首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We synthesized a fluorogenic probe with a high-mannose type heptasaccharide structure to detect the hydrolytic activity of endo-β-N-acetylglucosaminidase from Streptomyces plicatus (Endo-H). The heptasaccharide derivative (1) was labeled with an N-methylanthraniloyl group as a reporter dye at the branching point of the β-mannoside residue and 2,4-dinitrophenyl group as a quencher molecule at the reducing end, which was hydrolyzed by Endo-H, resulting in increased fluorescence intensity. Thus, Endo-H activities could be evaluated easily and quantitatively by measuring the fluorescence signal. Using both this probe (1) and a previously synthesized pentasaccharide probe, the hydrolysis activity of Endo-H and Endo-M were investigated. The results clearly showed a correlation with the substrate specificity of each enzyme.  相似文献   

2.
Fluorogenic peptide substrates with fluorophore/quencher-capped ends have found extensive use in monitoring protease activity in the screening of small-molecule libraries for protease inhibitors. We report here the identification and characterization of a fluorogenic substrate for tumor necrosis factor-alpha converting enzyme (TACE). This substrate is a 10-amino-acid peptide (LAQAVRSSSR) capped with an o-aminobenzoyl group on the N-terminal end and with a 3-(2,4-dinitrophenyl)-L-2,3-diaminopropionic amide group on the C-terminal end. Exhaustive enzymatic conversion of the substrate to products resulted in a fluorescence enhancement of -11-fold. A single cleavage occurred at the A-V scissile bond of the peptide. The validity of this fluorimetric assay for TACE was corroborated by an independent HPLC method. Interestingly, the hydrolysis of the substrate displayed positive cooperativity with a Hill coefficient of 1.5, while the hydrolysis of the corresponding uncapped peptide displayed Michaelis-Menten kinetics. A k(cat) value of 21.6 s(-1) and an S(0.5) value of 342 microM were obtained for the fluorogenic substrate. The addition of the two capping groups on the two ends of the peptide enhanced the k(cat) value by 64-fold. Nine additional decapeptides that contained the same capping groups on the two ends and substitutions at the P1 and P1' sites were also tested. TACE appears to slightly prefer the A-V scissile bond. The enzyme also cleaves scissile bonds such as F-V, A-I, and A-L efficiently.  相似文献   

3.
Classical late-infantile neuronal ceroid lipofuscinosis is a fatal neurodegenerative disease caused by mutations in CLN2, the gene encoding the lysosomal protease tripeptidyl-peptidase I (TPP I). The natural substrates for TPP I and the pathophysiological processes associated with lysosomal storage and disease progression are not well understood. Detailed characterization of TPP I substrate specificity should provide insights into these issues and also aid in the development of improved clinical and biochemical assays. To this end, we constructed fluorogenic and standard combinatorial peptide libraries and analyzed them using fluorescence and mass spectrometry-based activity assays. The fluorogenic group 7-amino-4-carbamoylmethylcoumarin was incorporated into a series of 7-amino-4-carbamoylmethylcoumarin tripeptide libraries using a design strategy that allowed systematic evaluation of the P1, P2, and P3 positions. TPP I digestion of these substrates liberates the fluorescence group and results in a large increase in fluorescence that can be used to calculate kinetic parameters and to derive the substrate specificity constant kcat/KM. In addition, we implemented a mass spectrometry-based assay to measure the hydrolysis of individual peptides in peptide pools and thus expand the scope of the analysis. Nonfluorogenic tetrapeptide and pentapeptide libraries were synthesized and analyzed to evaluate P1' and P2' residues. Together, this analysis allowed us to predict the relative specificity of TPP I toward a wide range of potential biological substrates. In addition, we evaluated a variety of new fluorogenic peptides with a P3 Arg residue, and we demonstrated their superiority compared with the widely used substrate Ala-Ala-Phe-AMC for selectively measuring TPP I activity in biological specimens.  相似文献   

4.
A Nègre  A Dagan  S Gatt 《Enzyme》1989,42(2):110-117
Fluorescent pyrene-methyl lauryl ester (PMLes) was synthesized and used for the determination of cellular lipase activities in lymphoblasts and fibroblasts from normal subjects and from patients affected with Wolman's or cholesteryl ester storage diseases (both exhibiting a deficiency of the lysosomal acid lipase). The hydrolysis of PMLes by acid lipase could be followed directly in a spectrofluorometer; this was possible because of the very high fluorescence emission of pyrene-methanol at 378 nm (monomeric form) in aqueous medium, whereas the substrate has practically no monomeric emission at 378 nm but emits only at 475 nm (excimeric form) in the experimental conditions used: this property permitted us to use PMLes as a fluorogenic substrate. In an alternative procedure, the enzymatic reaction could be determined after partition of the reaction mixture in a biphasic system of heptane and aqueous ethanol; the residual undegraded substrate partitioned into the upper heptane phase and the fluorescence of the product (i.e. pyrene-methanol) was read in the lower aqueous-ethanolic phase, at 378 nm. PMLes was hydrolyzed in extracts of normal lymphoblasts and fibroblasts by at least two lipases, one acidic lipase (pH 4.0) and a second more neutral enzyme (pH 6.5). The acidic lipase activity was practically absent in lymphoblasts and fibroblasts from Wolman's or cholesteryl ester storage diseases. This demonstrates that the fluorescent PMLes is hydrolyzed by the lysosomal acid lipase and can be used as a very sensitive fluorogenic substrate which permits direct recording of product formation and is suitable for the enzymatic diagnosis of either of these diseases.  相似文献   

5.
A highly sensitive assay based on new internally quenched fluorogenic peptide substrates has been developed for monitoring protease activities. These novel substrates comprise an Edans (5-(2-aminoethylamino)-1-naphthalenesulfonic acid) group at the C terminus and a Dabsyl (4-(dimethylamino)azobenzene-4'-sulfonyl chloride) fluorophore at the N terminus of the peptide chains. The Edans fluorescence increases upon peptide hydrolysis by Pseudomonas aeruginosa proteases, and this increase is directly proportional to the amount of substrate cleaved, i.e., protease activity. The substrates Dabsyl-Ala-Ala-Phe-Ala-Edans and Dabsyl-Leu-Gly-Gly-Gly-Ala-Edans were used for testing the peptidasic activities of P. aeruginosa elastase and LasA protease, respectively. Elastase and LasA kinetic parameters were calculated and a sensitive assay was designed for the detection of P. aeruginosa proteases in bacterial supernatants. The sensitivity and the small sample requirements make the assay suitable for high-throughput screening of biological samples. Furthermore, this P. aeruginosa protease assay improves upon existing assays because it is simple, it requires only one step, and even more significantly it is enzyme specific.  相似文献   

6.
A new type of fluorogenic alkyldiacyl glycerols was synthesized and used as fluorogenic substrates for the analysis of lipase activities and stereoselectivities. These compounds contain perylene as a fluorophore and the trinitrophenylamino (TNP) residue as a quencher. Both substituents are covalently bound to the ω-ends of the sn-2 and sn-1(3) acyl chains, respectively. Upon glycerolipid hydrolysis, the residues are separated from each other thus allowing determination of lipase activity by the continuous increase in fluorescence intensity which is caused by dequenching. Using enantiomeric pairs of these compounds, we were able to analyze lipase stereoselectivity depending on the reaction medium. Mixtures of enantiomeric fluorogenic alkyldiacyl glycerols, selectively labelled with pyrene or perylene as fluorophores, can be used for a dual-wavelength “stereoassay” of lipases. Since absorption and emission maxima of both labels are clearly separated, hydrolysis of the respective enantiomeric substrates can be determined simultaneously, and the difference in the rates of hydrolysis can be taken as a parameter for the stereopreference of a lipase. Hydrolysis rates measured with perylene-substituted lipids are generally lower than those obtained with the pyrene analogs. Thus, with a mixture of perylene and pyrene-substituted lipids, we observe a higher apparent stereoselectivity of lipases since we measure a combination of stereo- and substrate selectivity. In the presence of albumin, all microbial lipases tested so far exhibit stereopreference for the sn-1 glycerol position. In our assay, the apparent stereoselectivities are highest if in the presence of albumin, the sn-1 position carries pyrene and the sn-3 position is substituted with perylene. The lipase stereoselectivity assay described here requires the simultaneous measurement of the fluorescence intensities at two different wavelengths in a single cuvette and can thus be carried out using existing and cheap instrumentation that was developed for the fluorimetric analysis of Ca++ concentrations. © 1996 Wiley-Liss, Inc.  相似文献   

7.
Characterization of 2-(2'-phosphoryloxyphenyl)-4(3H)-quinazolinone (PPQ) derivatives as fluorogenic precipitating substrates of phosphatases is reported in this work. Soluble and colorless PPQ derivatives can be specifically hydrolyzed by acid and alkaline phosphatases into insoluble products, 2-(2'-hydroxyphenyl)-4(3H)-quinazolinone (HPQ) derivatives which appear as fluorescent precipitates in water. The fluorescence and precipitation of HPQ depend on the concentration of its neutral phenolic form and therefore are related to the aqueous pH and PPQ concentration converted. Since HPQ formed from corresponding PPQ hydrolysis by phosphatases instantly precipitates and simultaneously fluoresces with a high photostability and large Stokes shift in water, PPQ can serve as a novel class of substrate dyes for detecting any immobilized phosphatase activities in situ, especially for applications of sensitive fluorescence histochemistry and cytochemistry. This is demonstrated by the alkaline phosphatase-aided visualization of static concanavalin A (Con A) receptors. By a linkage-amplification technique involving biotinylated Con A, streptavidin-alkaline phosphatase conjugate, and a PPQ substrate, the Con A receptors on the membrane of fixed NIH 3T3 cell were specifically viewed as dense, contrasting, durable, and cytologically resolved fluorescent stains under a conventional fluorescent microscope.  相似文献   

8.
This paper describes the development of homogeneous, fluorogenic polymerase, restriction endonuclease, and ligase assays based on the use of DNA substrate molecules labeled with a single fluorophore. All three enzymatic assays are based on the same observed phenomenon whereby the fluorescence intensity of hairpin-type oligonucleotides with a 5′single-stranded extension, labeled with a single fluorophore, changes when the distance of the dye from the 3′ end of the molecule is altered as a result of the enzymatic transformation (i.e., polymerase extension, endonuclease hydrolysis, or ligation). The magnitudes of the observed fluorescence intensity changes range from 1.2-fold to 3.9-fold, and they are dependent on the type of dye used, its position within the substrate and product molecules, and the base composition surrounding the labeling site.  相似文献   

9.
A novel approach in the design of fluorogenic substrate-analyte conjugates that can be used in a substrate-labeled fluorescent immunoassay (SLFIA) is described. The new SLFIA uses an enzyme substrate molecule that contains a fluorophore component and a quencher component, separated by a chain containing a bond which can be hydrolyzed by an enzyme. The feasibility of using this approach, in the construction of a fluorophore-quencher-analyte conjugate for monitoring analytes in homogeneous competitive protein binding reactions was demonstrated by using flavin-N6-(6-aminohexyl-theophylline) adenine dinucleotide (FAD-Theophylline) as the intramolecularly quenched fluorogenic substrate. Hydrolysis of the FAD-theophylline by nucleotide pyrophosphatase yielding FMN and AMP-theophylline restores the fluorescence to the expected level of FMN. Antibody to theophylline, however, inhibits the enzymic hydrolysis, and this inhibition is relieved in competitive binding when theophylline is added.  相似文献   

10.
A sensitive fluorescence assay that employs a new fluorogenic peptide substrate has been developed to continuously measure the proteolytic activity of human renin. The substrate, DABCYL-gaba-Ile-His-Pro-Phe-His-Leu-Val-Ile-His-Thr-EDANS, has been designed to incorporate the renin cleavage site that occurs in the N-terminal peptide of human angiotensinogen. The assay relies upon resonance energy transfer-mediated, intramolecular fluorescence quenching that occurs in the intact peptide substrate. Efficient fluorescence quenching occurs as a result of favorable energetic overlap of the EDANS excited state and the DABCYL absorption, and the relatively long excited state lifetime of the EDANS fluorophore. Cleavage of the substrate by renin liberates the peptidyl-EDANS fragment from proximity with the DABCYL acceptor, restoring the higher, unattenuated fluorescence of the EDANS moiety. This leads to a time-dependent increase in fluorescence intensity, directly related to the extent of substrate consumed by renin cleavage. The kinetics of renin-catalyzed hydrolysis of this substrate have been shown to be consistent with a simple substrate inhibition model with a substrate Km 1.5 μM at physiological pH; Cleavage of the substrate occurs specifically at the Leu-Val bond and corresponds to the renin cleavage site of angiotensinogen, as reported earlier. In this report, we describe in detail the synthesis of the fluorogenic renin substrate and its application in assays of renin activity. Assay sensitivity has been evaluated by a series of enzyme dilution experiments using the continuous assay format, showing that the assay can detect renin as low as 30 ng/ml after a incubation of only 3-5 min. It was estimated that with extended incubation time (2-3 h) the assay can detect renin at 0.5 ng/ml concentration level. An automated, high throughput fluorometric renin assay has been developed for a 96-well microtiter-plate fluorescence reader, which is useful for studies of enzyme inhibitors and enzyme stability.  相似文献   

11.
Z J Huang 《Biochemistry》1991,30(35):8530-8534
A novel enzymatic assay method was developed for fluorogenic substrates that have significant intrinsic absorbance and fluorescence under the assay conditions. Fluorescein mono-beta-D-galactoside (FMG) was chosen as the substrate for the fluorescence enzymatic assay because of the high fluorescence of its hydrolytic product (fluorescein) and suitability of being hydrolyzed by beta-galactosidase. The fluorescence-concentration relationships for fluorescein and for FMG in both the right-angle detection mode of a fluorometer and the front-face detection mode of a fluorescence plate reader were exactly established and used to determine the kinetics of the enzyme assay. The results show that only front-face detection in the fluorescence plate reader can overcome the fluorescence concentration quenching that inevitably results from high absorbance by the intrinsically absorbing substrate in the conventional fluorometer, which utilizes right-angle detection. Only with front-face detection was the fluorescent assay of FMG hydrolysis under conditions of high optical density possible. The enzymatic measurements on the fluorescence plate reader were particularly efficient for determination of the enzyme kinetics because of the high rate of data collection. In this assay system, Michaelis-Menten constant Km and enzymatic catalysis rate k2 of FMG were determined as 117.6 microM and 22.7 mumol-(min.mg)-1, respectively. The results and methods described in this paper can be generalized for any assay using a fluorogenic substrate whether or not it has a high background absorbance.  相似文献   

12.
We developed a method for the detection of phosphatase activity using fluorogenic substrates after polyacrylamide gel electrophoresis. When phosphatases such as Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP), protein phosphatase 2C (PP2C), protein phosphatase 5 (PP5), and alkaline phosphatase were resolved by polyacrylamide gel electrophoresis in the absence of SDS and the gel was incubated with a fluorogenic substrate such as 4-methylumbelliferyl phosphate (MUP), all of these phosphatase activities could be detected in situ. Although 6,8-difluoro-4-methylumbelliferyl phosphate (DiFMUP) as well as MUP could be used as a fluorogenic substrate for an in-gel assay, MUP exhibited lower background fluorescence. Using this procedure, several fluorescent bands that correspond to endogenous phosphatases were observed after electrophoresis of various crude samples. The in-gel phosphatase assay could also be used to detect protein phosphatases resolved by SDS-polyacrylamide gel electrophoresis. In this case, however, the denaturation/renaturation process of resolved proteins was necessary for the detection of phosphatase activity. This procedure could be used for detection of renaturable protein phosphatases such as CaMKP and some other phosphatases expressed in cell extracts. The present fluorescent in-gel phosphatase assay is very useful, since no radioactive compounds or no special apparatus are required.  相似文献   

13.
A simple, continuous fluorometric assay for HIV protease   总被引:6,自引:0,他引:6  
Novel fluorogenic substrates for human immunodeficiency viral protease have been developed based on the principle of fluorescence energy transfer. Starting from a p24/p15 cleavage site-derived hexapeptide substrate. Ac-Thr-Ile-Nle-Nle-Gln-Arg-NH2, incorporation of 2-aminobenzoic acid in place of the acetyl group as the donor and p-NO2-Phe at the P1' position as acceptor gave the intramolecularly quenched fluorogenic substrate. Cleavage of the substrate by HIV protease released the fluorescent N-terminal tripeptide from its close apposition to the quenching nitrobenzyl group, resulting in enhanced fluorescence. An automated assay based on 96-well microtiter plates and a fluorometric plate reader have been developed, which allow high throughput of compounds in the search for HIV protease inhibitors.  相似文献   

14.
The kinetic data obtained from the action of a cathepsin D-like enzyme from Biomphalaria glabrata hepatopancreas (digestive gland) on MOCAc-Gly-Lys-Pro-Ile-Leu-Phe-Phe-Arg-Leu-Lys(DNp)-D-Arg-NH(2), was studied as a data prototype, generated by means of a fluorogenic substrate. An initial fluorescence, due to incomplete energy transfer, of about 8% of the values attained after complete substrate hydrolysis; a non-linear standard curve even at microM concentrations and an exponential decay of the steady state fluorescence of reaction product of the order of 10(-4) x s(-1) were the main analytical problems encountered. The standard curves for fluorescence of the substrate reaction product after 48 h of hydrolysis, and the reference compound MOCAc-Pro-Leu-Gly-NH(2), were fitted by polynomial approximation and the point derivates used as calibration factors. Time dependence of the calibration factor for the reaction product was -2.96 x 10(-4) a.u microM(-1) x s(-1) that is, in the same order of observed enzymic reaction rates. A mathematical treatment was devised for obtaining rates corrected for errors derived from the three analytical problems indicated. The method is of general application in continuous fluorometric assays, irrespective of the particular enzyme used, but of special value for substrates that present significant initial fluorescence. The reaction rates were 11% higher; as calculated by means of the calibration factor [substrate]/(final-initial fluorescence intensities), which is the prevalent procedure in the literature; leading to underestimation of K(m) and overestimation of V(max).  相似文献   

15.
A fluorogenic substrate for vertebrate collagenase and gelatinase, Dnp-Pro-Leu-Gly-Leu-Trp-Ala-D-Arg-NH2, was designed using structure-activity data obtained from studies with synthetic inhibitors and other peptide substrates of collagenase. Tryptophan fluorescence was efficiently quenched by the NH2-terminal dinitrophenyl group, presumably through resonance energy transfer. Increased fluorescence accompanied hydrolysis of the peptide by collagenase or gelatinase purified from culture medium of porcine synovial membranes or alkali-treated rabbit corneas. Amino acid analysis of the two product peptides showed that collagenase and gelatinase cleaved at the Gly-Leu bond. The peptide was an efficient substrate for both enzymes, with kcat/Km values of 5.4 microM-1 h-1 and 440 microM-1 h-1 (37 degrees C, pH 7.7) for collagenase and gelatinase, respectively. Under the same conditions, collagenase gave kcat/Km of about 46 microM-1 h-1 for type I collagen from calf skin. Since both enzymes exhibited similar Km values for the synthetic substrate (3 and 7 microM, respectively), the higher catalytic efficiency of gelatinase reflects predominantly an increase in kcat. Both enzymes were inhibited by HSCH2(R,S)CH[CH2CH(CH3)2]CO-L-Phe-L-Ala-NH2 in this assay (50% inhibition at 20 nM and less than 1 nM for collagenase and gelatinase, respectively). Soluble type I collagen was a competitive inhibitor of peptide hydrolysis by collagenase (KI = 0.8 microM) and exhibited mixed inhibition of gelatinase (KI = 0.3 microM).  相似文献   

16.
A direct and continuous kinetic method for the fluorometric determination of alpha-chymotrypsin and trypsin is described, and 2-aminoacridone (2-AA) is introduced as a promising new fluorophore in analytical biochemistry. N-Succinyl- and N-glutaryl-phenylalanine as well as N-benzoylarginine were coupled to 2-AA via a peptide bond and the resulting fluorogenic substrates are shown to be cleaved by the two enzymes. Since the substrate and product of hydrolysis have quite different spectral properties, the increase in the long-wave fluorescence of 2-AA (measured at 570 nm under 450-nm excitation) is a parameter for the enzyme activity. Chymotrypsin (0.5 microgram/ml) and trypsin (0.1 microgram/ml) were detectable in a 3-min assay. The major advantages of the new substrates over existing ones are the analytical wavelengths which are distinctly outside the background fluorescence of most biological matter and the somewhat faster reaction rates which can reduce the time of analysis.  相似文献   

17.
A novel fluorogenic substrate (methylumbelliferyl 2-acetamido-2-deoxy-β-d-lactoside) has been prepared enzymatically. A procedure has been developed for its use as a convenient and sensitive fluorogenic substrate for β-d-galactosidase assay with a potential for high substrate specificity. The merits of this new fluorogenic substrate for β-d-galactosidase assays are discussed, together with the potential of this approach for a wider range of enzyme activities.  相似文献   

18.
A new substrate of alpha-amylases, O-6-deoxy-6-[(2-pyridyl)amino]-alpha-D-glucopyranosyl-(1 leads to 4)-O-alpha-D-glucopyranosyl-(1 leads to 4)-O-alpha-D-glucopyranosyl-(1 leads to 4)-O-alpha-D-glucopyranosyl-(1 leads to 4)-D-glucopyranose, was prepared using dextrin as a starting material. Compared with other substrates so far reported, the fluorogenic substrate is unique in that it is resistant to exo-alpha-glucosidases due to the blocking group introduced into the non-reducing end glucose residue. The product of alpha-amylase digestion was rapidly separated from the substrate and was detected very sensitively by HPLC and a fluorescence detector. This method for alpha-amylase assay was also applied for determination of alpha-amylase in human serum.  相似文献   

19.
We designed a new alkaline phosphatase (ALP)-sensitive fluorogenic probe in which a self-immolative spacer group, p-hydroxybenzyl alcohol, is linked to a profluorogenic compound to improve substrate specificity. Enzymatic hydrolysis converts the fluorogenic substrate 1 to a highly fluorescent reporter 3, thus allowing for the fast and quantitative analysis of ALP activity with greatly increased affinity for the enzyme.  相似文献   

20.
The endochitinase from Coccidioides immitis (CiX1) is a member of the class 18 chitinase family. Here we show the enzyme functions by a retaining catalytic mechanism; that is, the beta-conformation of the chitin substrate linkages is preserved after hydrolysis. The pattern of cleavage of N-acetyglucosamine (GlcNAc) oligosaccharide substrates has been determined. (GlcNAc)6 is predominantly cleaved into (GlcNAc)2 and (GlcNAc)4, where the (GlcNAc)2 group arises from the nonreducing end of the substrate and is formed as the beta-anomer. With time, transglycosylation occurs, generating (GlcNAc)8 from the product dimer and fresh hexamer. Similar patterns are seen for the cleavage of (GlcNAc)5 and (GlcNAc)4 where dimers cleaved from the nonreducing end reflect the most common binding and hydrolysis pattern. Intrinsic fluorescence measurements suggest the dissociation constant for (GlcNAc)4 is 50 microM. Synthetic substrates with fluorescent leaving groups exhibit complicated profiles in the relationship between initial velocity and substrate concentration, making it difficult to obtain the values of kinetic constants. An improved theoretical analysis of the time-course of (GlcNAc)6 degradation allows the unitary free energy of binding of the individual subsites of the enzyme to be estimated. The free energy values obtained are consistent with the dissociation constant obtained by fluorescence measurements, and generate a model of substrate interaction that can be tested against the crystal structure of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号