首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
W. E. Dietrich  Jr.  J. P. Thornber 《BBA》1971,245(2):482-493
The previously isolated chlorophyll a-protein of blue-green algae has been shown to contain P700 in a ratio of 1 reaction center molecule per 100 light-harvesting chlorophyll molecules. One-fifth of the molecules in the preparation contain P700 together with some 20 light-harvesting molecules, whereas the other molecules contain bulk chlorophyll only. Both pigment-protein entities are considered to be essentially the same and cannot be fractionated. An aggregate containing both types probably makes up the photochemical portion of the algal Photosystem I in vivo. The absorption and emission spectra of the pigment-protein are reported, as well as the spectral changes associated with the photochemical reaction. In addition to chlorophyll, carotenoid and protein the complex contains a quinone, which is not a plastoquinone. This unidentified quinone appears to participate in secondary electron transfer reactions occurring in the complex. Horse cytochrome c can be bound to the complex and will donate electrons to P+700 upon illumination. Current hypotheses for the identity of the primary electron acceptor were tested. It appears unlikely that flavins, pteridines or iron fill this role.  相似文献   

2.
3.
A procedure has been developed for the isolation of a P700-chlorophyll-protein complex from a blue-green alga by a nondetergent method. The use of a Sepharose 4B column in conjunction with sucrose density-gradient centrifugation allows the separation of this complex from three other chlorophyll a-containing fractions which have higher ratios of carotenoids to chlorophyll a. Isoelectric focusing results in a single band with an isoelectric point at 4.5. Analysis of the major (green) fraction reveals the presence of P700. The absorption and emission spectra of this complex are reported.  相似文献   

4.
David B. Knaff 《BBA》1973,325(2):284-296
1. Cytochrome f (λmax = 554 nm, Em = +0.35 V) and cytochrome b558 (λmax = 558 nm, Em = +0.35 V) were photooxidized by Photosystem I and photoreduced by Photosystem II in a cell-free preparation from the blue-green alga Nostoc muscorum. The steady-state oxidation levels of both cytochromes were affected by noncyclic electron acceptors and by inhibitors of noncyclic electron transport. These results are consistent with the hypothesis that the mechanism of NADP reduction by water involves a Photosystem II and a Photosystem I light reaction operating in series and linked by a chain of electron carriers that includes cytochrome f and cytochrome b558.2. Phosphorylation cofactors shifted the steady-state of cytochrome f to a more reduced level under conditions of noncyclic electron transport but had no effect on cytochrome b558. These observations suggest that the noncyclic phosphorylation site lies before cytochrome f (on the Photosystem II side) and that cytochrome f is closer to this site than is cytochrome b558.3. A Photosystem II photoreduction of C550 at 77 °K was observed, suggesting that in blue-green algae, as in other plants, C550 is closely associated with the primary electron acceptor for Photosystem II. A Photosystem I photooxidation of P700 at 77 °K was observed, consistent with P700 serving as the primary electron donor of Photosystem I.  相似文献   

5.
Horst Metzler   《BBA》1980,593(2):312-318
Oscillations of the oxygen uptake rate of the blue-green alga (cyanobacterium) Anacystis nidulans were induced by light pulses. The pool size of NAD(P)H and the redox state of a cytochrome b showed oscillations of similar shape and frequency. Phase diagrams revealed that these three oscillations were presumably linked. The cytochrome b should be a part of the respiratory chain of this blue-green alga. The oscillations were inducible only in a limited physiological state of the alga.  相似文献   

6.
Chemical modification of plastocyanin was carried out using ethylenediamine plus a water-soluble carbodiimide, which has the effect of replacing a negatively charged carboxylate group with a positively charged amino group at pH 6–8. The conditions were adjusted to produce a series of singly and doubly modified forms of plastocyanin. Differences in charge configuration allowed separation of these forms on a Pharmacia fast protein liquid chromatograph using a Mono Q anion exchange column. These forms were used to study the interaction of plastocyanin with its reaction partner cytochrome f. The rate of cytochrome f oxidation was progressively inhibited upon incorporation of increasing numbers of ethylenediamine moieties indicating a positively charged binding site on cytochrome f. However, differential inhibition was obtained for the various singly modified forms allowing mapping of the binding site on plastocyanin. The greatest inhibition was found for forms modified at negatively charged residues Nos. 42–45 and Nos. 59–61 which comprise a negative patch surrounding Tyr-83. In contrast, the form modified at residue No. 68, on the opposite side of the globular plastocyanin molecule, showed the least inhibition. It can be concluded that the binding site for cytochrome f is located in the vicinity of residues Nos. 42–45 and Nos. 59–61. Modification of plastocyanin at residues Nos. 42–45 showed no effect on the rate of P-700+ reduction, suggesting that these residues are not involved in the binding of Photosystem I. However, an increase in the rate of P-700+ reduction was observed for plastocyanins modified at residue No. 68 or Nos. 59–61, which is consistent with the idea that the reaction domain of Photosystem I is negatively charged and Photosystem I binds at the top of the molecule and accepts electrons via His-87 in plastocyanin. These results raise the possibility that plastocyanin can bind both cytochrome f and Photosystem I simultaneously. The effect of ethylenediamine modification on the formal potential of plastocyanin was also examined. The formal potential of control plastocyanin was found to be +372 ± 5 mV vs. normal hydrogen electrode at pH 7. All modified forms showed a positive shift in formal potential. Singly modified forms showed increases in formal potentials between +8 and +18 mV with the largest increases being observed for plastocyanins modified at residues Nos. 42–45 or Nos. 59–61.  相似文献   

7.
Lars F. Olsen 《BBA》1982,682(3):482-490
The kinetics of redox changes of P-700, plastocyanin and cytochrome f in chloroplasts suspended in a fluid medium at sub-zero temperatures have been studied following excitation of the chloroplasts with either a single-turnover flash, a series of flashes or continuous light. The results show that: (1) The kinetics of reduction of P-700+ and those of oxidation of plastocyanin are consistent with a bimolecular reaction between these two components as previously suggested (Olsen, L.F., Cox, R.P. and Barber, J. (1980) FEBS Lett. 122, 13–16). (2) Cytochrome f shows heterogeneity with respect to its kinetics of oxidation by Photosystem I. (3) In contrast to the situation when plastoquinol is the electron donor, reduction of cytochrome f by electrons derived from diaminodurene occurs with sigmoidal kinetics that shows a good fit to an apparent equilibrium constant of 12 between the cytochrome and P-700. (4) The rate of electron transfer from plastoquinol to Photosystem I depends on the redox state of the plastoquinone pool. (5) In relation to current ideas about the lateral heterogeneity of Photosystem I and Photosystem II in the thylakoid membrane, the results are consistent with the function of plastocyanin as a mobile carrier of electrons in the intrathylakoid space.  相似文献   

8.
9.
The mathematical analysis described in the preceding paper (Biochim. Biophys. Acta (1977) 460, 65-75), in which the steady-state photooxidation of P-700 was compared with overall electron flux in Photosystem I chloroplast fragments, was applied to membrane fragments from the blue-gree alga Nostoc muscorum (Strain 7119) noted for their high activity of both Photosystem I and Photosystem II. The same analysis, which gave good agreement between the photooxidation of P-700 and the overall light-induced electron flux (measured as NADP+ reduction) in Photosystem I chloroplast fragments, revealed in the algal membrane fragments two P-700 components: one responding to high light intensity (P-700 HI), the photooxidation of which was in good agreement with the overall electron flux (measured as NADP+ reduction by reduced 2,6-dichlorophenolindophenol), and the other component responding to low light intensity (P-700 LI), the photooxidation of which was not correlated with the reduction of NADP+ by reduced 2,6-dichlorophenolindophenol.  相似文献   

10.
Summary Two PstI fragments (5.3x106 and 4.3x106 daltons) coding for Anacystis nidulans rRNA genes were cloned. The cloned rDNAs were characterized by restriction endonuclease mapping, DNA-RNA hybridization analysis and the R-loop technique. The results indicated that both fragments contained 16S, 23S and 5S rRNA genes in this order. A tRNA gene(s) was detected in the spacer region between 16S and 23S rRNA genes. The organization of A. nidulans rRNA genes resembles those of E. coli and of Euglena chloroplasts rather than those of higher plant chloroplasts.  相似文献   

11.
Summary Two multiply marked complementary strains namely Het + Nif+ Str-R and Het - Nif- Ery-R MSO-R were constructed and crossed under conditions counterselective for the Het + Nif+ Str-R parent and selective only for recombinants of Str-R and Ery-R or Str-R and MSO-R constitution. The results of the recombinant analysis with regard to the selected and unselected markers suggested that the Het - Nif- Ery-R MSO-R parent acted as a recipient and the Het + Nif+ Str-R parent as donor of the genetic markers in the cross. The joint inheritance of Het + and Nif + unselected markers among the recombinants was found to occur more frequently than the inheritance of the Het + or Nif + markers alone. The observed joint inheritance of Het + and Nif + markers among the recombinants probably results from the inheritance of the regulatory gene(s) required for the activation of latent het and nif genes. This interpretation is fully supported by (a) the frequency distribution of unselected Het + and Nif + markers and (b) the reversion frequency of Het - Nif - strains to Het + Nif+ prototrophy. Accordingly the apparent close genetic linkage of het and nif genes is not due to their organization in a single operon but to their common regulation by regulatory gene(s) of a positive control nature. The Het + Nif+ wild type, mutant, revertant, and recombinant strains all appear similar in their NO 3 - repression of both heterocyst and nitrogenase. The Het + Nif- and Het - Nif+ recominants also show similar NO 3 - repression of their heterocyst and nitrogenase respectively. The presence of only microaerobic acetylene reducing activity in Het - Nif+ recombinants clearly indicates the heterocyst to be an organ for protection of nitrogenase against oxygen toxicity.Abbreviations CFU Colony forming units - Ery erythromycin - Ery-R erythromycin resistance - het genotypic designation of genes required for heterocyst differentiation - Het phenotype designation of genes required for heterocyst differentiation - MSO l-Methionine-dl-sulfoximine - MSO-R MSO-resistance - N2 medium Chu 10 medium without combined nitrogen - NH 4 + medium basic mineral medium with ammonium nitrogen - nif genotype designation of genes required for N2 fixation - Nif phenotype designation of genes required for N2 fixation - NO 3 - medium Chu 10 medium supplemented with KNO3 - NTG N-methyl-N-nitro-N-nitrosoguanidine - r gene(s) regulatory gene(s) - Str streptomycin - Str-R streptomycin resistance - Str-S streptomycin sensitive  相似文献   

12.
Cytochrome b6 can be both photooxidized and photoreduced by Photosystem I in a cell-free preparation from the blue-green alga Nostoc muscorum. The cytochrome appears to have an oxidation-reduction potential near 0.0 V. The reduction of cytochrome b6 when ferredoxin is added during Photosystem I illumination suggests that the cytochrome may function as a component of a ferredoxin-catalyzed cyclic electron transport pathway. In the presence of ferredoxin, the addition of ADP in the light results in oxidation of cytochrome b6 and reduction of cytochrome f, suggesting the existence of a coupling site between the two cytochromes. An acceleration of the rate of the dark reduction of photooxidized cytochrome b6 also observed on addition of ADP raises the possibility of a second coupling site on the reducing side of cytochrome b6.  相似文献   

13.
Summary A variant strain of the nitrogen-fixing bluegreen alga Nostoc muscorum, displaying impairment in its elemental nitrogen dependent growth and complete inhibition of growth by L-histidine in otherwise nitrogen-free medium, has been isolated and characterized for its response to L-glutamic acid and L-glutamine in presence of other inorganic nitrogen sources. A model based on the possibility of nif-his interaction has been proposed to account for the observed behaviour of the strain. It is inferred that the two sets of genes may occupy neighbouring positions on the blue-green algal genome.  相似文献   

14.
Summary Nitrosoguanidine-induced pigment mutants with elevated phycocyanin content and diminished phycoerythrin have been isolated from the phycoerythrin rich wild type blue-green alga Aphanothece stagnina. The phycocyanin: chlorophyll ratio varied among the mutant strains which invariably showed an impairment in their N2-dependent growth and accumulation of fixed nitrogen. Phycoerythrin was virtually eliminated from the mutant strains in contrast with the wild type. The observations are in consistence with the biosynthetic interconvertibility of chromophoric precursors of the two phycobilins and perhaps a greater efficiency of phycocyanin in the oxygenic part (PSII) of photosynthesis.  相似文献   

15.
The effect of NADP+ on light-induced steady-state redox changes of membrane-bound cytochromes was investigated in membrane fragments prepared from the blue-green algae Nostoc muscorum (Strain 7119) that had high rates of electron transport from water to NADP+ and from an artificial electron donor, reduced dichlorophenolindophenol (DCIPH2) to NADP+. The membrane fragments contained very little phycocyanin and had excellent optical properties for spectrophotometric assays. With DCIPH2 as the electron donor, NADP+ had no effect on the light-induced redox changes of cytochromes: with or without NADP+, 715- or 664-nm illumination resulted mainly in the oxidation of cytochrome f and of other component(s) which may include a c-type cytochrome with an α peak at 549 nm. With 664 nm illumination and water as the electron donor, NADP+ had a pronounced effect on the redox state of cytochromes, causing a shift toward oxidation of a component with a peak at 549 nm (possibly a c-type cytochrome), cytochrome f, and particularly cytochrome b559. Cytochrome b559 appeared to be a component of the main noncyclic electron transport chain and was photooxidized at physiological temperatures by Photosystem II. This photooxidation was apparent only in the presence of a terminal acceptor (NADP+) for the electron flow from water.  相似文献   

16.
The effect of NADP+ on light-induced steady-state redox changes of membrane-bound cytochromes was investigated in membrane fragements prepared from the blue-green algae Nostoc muscorum (Strain 7119) that had high rates of electron transport from water to NADP+ and from an artificial electron donor, reduced dichlorophenolindophenol (DCIPH2) to NDAP+. The membrane fragments contained very little phycocyanin and had excellent optical properties for spectrophotometric assays. With DCIPH2 as the electron donor, NADP+ had no effect on the light-induced redox changes of cytochromes: with or without NADP+, 715- or 664-nm illumination resulted mainly in the oxidation of cytochrome f and of other component(s) which may include a c-type cytochrome with an alpha peak at 549nm. With 664 nm illumination and water as the electron donor, NADP+ had a pronounced effect on the redox state of cytochromes, causing a shift toward oxidation of a component with a peak at 549 nm (possibly a c-type cytochrome), cytochrome f, and particularly cytochrome b559. Cytochrome b559 appeared to be a component of the main noncyclic electron transport chain and was photooxidized at physiological temperatures by Photosystem II. This photooxidation was apparent only in the presence of a terminal acceptor (NADP+) for the electron flow from water.  相似文献   

17.
Control of sporulation in a blue-green alga   总被引:8,自引:0,他引:8  
  相似文献   

18.
Two plant-type ferredoxins were isolated and purified from a blue-green alga, Nostoc verrucosum. They were separable by chromatography on a DEAE-cellulose column. The slow-moving band was designated ferredoxin I (Fd I) and the fast-moving band was ferredoxin II (Fd II). The ratio of the yield of ferredoxins I and II was about 1:0.84. Both ferredoxins had absorption spectra similar to those of plant-type ferredoxins. Two atoms of non-heme iron and two of labile sulfur were found per mol of both ferredoxin I and ferredoxin II. Their molecular weights were identical and estimated to be about 18 000 by a gel filtration method. The biochemical activities of these Nostoc ferredoxins were studied: the NADP photoreduction activity on one hand and the NADP-cytochrome c reductase activity on the other.  相似文献   

19.
Summary The nucleotide sequence of an entire spacer region between the 16S and 23S rRNA genes of the rrnA operon from a blue-green alga, Anacystis nidulans, has been determined. The spacer region is 545 base pairs long and encodes tRNAfle and tRNAAla in the order of 16S rRNA-tRNAfle-tRNAAla-23S rRNA. A striking feature is that the A. nidulans tRNAfle gene contains no 3-CCA sequence while the tRNAAla gene does. These spacer tRNA genes show strong sequence homology with those of chloroplasts and bacteria.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号