acid deprivation can be experimentally dissociated into two stages designated the priming stage (during which the interaction between the beta-lactam and the penicillin-binding proteins occurs) and the beta-lactam-independent lysis induction stage. Both stages were shown to require phospholipid synthesis. It has been known for some time that the inhibition of phospholipid synthesis is among the plethora of physiological changes resulting from the stringent response. These results indicate that the inhibition of peptidoglycan synthesis and the penicillin tolerance associated with the stringent response are both secondary consequences of the inhibition of phospholipid synthesis.  相似文献   

3.
Induction of autolysis in nongrowing Escherichia coli   总被引:7,自引:5,他引:2       下载免费PDF全文
Unless relaxation of the stringent response is achieved, all nongrowing bacteria rapidly develop resistance to autolysis induced by a variety of agents, including all classes of cell wall synthesis inhibitors. We now describe inhibitors of cell wall synthesis which were unusual in that they could continue to effectively induce autolysis in relA+ Escherichia coli even after prolonged amino acid starvation. The process of cell wall degradation seems to be catalyzed by similar hydrolytic enzymes in nongrowing and growing cells, yet the activity of these new agents capable of inducing autolysis in the nongrowing relA+ cells did not involve relaxation of RNA or peptidoglycan synthesis. We propose that the suppression of autolysis characteristic of nongrowing cells can be bypassed by a novel mechanism of autolytic triggering which is independent of the relA locus.  相似文献   

4.
The effect of incubation temperature on the ampicillin-induced autolysis of nongrowing Escherichia coli was determined. The autolysis mechanisms in amino acid-deprived relA mutant cells treated with chloramphenicol were temperature sensitive. This temperature-sensitive autolysis was demonstrated in three independent ways: turbidimetric determinations, viable cell counts, and solubilization of radiolabeled peptidoglycan.  相似文献   

5.
The ampicillin-induced lysis of amino acid-deprived relA+ Escherichia coli was dissociated into two separate stages. The early stage ("priming") requiring the presence of ampicillin apparently involved the interaction of ampicillin with a target penicillin-binding protein. The later stage ("lysis induction") was ampicillin independent and required only chloramphenicol to relax the RelA-dependent control of peptidoglycan hydrolase activity.  相似文献   

6.
The site of inhibition of peptidoglycan synthesis during the stringent response in Escherichia coli was determined in strains which were auxotrophic for both lysine and diaminopimelic acid (DAP). Cells were labeled with [(3)H]DAP for 30 to 60 min in the presence and absence of required amino acids, and the cellular distribution of [(3)H]DAP was determined. In both stringent (rel(+)) and relaxed (relA) strains, amino acid deprivation did not inhibit the incorporation of [(3)H]DAP into the nucleotide precursor and lipid intermediate fractions. The amount of [(3)H]DAP incorporated into the peptidoglycan fraction by the amino acid-deprived relA strain was over 70% of the amount incorporated in the presence of required amino acids. In contrast, the amounts of labeled peptidoglycan in amino acid-deprived rel(+) strains were only 20 to 44% of the amounts synthesized in the presence of amino acids. These results indicate that a late step in peptidoglycan synthesis is inhibited during the stringent response. The components of the lipid intermediate fraction synthesized by rel(+) strains in the presence and absence of required amino acids were quantitated. Amino acid deprivation did not inhibit the synthesis of either the monosaccharide-pentapeptide or the disaccharide-pentapeptide derivatives of the lipid intermediate. Thus, the reaction which is most likely inhibited during the stringent response is the terminal one involving the incorporation of the disaccharide-pentapeptide into peptidoglycan.  相似文献   

7.
The penicillin tolerance exhibited by amino acid-deprived Escherichia coli has been previously proposed to be a consequence of the stringent response. Evidence indicating that penicillin tolerance is directly attributable to guanosine 3',5'-bispyrophosphate (ppGpp) overproduction and not to some other effect of amino acid deprivation is now presented. Accumulation of ppGpp in the absence of amino acid deprivation was achieved by the controlled overexpression of the cloned relA gene, which encodes ppGpp synthetase I. The overproduction of ppGpp resulted in the inhibition of both peptidoglycan and phospholipid synthesis and in penicillin tolerance. The minimum concentration of ppGpp required to establish these phenomena was determined to be 870 pmol per mg (dry weight) of cells. This represented about 70% of the maximum level of ppGpp accumulated during the stringent response. Penicillin tolerance and the inhibition of peptidoglycan synthesis were both suppressed when ppGpp accumulation was prevented by treatment with chloramphenicol, an inhibitor of ppGpp synthetase I activation. Glycerol-3-phosphate acyltransferase, the product of plsB, was recently identified as the main site of ppGpp inhibition in phospholipid synthesis (R. J. Health, S. Jackowski, and C. O. Rock, J. Biol. Chem. 269:26584-26590, 1994). The overexpression of the cloned plsB gene reversed the penicillin tolerance conferred by ppGpp accumulation. This result supports previous observations indicating that the membrane-associated events in peptidoglycan metabolism were dependent on ongoing phospholipid synthesis. Interestingly, treatment with beta-lactam antibiotics by itself induced ppGpp accumulation, but the maximum levels attained were insufficient to confer penicillin tolerance.  相似文献   

8.
We observed that the synthesis of basal-level guanosine 5'-diphosphate 3'-diphosphate (ppGpp) in both relA mutants and relA+ relC strains of Escherichia coli decreased in response to amino acid limitation and that this was accompanied by an increase in ribonucleic acid (RNA) synthesis. Addition of the required amino acid to starved cultures of relaxed bacteria resulted in the resumption of ppGpp synthesis and a concomitant decrease in RNA production. Our results indicate that relA mutants retain a stringent factor-independent ribosomal mechanism for basal-level ppGpp synthesis. They also suggest that in relA+ bacteria, stringent factor-mediated ppGpp synthesis and the production of basal-level ppGpp are mutually exclusive. These findings substantiate the hypothesis that there are two functionally discrete mechanisms for ppGpp synthesis in E. coli. Through these studies we have also obtained new evidence which indicates that ppGpp serves as a modulator of RNA synthesis during balanced growth as well as under conditions of nutritional downshift and starvation.  相似文献   

9.
The synthesis of the nucleotide precursors for peptidoglycan is regulated by the relA gene in Escherichia coli. Thus, nucleotide precursors labeled with [3H]diaminopimelic acid accumulated in a relA strain but not in an isogenic relA+ strain during amino acid deprivation. Furthermore, nucleotide precursor synthesis was relaxed in the amino acid deprived relA+ strain by treatment with chloramphenicol. Uridine diphosphate-N-acetylmuramyl-pentapeptide (UDP-MurNAc-pentapeptide) was the major component accumulated during the relaxed synthesis of nucleotide precursors in both relA+ and relA strains. The effect of beta-chloro-L-alanine (CLA) on the relaxed synthesis of nucleotide precursors for peptidoglycan was determined. At a low concentration (0.0625 mM) CLA inhibited the synthesis of UDP-MurNAc-pentapeptide and caused the accumulation of UDP-MurNAc-tripeptide. Thus, low concentrations of CLA probably inhibited alanine racemase, as reported previously. Higher concentrations of CLA also inhibited an earlier step in nucleotide precursor synthesis. This was shown to be due to the inhibition of UDP-MurNAc-L-alanine synthetase by CLA. CLA inhibited the activity of this enzyme in cell-free extracts as well as in intact cells.  相似文献   

10.
11.
Mutations in Escherichia coli previously reported (R. E. Harkness and E. E. Ishiguro, J. Bacteriol. 155:15-21, 1983; L. C. Shimmin, D. Vanderwel, R. E. Harkness, B. R. Currie, A. Galloway, and E. E. Ishiguro, J. Gen. Microbiol. 130:1315-1323, 1984) as conferring a temperature-dependent tolerance to lysis induced by inhibitors of peptidoglycan synthesis were suppressed by treatment with inhibitors of the stringent response or by introduction of a relA mutation. The relA+ derivatives of the mutants exhibited a stringent response at the nonpermissive temperature. The consequent inhibition of the autolytic enzyme system (W. Kusser and E. E. Ishiguro, J. Bacteriol. 164:861-865, 1985) was apparently responsible for the lysis-tolerant phenotypes of these mutants.  相似文献   

12.
[3H]Diaminopimelic acid (Dap) was incorporated exclusively into peptidoglycan by Escherichia coli strains auxotrophic for both lysine and Dap. The rate of [3H]Dap incorporation by stringent (rel+) strains was significantly decreased when cells were deprived of required amino acids. The addition of chloramphenicol to amino acid-starved rel+ cultured stimulated both peptidoglycan and ribonucleic acid synthesis. In contrast, a relaxed (relA) derivative incorporated [3H]Dap at comparable rates in the presence or absence of required amino acids. Physiologically significant concentrations of guanosine 5'-diphosphate 3'-diphosphate (ppGpp) inhibited the in vitro synthesis of both carrier lipid-linked intermediate and peptidoglycan catalyzed by a particulate enzyme system. The degree of inhibition was dependent on the concentration of ppGpp in the reaction mixture. Thus, the results of in vivo and in vitro studies indicate that peptidoglycan synthesis is stringently controlled in E. coli.  相似文献   

13.
14.
Abstract A pair of relA + and relA E. coli strains, otherwise isogenic, were studied with regard to the susceptibility of starved cells to lysis induced by the natural peptide seminalplasmin. Starved relA cells were more sensitive to seminalplasmin-induced lysis when compared to starved relA + cells. Nevertheless, pronounced lysis of starved relA + cells was observed with increase in the concentration of seminalplasmin. In conctrast, ampicillin could not lyse starved relA + cells even at very high concentrations. Further, seminalplasmin could cause loss of viability and degradation of peptidoglycan in starved relA + cells. These observations suggest that, unlike many other antibiotics, seminalplasmin can induce autolysis under the conditions of a stringent response.  相似文献   

15.
The regulation of uridine diphosphate-N-acetylmuramyl-peptide (UDP-MurNAc-peptide) synthesis was studied by labeling Escherichia coli strains auxotrophic for lysine and diaminopimelate with [3H]diaminopimelate for 15 min under various conditions. The amounts of [3H]diaminopimelate incorporated into UDP-MurNAc-tripeptide and -pentapeptide by a stringent (rel+) strain were the same in the presence or absence of lysine. Chloramphenicol-treated rel+ cells showed a 2.8-fold increase in labeled UDP-MurNAc-pentapeptide. An isogenic relaxed (relA) strain deprived of lysine showed a 2.7-fold increase in UDP-MurNAc-pentapeptide. Thus, UDP-MurNAc-pentapeptide synthesis is regulated by the relA gene. D-Cycloserine treatment of rel+ and relA strains caused a depletion of intracellular UDP-MurNAc-pentapeptide. Labeled UDP-MurNAc-tripeptide accumulated in D-cycloserine-treated cells of the rel+ and relA strains, suggesting that UDP-MurNAc-pentapeptide is a feedback inhibitor of UDP-MurNAc-peptide synthesis. In lysine-deprived cells, D-cycloserine treatment caused 41- and 71-fold accumulations of UDP-MurNAc-tripeptide in rel+ and relA strains, respectively. A 124-fold increase in UDP-MurNAc-tripeptide occurred in lysine-deprived rel+ cells treated with both chloramphenicol and D-cycloserine. These results indicate that both the relA gene product and feedback inhibition are involved in regulating UDP-MurNAc-peptide synthesis during amino acid deprivation.  相似文献   

16.
Cell wall peptidoglycan synthesis in Escherichia coli is under stringent control. During amino acid deprivation, peptidoglycan synthesis is inhibited in re1A+ bacteria but not in re1A mutants. The relaxed synthesis of peptidoglycan by amino acid deprived re1A bacteria was inhibited by several beta-lactam antibiotics at concentrations which inhibited cell elongation in growing cultures suggesting that the transpeptidase activity of penicillin-binding protein (PBP-1B) was involved in this process. Structural studies on the peptidoglycan also indicated the involvement of transpeptidation in relaxed peptidoglycan synthesis. The peptidoglycan synthesized during amino acid deprivation was cross-linked to the existing cell wall peptidoglycan, and the degree of cross-linkage was the same as that of peptidoglycan synthesized by growing control cells. The relaxed synthesis of peptidoglycan was also inhibited by moenomycin, an inhibitor of the in vitro transglycosylase activities of PBPs, but the interpretation of this result depends on whether the transglycosylases are the sole targets of moenomycin in vivo. Most of the peptidoglycan lipoprotein synthesized by histidine-deprived re1A+ bacteria was in the free form as previously reported, possibly because of the restriction in peptidoglycan synthesis. In support of this proposal, most of the lipoprotein synthesized during histidine deprivation of re1A mutants was found to be covalently linked to peptidoglycan. Nevertheless, the peptidoglycan synthesized by amino acid deprived re1A bacteria was apparently deficient in bound lipoprotein as compared with peptidoglycan synthesized by normal growing control bacteria suggesting that the rate of lipoprotein synthesis during amino acid deprivation may be limiting.  相似文献   

17.
Group B streptococci treated with cell wall synthesis inhibitors (penicillin or vancomycin) or by a variety of membrane-acting agents are sensitized to the lytic action of exogenous M1 muramidase. Muramidase without a sensitizing agent caused rupture of bacterial chains only, accompanied by the release of a small amount of cell wall peptidoglycan label and an increase of the number of colony-forming units. In combination with sensitizing agents the exogenous muramidase appeared to initiate hydrolysis of biosynthetically new peptidoglycan. Treatment of the cells with chloramphenicol or starvation for nutritionally required amino acids suppressed the rate of cell lysis and peptidoglycan hydrolysis during subsequent sensitization and muramidase treatment of the bacteria. Purified cell walls prepared from the amino acid starved cells were also hydrolyzed with a slower rate by muramidase. It is suggested that agents sensitizing the bacteria to the exogenous muramidase act by perturbing or removing some nonmurein components of the cell envelope which protect the peptidoglycan from the activity of exogenous enzyme. Agents increasing resistance against exogenous muramidase may also cause some alteration in peptidoglycan structure.  相似文献   

18.
The regulation of ribonucleic acid (RNA) synthesis was examined in cultures of bacteria whose growth was limited in the chemostat by the supply of a required amino acid. Strains possessing the relaxed (relA) mutation accumulated excess RNA (relative to protein) at low growth rates when growth was limited by arginine, histidine, or cysteine but not when limited by methionine. In contrast, stringent (relA(+)) strains maintained a constant RNA/protein ratio with decreasing growth rate regardless of the amino acid used to limit growth. The presence of excess RNA in relaxed strains was accompanied by an absence of increase in RNA production upon addition of chloramphenicol, a lag upon shift-up in growth by addition of excess of the limiting amino acid, and a decreased rate of production of beta-galactosidase upon induction. Analysis of the RNA accumulated in relaxed strains indicated it was present as transfer RNA as well as 50S and 30S ribosomal subunits. Microscope examination of the relaxed strains during histidine-, arginine-, or cysteine-limited growth in the chemostat showed them to be 10 to 20 times longer in size than the stringent strains. Also, cell density was reduced to one-tenth when the increased size was observed. An analysis of the amount of ppGpp present in all slow-growing amino acid-limited cultures (relaxed and stringent) demonstrated that only basal levels of ppGpp were made. These data are consistent with the hypothesis that when growth is limited in the chemostat by an initiation event in protein synthesis, i.e., limited methionine, RNA regulation occurs in relaxed as well as stringent strains. Also, when other amino acids are limiting in concentration during translation, errors occur in relaxed strains, resulting in misread proteins.  相似文献   

19.
The effects of two polypeptide antibiotics, polymixin B and gramicidin S, on the intracellular pool size and turnover of guanosine tetraphosphate (ppGpp) were analyzed in stringent (relA+) and relaxed (relA) strains of Escherichia coli. When either one of these two drugs was added to stringent bacteria cultures at a final concentration that blocked protein and RNA synthesis, ppGpp was found to accumulate. Under similar conditions of inhibition of macromolecular synthesis, ppGpp also appeared to accumulate in relaxed bacteria. Moreover, in either type of strain, no significant accumulation of guanosine pentaphosphate (pppGpp) could be detected upon drug treatment. It was, therefore, concluded that polymixin and gramicidin elicit ppGpp accumulation through a mechanism independent of the relA gene product and, consequently, quite distinct from the stringent control system triggered by amino acid starvation. Further experiments performed by using tetracycline as an inhibitor of ppGpp synthesis, showed that the increase in the level of this nucleotide induced by drug action was due, in fact, to a strong restriction of its degradation rate.  相似文献   

20.
C A Reeve  P S Amy    A Matin 《Journal of bacteriology》1984,160(3):1041-1046
In a typical Escherichia coli K-12 culture starved for glucose, 50% of the cells lose viability in ca. 6 days (Reeve et al., J. Bacteriol. 157:758-763, 1984). Inhibition of protein synthesis by chloramphenicol resulted in a more rapid loss of viability in glucose-starved E. coli K-12 cultures. The more chloramphenicol added (i.e., the more protein synthesis was inhibited) and the earlier during starvation it was added, the greater was its effect on culture viability. Chloramphenicol was found to have the same effect on a relA strain as on an isogenic relA+ strain of E. coli. Addition of the amino acid analogs S-2-aminoethylcysteine, 7-azatryptophan, and p-fluorophenylalanine to carbon-starved cultures to induce synthesis of abnormal proteins had an effect on viability similar to that observed when 50 micrograms of chloramphenicol per ml was added at zero time for starvation. Both chloramphenicol and the amino acid analogs had delayed effects on viability, compared with their effects on synthesis of normal proteins. The need for protein synthesis did not arise from cryptic growth, since no cryptic growth of the starving cells was observed under the conditions used. From these and previous results obtained from work with peptidase-deficient mutants of E. coli K-12 and Salmonella typhimurium LT2 (Reeve et al., J. Bacteriol. 157:758-763, 1984), we concluded that a number of survival-related proteins are synthesized by E. coli K-12 cells as a response to carbon starvation. These proteins are largely synthesized during the early hours of starvation, but their continued activity is required for long-term survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号