首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Mutans streptococci are a group of gram-positive bacteria including the primary cariogenic dental pathogen Streptococcus mutans and closely related species. Two component systems (TCSs) composed of a signal sensing histidine kinase (HK) and a response regulator (RR) play key roles in pathogenicity, but have not been comparatively studied for these oral bacterial pathogens.

Results

HKs and RRs of 8 newly sequenced mutans streptococci strains, including S. sobrinus DSM20742, S. ratti DSM20564 and six S. mutans strains, were identified and compared to the TCSs of S. mutans UA159 and NN2025, two previously genome sequenced S. mutans strains. Ortholog analysis revealed 18 TCS clusters (HK-RR pairs), 2 orphan HKs and 2 orphan RRs, of which 8 TCS clusters were common to all 10 strains, 6 were absent in one or more strains, and the other 4 were exclusive to individual strains. Further classification of the predicted HKs and RRs revealed interesting aspects of their putative functions. While TCS complements were comparable within the six S. mutans strains, S. sobrinus DSM20742 lacked TCSs possibly involved in acid tolerance and fructan catabolism, and S. ratti DSM20564 possessed 3 unique TCSs but lacked the quorum-sensing related TCS (ComDE). Selected computational predictions were verified by PCR experiments.

Conclusions

Differences in the TCS repertoires of mutans streptococci strains, especially those of S. sobrinus and S. ratti in comparison to S. mutans, imply differences in their response mechanisms for survival in the dynamic oral environment. This genomic level study of TCSs should help in understanding the pathogenicity of these mutans streptococci strains.  相似文献   

2.
3.
The genetic and phenotypic responses of Streptococcus mutans, an organism that is strongly associated with the development of dental caries, to changes in carbohydrate availability were investigated. S. mutans UA159 or a derivative of UA159 lacking ManL, which is the EIIAB component (EIIABMan) of a glucose/mannose permease of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) and a dominant effector of catabolite repression, was grown in continuous culture to steady state under conditions of excess (100 mM) or limiting (10 mM) glucose. Microarrays using RNA from S. mutans UA159 revealed that 174 genes were differentially expressed in response to changes in carbohydrate availability (P < 0.001). Glucose-limited cells possessed higher PTS activity, could acidify the environment more rapidly and to a greater extent, and produced more ManL protein than cultures grown with excess glucose. Loss of ManL adversely affected carbohydrate transport and acid tolerance. Comparison of the histidine protein (HPr) in S. mutans UA159 and the manL deletion strain indicated that the differences in the behaviors of the strains were not due to major differences in HPr pools or HPr phosphorylation status. Therefore, carbohydrate availability alone can dramatically influence the expression of physiologic and biochemical pathways that contribute directly to the virulence of S. mutans, and ManL has a profound influence on this behavior.  相似文献   

4.
The cariogenic bacterium Streptococcus mutans is an important dental pathogen that forms biofilms on tooth surfaces, which provide a protective niche for the bacterium where it secretes organic acids leading to the demineralization of tooth enamel. Lipids, especially glycolipids are likely to be key components of these biofilm matrices. The UA159 strain of S. mutans was among the earliest microorganisms to have its genome sequenced. While the lipids of other S. mutans strains have been identified and characterized, lipid analyses of UA159 have been limited to a few studies on its fatty acids. Here we report the structures of the four major glycolipids from stationary-phase S. mutans UA159 cells grown in standing cultures. These were shown to be monoglucosyldiacylglycerol (MGDAG), diglucosyldiacylglycerol (DGDAG), diglucosylmonoacylglycerol (DGMAG) and, glycerophosphoryldiglucosyldiacylglycerol (GPDGDAG). The structures were determined by high performance thin-layer chromatography, mass spectrometry and nuclear magnetic resonance spectroscopy. The glycolipids were identified by accurate, high resolution, and tandem mass spectrometry. The identities of the sugar units in the glycolipids were determined by a novel and highly efficient NMR method. All sugars were shown to have α-glycosidic linkages and DGMAG was shown to be acylated in the sn-1 position by NMR. This is the first observation of unsubstituted DGMAG in any organism and the first mass spectrometry data for GPDGDAG.  相似文献   

5.
Streptococcus mutans UA159, the genome sequence reference strain, exhibits nonlantibiotic mutacin activity. In this study, bioinformatic and mutational analyses were employed to demonstrate that the antimicrobial repertoire of strain UA159 includes mutacin IV (specified by the nlm locus) and a newly identified bacteriocin, mutacin V (encoded by SMU.1914c).  相似文献   

6.
7.
When proteins are damaged under stresses conditions, these proteins are either refolded or degraded by quality control system of molecular chaperones and protease. High-temperature requirement A (htrA) is of particular interest because it can perform the roles of both protease and a chaperone. HtrA plays an important role in maintaining the physiological homeostasis of bacteri against environmental stress such as elevated temperature, oxidative and osmotic stress. Inactivation of htrA genes can thus restrict the survival ability of bacteria. These observations suggested that htrA might be responsible for acid tolerance of Streptococcus mutans. In this study, we have generated an htrA mutant and an htrA-complemented strain of S. mutans K7 isolated from a Korean in order to investigate the role of htrA in growth under acidic conditions. In terms of growth under cidic conditions, the htrA mutant exhibited 20% to 23% lower growth than the control group. In ddition, glucosyltransferaseB nd glucosyltransferaseC expression levels significantly decreased. When the htrA expression level was restored by adding the htrA gene to the htrA mutant strain, the normal growth phenotype was restored under acid stress. Further, similar results were obtained for S. mutans UA159. Thus, htrA in S. mutans K7, as well as S. mutans UA159, can be concluded to play an important role during acid stress.  相似文献   

8.
Streptococcus mutans-derived exopolysaccharides are virulence determinants in the matrix of biofilms that cause caries. Extracellular DNA (eDNA) and lipoteichoic acid (LTA) are found in cariogenic biofilms, but their functions are unclear. Therefore, strains of S. mutans carrying single deletions that would modulate matrix components were used: eDNA – ?lytS and ?lytT; LTA – ?dltA and ?dltD; and insoluble exopolysaccharide – ΔgtfB. Single-species (parental strain S. mutans UA159 or individual mutant strains) and mixed-species (UA159 or mutant strain, Actinomyces naeslundii and Streptococcus gordonii) biofilms were evaluated. Distinct amounts of matrix components were detected, depending on the inactivated gene. eDNA was found to be cooperative with exopolysaccharide in early phases, while LTA played a larger role in the later phases of biofilm development. The architecture of mutant strains biofilms was distinct (vs UA159), demonstrating that eDNA and LTA influence exopolysaccharide distribution and microcolony organization. Thus, eDNA and LTA may shape exopolysaccharide structure, affecting strategies for controlling pathogenic biofilms.  相似文献   

9.
10.
High coverage, whole genome shotgun (WGS) sequencing of 57 geographically- and genetically-diverse isolates of Streptococcus mutans from individuals of known dental caries status was recently completed. Of the 57 sequenced strains, fifteen isolates, were selected based primarily on differences in gene content and phenotypic characteristics known to affect virulence and compared with the reference strain UA159. A high degree of variability in these properties was observed between strains, with a broad spectrum of sensitivities to low pH, oxidative stress (air and paraquat) and exposure to competence stimulating peptide (CSP). Significant differences in autolytic behavior and in biofilm development in glucose or sucrose were also observed. Natural genetic competence varied among isolates, and this was correlated to the presence or absence of competence genes, comCDE and comX, and to bacteriocins. In general strains that lacked the ability to become competent possessed fewer genes for bacteriocins and immunity proteins or contained polymorphic variants of these genes. WGS sequence analysis of the pan-genome revealed, for the first time, components of a Type VII secretion system in several S. mutans strains, as well as two putative ORFs that encode possible collagen binding proteins located upstream of the cnm gene, which is associated with host cell invasiveness. The virulence of these particular strains was assessed in a wax-worm model. This is the first study to combine a comprehensive analysis of key virulence-related phenotypes with extensive genomic analysis of a pathogen that evolved closely with humans. Our analysis highlights the phenotypic diversity of S. mutans isolates and indicates that the species has evolved a variety of adaptive strategies to persist in the human oral cavity and, when conditions are favorable, to initiate disease.  相似文献   

11.
Streptococcus mutans, the primary etiological agent of human dental caries, is an obligate biofilm-forming bacterium. The goals of this study were to identify the gene(s) required for biofilm formation by this organism and to elucidate the role(s) that some of the known global regulators of gene expression play in controlling biofilm formation. In S. mutans UA159, the brpA gene (for biofilm regulatory protein) was found to encode a novel protein of 406 amino acid residues. A strain carrying an insertionally inactivated copy of brpA formed longer chains than did the parental strain, aggregated in liquid culture, and was unable to form biofilms as shown by an in vitro biofilm assay. A putative homologue of the enzyme responsible for synthesis of autoinducer II (AI-2) of the bacterial quorum-sensing system was also identified in S. mutans UA159, but insertional inactivation of the gene (luxSSm) did not alter colony or cell morphology or diminish the capacity of S. mutans to form biofilms. We also examined the role of the homologue of the Bacillus subtilis catabolite control protein CcpA in S. mutans in biofilm formation, and the results showed that loss of CcpA resulted in about a 60% decrease in the ability to form biofilms on an abiotic surface. From these data, we conclude that CcpA and BrpA may regulate genes that are required for stable biofilm formation by S. mutans.  相似文献   

12.
13.
Glutamate contributes to the acid tolerance response (ATR) of many Gram-negative and Gram-positive bacteria, but its role in the ATR of the oral bacterium Streptococcus mutans is unknown. This study describes the discovery and characterization of a glutamate transporter operon designated glnQHMP (Smu.1519 to Smu.1522) and investigates its potential role in acid tolerance. Deletion of glnQHMP resulted in a 95% reduction in transport of radiolabeled glutamate compared to the wild-type UA159 strain. The addition of glutamate to metabolizing UA159 cells resulted in an increased production of acidic end products, whereas the glnQHMP mutant produced less lactic acid than UA159, suggesting a link between glutamate metabolism and acid production and possible acid tolerance. To investigate this possibility, we conducted a microarray analysis with glutamate and under pH 5.5 and pH 7.5 conditions which showed that expression of the glnQHMP operon was downregulated by both glutamate and mild acid. We also measured the growth kinetics of UA159 and its glnQHMP-negative derivative at pH 5.5 and found that the mutant doubled at a much slower rate than the parent strain but survived at pH 3.5 significantly better than the wild type. Taken together, these findings support the involvement of the glutamate transporter operon glnQHMP in the acid tolerance response in S. mutans.Streptococcus mutans is 1 of over 700 bacterial species commonly found in the oral environment (1). Its ability to rapidly metabolize dietary carbohydrates to acid end products causes demineralization of the tooth enamel, leading to caries formation (19). Acidogenicity (the ability to produce acid end products via glycolysis) and aciduricity (the ability to survive and grow in acidic environments) are two important virulence factors of S. mutans. Maintenance of a pH gradient across the cell membrane by increasing intracellular pH by 0.5 to 1.0 relative to the extracellular pH (ΔpH) when exposed to a low pH environment is critical for the survival of S. mutans at low pH. This is primarily accomplished by acid-induced mechanisms that facilitate proton extrusion via the proton-translocating ATPase (5, 20) and by acid end product efflux (8, 12). S. mutans also possesses an acid tolerance response (ATR) mechanism, whereby preexposure to sublethal pH environments (e.g., pH 5.5) affords protection from killing under lethal pH values as low as pH 3.0 (7). This adaptive process is characterized by increased acid resistance (4), increased glycolytic capacities (20), and increased proton-translocating enzyme F1F0-ATPase activity (44). The ATR is enhanced by sugar starvation and the addition of amino acids (48), the addition of potassium ions (12), growth in biofilms, and activity of multiple two-component signal transduction systems that include the ComDE, HK11/RR11 (also designated LiaS/LiaR), VicKR, CiaHR, LevSR, ScnKR, and HK1037/RR1038 (6, 17, 31, 32, 46).Previously, Noji et al. and Sato et al. described a glutamate/aspartate transporter in S. mutans (38, 45). Those researchers showed that the presence of potassium ions was required for transport and that, in environments of pH 6.0 or below, the activity of the H+-ATPase system was required (38, 45). Potassium ions are the main cations in plaque (50), and potassium uptake is associated with intracellular pH homeostasis in S. mutans (24, 35). In addition, expression of several genes involved in the glutamate synthesis pathway (icd, citZ, and acn) are downregulated under low pH (10), suggesting a link between glutamate metabolism, potassium levels, and aciduricity in S. mutans. Since acid tolerance is an important virulence property of S. mutans, we aimed to investigate a possible link between glutamate uptake and acid resistance in this oral pathogen. In bacteria, intracellular glutamate and glutamine levels are closely linked with nitrogen metabolism of the cell. Glutamine is synthesized from glutamate and ammonium, which is a major way for cells to assimilate the nitrogen required for biosynthesis of all amino acids, thus affecting protein synthesis and the structural and functional integrity of the cell. Notably, nitrogen metabolism, especially glutamine metabolism, has been linked to virulence in a number of microorganisms, including Streptococcus pneumoniae (26, 42), Staphylococcus aureus (41), Candida albicans (33), and Pseudomonas aeruginosa (51). Glutamate uptake and metabolism are known to be involved in the ATR of Gram-negative bacteria such as Escherichia coli via the use of glutamate decarboxylase and the glutamate/gamma-amino butyrate (glutamate/GABA) antiporter (9). Similarly, the homologous proteins of these systems in Lactococcus lactis, encoded by the gadBC genes, were shown to assist in a glutamate-dependent acid-resistance mechanism in that Gram-positive bacterium (44).In this study, we searched the S. mutans UA159 genome for potential glutamine transporter operons. We constructed a deletion mutant (SmuGLT) of the glnQHMP operon (Smu.1519 to Smu.1522) and confirmed its role as a glutamate transporter. The inability of SmuGLT to take up glutamate resulted in a general growth deficiency, especially at pH 5.5, as well as an increased tolerance to acid. Results from this study provide insight into the ATR of S. mutans, including a potential link between glutamate metabolism and acid resistance in S. mutans.  相似文献   

14.
15.
Streptococcus mutans is a cariogenic bacterium that localizes in the oral cavity. Glycyrrhetinic acid (GRA) is a major component of licorice extract. GRA and several derivatives, including disodium succinoyl glycyrrhetinate (GR‐SU), are known to have anti‐inflammatory effects in humans. In this study, the antimicrobial effect of GRA and its derivatives against the S. mutans UA159 strain were investigated. Minimum inhibitory concentrations (MICs) of GRA and GR‐SU showed antibacterial activity against the S. mutans strain, whereas other tested derivatives did not. Because GR‐SU is more soluble than GRA, GR‐SU was used for further experiments. The antibacterial activity of GR‐SU against 100 S. mutans strains was evaluated and it was found that all strains are susceptible to GR‐SU, with MIC values below 256 µg/mL. A cell viability assay showed that GR‐SU has a bacteriostatic effect on S. mutans cells. As to growth kinetics, sub‐MICs of GR‐SU inhibited growth. The effect of GR‐SU on S. mutans virulence was then investigated. GR‐SU at sub‐MICs suppresses biofilm formation. Additionally, GR‐SU greatly suppresses the pH drop caused by the addition of glucose and glucose‐induced expression of the genes responsible for acid production (ldh and pykF) and tolerance (aguD and atpD). Additionally, expression of enolase, which is responsible for the carbohydrate phosphotransferase system, was not increased in the presence of GR‐SU, indicating that GR‐SU suppresses incorporation of sugars into S. mutans. In conclusion, GR‐SU has antibacterial activity against S. mutans and also decreases S. mutans virulence.  相似文献   

16.
The galK gene, encoding galactokinase of the Leloir pathway, was insertionally inactivated in Streptococcus mutans UA159. The galK knockout strain displayed only marginal growth on galactose, but growth on glucose or lactose was not affected. In strain UA159, the sugar phosphotransferase system (PTS) for lactose and the PTS for galactose were induced by growth in lactose and galactose, although galactose PTS activity was very low, suggesting that S. mutans does not have a galactose-specific PTS and that the lactose PTS may transport galactose, albeit poorly. To determine if the galactose growth defect of the galK mutant could be overcome by enhancing lactose PTS activity, the gene encoding a putative repressor of the operon for lactose PTS and phospho-β-galactosidase, lacR, was insertionally inactivated. A galK and lacR mutant still could not grow on galactose, although the strain had constitutively elevated lactose PTS activity. The glucose PTS activity of lacR mutants grown in glucose was lower than in the wild-type strain, revealing an influence of LacR or the lactose PTS on the regulation of the glucose PTS. Mutation of the lacA gene of the tagatose pathway caused impaired growth in lactose and galactose, suggesting that galactose can only be efficiently utilized when both the Leloir and tagatose pathways are functional. A mutation of the permease in the multiple sugar metabolism operon did not affect growth on galactose. Thus, the galactose permease of S. mutans is not present in the gal, lac, or msm operons.  相似文献   

17.
The objective of the study was to investigate the antimicrobial effects of deglycyrrhizinated licorice root extracts (DG-LRE) against Streptococcus mutans UA159 in both the planktonic and biofilm phases by determining the minimum inhibitory concentration and minimum bactericidal concentration, and by performing time-kill kinetic, growth, adhesion, and biofilm assays. The cell toxicity of DG-LRE on normal human gingival fibroblast (NHGF) cells was tested using a methyl thiazolyl tetrazolium assay. This study showed that DG-LRE had strong antimicrobial activity against S. mutans in the planktonic phase with little cytotoxic effect on NHGF cells. In addition, DG-LRE significantly inhibited biofilm formation by S. mutans UA159 at concentrations over 4 μg/ml for glucose or 16 μg/ml for sucrose, respectively, regardless of the presence of saliva-coating. To the best of our knowledge, this is the first report to provide evidence that DG-LRE demonstrates antimicrobial activity against S. mutans. These results suggest that DG-LRE can be used in developing oral hygiene products, such as gargling solution and dentifrice to prevent human dental caries.  相似文献   

18.
Streptococcus mutans strain GS-5 produces a two-peptide lantibiotic, Smb, which displays inhibitory activity against a broad spectrum of bacteria, including other streptococci. For inhibition, lantibiotics must recognize specific receptor molecules present on the sensitive bacterial cells. However, so far no such receptor proteins have been identified for any lantibiotics. In this study, using a powerful transposon mutagenesis approach, we have identified in Streptococcus pyogenes a gene that exhibits a receptor-like function for Smb. The protein encoded by that gene, which we named LsrS, is a membrane protein belonging to the CAAX protease family. We also found that nisin, a monopeptide lantibiotic, requires LsrS for its optimum inhibitory activity. However, we found that LsrS is not required for inhibition by haloduracin and galolacticin, both of which are two-peptide lantibiotics closely related to Smb. LsrS appears to be a well-conserved protein that is present in many streptococci, including S. mutans. Inactivation of SMU.662, an LsrS homolog, in S. mutans strains UA159 and V403 rendered the cells refractory to Smb-mediated killing. Furthermore, overexpression of LsrS in S. mutans created cells more susceptible to Smb. Although LsrS and its homolog contain the CAAX protease domain, we demonstrate that inactivation of the putative active sites on the LsrS protein has no effect on its receptor-like function. This is the first report describing a highly conserved membrane protein that displays a receptor-like function for lantibiotics.  相似文献   

19.
20.
Streptococcus mutans (S. mutans) is the main etiological agent of dental caries, and adheres to the tooth surface through the sortase A (SrtA)-mediated cell wall-anchored protein Pac. Inhibition of SrtA activity results in a marked reduction in the adhesion potential of S. mutans, and the frequency of dental caries. Morin is a natural plant extract that was previously reported to inhibit Staphylococcus aureus SrtA activity. Here, we demonstrate that morin has an inhibitory effect against S. mutans UA159 SrtA, with an IC50 of 27.2 ± 2.6 μM. Western blotting demonstrated that 30 μM morin induced the partial release of the Pac protein into the supernatant. The biofilm mass of S. mutans was reduced in the presence of 30 μM morin, which was not caused by a decrease in S. mutans viability. These results indicate that morin might be important as a new agent to prevent caries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号