首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nuclear genome of Saccharomyces cerevisiae encodes 35 members of a family of membrane proteins. Known members transport substrates and products across the inner membranes of mitochondria. We have localized two hitherto unidentified family members, Odc1p and Odc2p, to the inner membranes of mitochondria. They are isoforms with 61% sequence identity, and we have shown in reconstituted liposomes that they transport the oxodicarboxylates 2-oxoadipate and 2-oxoglutarate by a strict counter exchange mechanism. Intraliposomal adipate and glutarate and to a lesser extent malate and citrate supported [14C]oxoglutarate uptake. The expression of Odc1p, the more abundant isoform, made in the presence of nonfermentable carbon sources, is repressed by glucose. The main physiological roles of Odc1p and Odc2p are probably to supply 2-oxoadipate and 2-oxoglutarate from the mitochondrial matrix to the cytosol where they are used in the biosynthesis of lysine and glutamate, respectively, and in lysine catabolism.  相似文献   

2.
In a previous study we have identified Fmc1p, a mitochondrial protein involved in the assembly/stability of the yeast F0F1-ATP synthase at elevated temperatures. The deltafmc1 mutant was shown to exhibit a severe phenotype of very slow growth on respiratory substrates at 37 degrees C. We have isolated ODC1 as a multicopy suppressor of the fmc1 deletion restoring a good respiratory growth. Odc1p expression level was estimated to be at least 10 times higher in mitochondria isolated from the deltafmc1/ODC1 transformant as compared with wild type mitochondria. Interestingly, ODC1 encodes an oxodicarboxylate carrier, which transports alpha-ketoglutarate and alpha-ketoadipate or any other transported tricarboxylic acid cycle intermediate in a counter-exchange through the inner mitochondrial membrane. We show that the suppression of the respiratory-growth-deficient fmc1 by the overexpressed Odc1p was not due to a restored stable ATP synthase. Instead, the rescuing mechanism involves an increase in the flux of tricarboxylic acid cycle intermediate from the cytosol into the mitochondria, leading to an increase in the alpha-ketoglutarate oxidative decarboxylation, resulting in an increase in mitochondrial substrate-level-dependent ATP synthesis. This mechanism of metabolic bypass of a defective ATP synthase unravels the physiological importance of intramitochondrial substrate-level phosphorylations. This unexpected result might be of interest for the development of therapeutic solutions in pathologies associated with defects in the oxidative phosphorylation system.  相似文献   

3.
Although most cellular glutathione (GSH) is in the cytoplasm, a distinctly regulated pool is present in mitochondria. Inasmuch as GSH synthesis is primarily restricted to the cytoplasm, the mitochondrial pool must derive from transport of cytoplasmic GSH across the mitochondrial inner membrane. Early studies in liver mitochondria primarily focused on the relationship between GSH status and membrane permeability and energetics. Because GSH is an anion at physiological pH, this suggested that some of the organic anion carriers present in the inner membrane could function in GSH transport. Indeed, studies by Lash and colleagues in isolated mitochondria from rat kidney showed that most of the transport (>80%) in that tissue could be accounted for by function of the dicarboxylate carrier (DIC, Slc25a10) and the oxoglutarate carrier (OGC, Slc25a11), which mediate electroneutral exchange of dicarboxylates for inorganic phosphate and 2-oxoglutarate for other dicarboxylates, respectively. The identity and function of specific carrier proteins in other tissues is less certain, although the OGC is expressed in heart, liver, and brain and the DIC is expressed in liver and kidney. An additional carrier that transports 2-oxoglutarate, the oxodicarboxylate or oxoadipate carrier (ODC; Slc25a21), has been described in rat and human liver and its expression has a wide tissue distribution, although its potential function in GSH transport has not been investigated. Overexpression of the cDNA for the DIC and OGC in a renal proximal tubule-derived cell line, NRK-52E cells, showed that enhanced carrier expression and activity protects against oxidative stress and chemically induced apoptosis. This has implications for development of novel therapeutic approaches for treatment of human diseases and pathological states. Several conditions, such as alcoholic liver disease, cirrhosis or other chronic biliary obstructive diseases, and diabetic nephropathy, are associated with depletion or oxidation of the mitochondrial GSH pool in liver or kidney.  相似文献   

4.
5.
The parameters of rat jejunal transport of tryptophan have been examined. The interactions between tryptophan and lysine or methionine have been reexamined, and some aspects of the trans effects of cellularly accumulates amino acids have been studied. It has been demonstrated that: (1) The influx of tryptophan across the jejunal brush border (Jmc-Trp) can be accounted for by the carrier of alpha-aminomonocarboxylic acids alone. (2) Tryptophan competes with lysine for the carrier of basic amino acids across the brush border membrane without itself being transported by this carrier. (3) Lysine has neither cis nor trans effects on Jmc-Trp, whereas intracellular tryptophan is highly inhibitory to Jmd-Lys. (4) The intracellular concentration of lysine and of tryptophan, [Lys]c and [Trp]c, are unaffected by tryptophan and lysine, respectively, although the transmural fluxes, from the mucosal side to the serosal side, Jms, of lysine, Jms-Lys, and of tryptophan, Jms-Trp, are inhibited by tryptophan and lysine, respectively. The latter effects thus represent inhibitory interactions at the basolateral membrane. (5) Methionine is a potent cis and transinhibitor of Jmc-Trp, but stimulated Jms-Trp and reduces [Trp]c. (6) Methionine causes trans acceleration of the influx of lysine across the brush border membrane, Jmc-Lys, but has no effect on the influx of galactose, Jmc-Gal. (7) Leucine causes trans inhibition of Jmc-Leu. (8) Tryptophan does not cause cis inhibition of Jmc-Gal, but is a strongtransinhibitor of Jmc-Gal. (9) Cellularly accumulated tryptophan appears to accelerate the eventual decline in transepithelial potential difference and short-circuit current. These results are consistent with the conclusions that: (1) Tryptophan is transported across the brush border membrane by the carrier of neutral amino acids alone, but leaves the cell across the basolateral membrane by a mechanism used by lysine also. (2) Leucine, methionine and probably tryptophan have a transeffect on the transport of neutral amino acids across the brush border membrane which may represent a phenomenon which can appropriately be termed decelerating exchange diffusion. (3) Cellularly accumulated tryptophan has a strong and indiscriminate depressive effect on all transport functions of rat jejunal epithelium.  相似文献   

6.
The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport carboxylates, amino acids, nucleotides, and cofactors across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. In this work, a member of this family, SLC25A29, previously reported to be a mitochondrial carnitine/acylcarnitine- or ornithine-like carrier, has been thoroughly characterized biochemically. The SLC25A29 gene was overexpressed in Escherichia coli, and the gene product was purified and reconstituted in phospholipid vesicles. Its transport properties and kinetic parameters demonstrate that SLC25A29 transports arginine, lysine, homoarginine, methylarginine and, to a much lesser extent, ornithine and histidine. Carnitine and acylcarnitines were not transported by SLC25A29. This carrier catalyzed substantial uniport besides a counter-exchange transport, exhibited a high transport affinity for arginine and lysine, and was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. The main physiological role of SLC25A29 is to import basic amino acids into mitochondria for mitochondrial protein synthesis and amino acid degradation.  相似文献   

7.
Mouse ornithine decarboxylase (ODC) was expressed in Escherichia coli and the purified recombinant enzyme used for determination of the binding site for pyridoxal 5'-phosphate and of the residues modified in the inactivation of the enzyme by the enzyme-activated irreversible inhibitor, alpha-difluoromethylornithine (DFMO). The pyridoxal 5'-phosphate binding lysine in mouse ODC was identified as lysine 69 of the mouse sequence by reduction of the purified holoenzyme form with NaB[3H]4 followed by digestion of the carboxymethylated protein with endoproteinase Lys-C, radioactive peptide mapping using reversed-phase high pressure liquid chromatography and gas-phase peptide sequencing. This lysine is contained in the sequence PFYAVKC, which is found in all known ODCs from eukaryotes. The preceding amino acids do not conform to the consensus sequence of SXHK, which contains the pyridoxal 5'-phosphate binding lysine in a number of other decarboxylases including ODCs from E. coli. Using a similar procedure to analyze ODC labeled by reaction with [5-14C]DFMO, it was found that lysine 69 and cysteine 360 formed covalent adducts with the inhibitor. Cysteine 360, which was the major adduct accounting for about 90% of the total labeling, is contained within the sequence -WGPTCDGL(I)D-, which is present in all known eukaryote ODCs. These results provide strong evidence that these two peptides form essential parts of the catalytic site of ODC. Analysis by fast atom bombardment-mass spectrometry of tryptic peptides containing the DFMO-cysteine adduct indicated that the adduct formed in the enzyme was probably the cyclic imine S-(2-(1-pyrroline)methyl)cysteine. This is readily oxidized to S-((2-pyrrole)methyl)cysteine or converted to S-((2-pyrrolidine)methyl)cysteine by NaBH4 reduction. This adduct is consistent with spectral evidence showing that inactivation of the enzyme with DFMO does not entail the formation of a stable adduct between the pyridoxal 5'-phosphate, the enzyme, and the inhibitor.  相似文献   

8.
9.
The regulatory properties of four enzymes (homocitrate synthase, -aminoadipate reductase, saccharopine reductase, saccharopine dehydrogenase) involved in the lysine biosynthesis of Pichia guilliermondii were investigated and compared with the regulatory patterns found in other yeast species. The first enzyme of the pathway, homocitrate synthase, is feedback-inhibited by L-lysine. Some other amino acids (-aminoadipate, glutamate, tryptophan, leucine) and lysine analogues are also inhibitors of one or more enzymes. It is shown that only the synthesis of homocitrate synthase is weakly repressed by L-lysine.  相似文献   

10.
In Saccharomyces cerevisiae, beta-oxidation of fatty acids is confined to peroxisomes. The acetyl-CoA produced has to be transported from the peroxisomes via the cytoplasm to the mitochondrial matrix in order to be degraded to CO(2) and H(2)O. Two pathways for the transport of acetyl-CoA to the mitochondria have been proposed. The first involves peroxisomal conversion of acetyl-CoA into glyoxylate cycle intermediates followed by transport of these intermediates to the mitochondria. The second pathway involves peroxisomal conversion of acetyl-CoA into acetylcarnitine, which is subsequently transported to the mitochondria. Using a selective screen, we have isolated several mutants that are specifically affected in the second pathway, the carnitine-dependent acetyl-CoA transport from the peroxisomes to the mitochondria, and assigned these CDAT mutants to three different complementation groups. The corresponding genes were identified using functional complementation of the mutants with a genomic DNA library. In addition to the previously reported carnitine acetyl-CoA transferase (CAT2), we identified the genes for the yeast orthologue of the human mitochondrial carnitine acylcarnitine translocase (YOR100C or CAC) and for a transport protein (AGP2) required for carnitine transport across the plasma membrane.  相似文献   

11.
12.
Utilization of fatty acids such as oleic acid as sole carbon source by the yeast Saccharomyces cerevisiae requires coordinated function of peroxisomes, where the fatty acids are degraded, and the mitochondria, where oxidation is completed. We identified two mitochondrial oxodicarboxylate transporters, Odc1p and Odc2p, as important in efficient utilization of oleic acid in yeast [Tibbetts et al., Arch. Biochem. Biophys. 406 (2002) 96-104]. Yet, the growth phenotype of odc1delta odc2delta strains indicated that additional transporter(s) were also involved. Here, we identify two putative transporter genes, YMC1 and YMC2, as able to suppress the odc1delta odc2delta growth phenotype. The mRNA levels for both are elevated in the presence of glycerol or oleic acid, as compared to glucose. Ymc1p and Ymc2p are localized to the mitochondria in oleic acid-grown cells. Deletion of all four transporters (quad mutant) prevents growth on oleic acid as sole carbon source, while growth on acetate is retained. It is known that the glutamate-sensitive retrograde signaling pathway is important for upregulation of peroxisomal function in response to oleic acid and the oxodicarboxylate alpha-ketoglutarate is transported out of the mitochondria for synthesis of glutamate. So, citric acid cycle function and glutamate synthesis were examined in transporter mutants. The quad mutant has significantly decreased citrate synthase activity and whole cell alpha-ketoglutarate levels, while isocitrate dehydrogenase activity is unaffected and glutamate dehydrogenase activity is increased 10-fold. Strains carrying only two or three transporter deletions exhibit intermediate affects. 13C NMR metabolic enrichment experiments confirm a defect in glutamate biosynthesis in the quad mutant and, in double and triple mutants, suggest increased cycling of the glutamate backbone in the mitochondria before export. Taken together these studies indicate that these four transporters have overlapping activity, and are important not only for utilization of oleic acid, but also for glutamate biosynthesis.  相似文献   

13.
The transport of phosphoenolpyruvate by the adenine nucleotide translocase system of heart mitochondria may be directly involved in the mechanism of phosphoenolpyruvate-induced calcium ion efflux. In contrast to liver mitochondria, the transport of phosphoenolpyruvate via the tricarboxylate carrier system is low or absent in heart mitochondria. The translocation of phosphoenolpyruvate which catalyzed adenine nucleotide and calcium efflux from heart mitochondria was inhibited by palmitoyl-CoA as well as atractylate and ATP. These results suggest that phosphoenolpyruvate, which is preferentially transported on the tricarboxylate carrier of liver mitochondria, is transported primarily via the adenine nucleotide translocase system in heart mitochondria. As a result of its inward transport, phosphoenolpyruvate is able to catalyze calcium ion as well as adenine nucleotide efflux from the mitochondrial matrix. Although not yet proven, either or both phosphoenolpyruvate and long chain acyl-CoA esters may act as natural physiological effectors in the regulation and distribution of intracellular calcium.  相似文献   

14.
15.
The mitochondrial carriers are a family of transport proteins that, with a few exceptions, are found in the inner membranes of mitochondria. They shuttle metabolites, nucleotides, and cofactors through this membrane and thereby connect and/or regulate cytoplasm and matrix functions. ATP-Mg is transported in exchange for phosphate, but no protein has ever been associated with this activity. We have isolated three human cDNAs that encode proteins of 458, 468, and 489 amino acids with 66-75% similarity and with the characteristic features of the mitochondrial carrier family in their C-terminal domains and three EF-hand Ca(2+)-binding motifs in their N-terminal domains. These proteins have been overexpressed in Escherichia coli and reconstituted into phospholipid vesicles. Their transport properties and their targeting to mitochondria demonstrate that they are isoforms of the ATP-Mg/Pi carrier described in the past in whole mitochondria. The tissue specificity of the three isoforms shows that at least one isoform was present in all of the tissues investigated. Because phosphate recycles via the phosphate carrier in mitochondria, the three isoforms of the ATP-Mg/Pi carrier are most likely responsible for the net uptake or efflux of adenine nucleotides into or from the mitochondria and hence for the variation in the matrix adenine nucleotide content, which has been found to change in many physiopathological situations.  相似文献   

16.
We present evidence that polyamine uptake into rat liver mitochondria is mediated by a specific polyamine uniporter. Polyamine transport is not mediated by the ornithine, lysine, or Ca2+ transporters of mitochondria. Polyamine transport is a saturable process, with apparent Km values of 0.13 mM for spermine, 0.26 mM for spermidine, and 1 mM for putrescine. These substrates are mutually competitive inhibitors, indicating a common transport system. Polyamine transport is strictly dependent on membrane potential and insensitive to medium pH, showing that these polycations are transported electrophoretically. Spermine, spermidine, and putrescine are taken up by rat liver mitochondria at rates that increase with increasing valence of the transported species. The activation enthalpies for transport were 24, 32, and 59 kJ/mol for putrescine, spermidine, and spermine, respectively. These values, which amount to about 12 kJ/mol per charge transferred, may be compared to a value of 76 kJ/mol observed for monovalent tetraethylammonium cation. Flux-voltage analysis is consistent with the hypothesis that the mitochondrial polyamine transporter catalyzes transport via a channel mechanism.  相似文献   

17.
Two different functions have been proposed for the phosphate carrier protein/p32 of Saccharomyces cerevisiae mitochondria: transport of phosphate and requirement for import of precursor proteins into mitochondria. We characterized a yeast mutant lacking the gene for the phosphate carrier/p32 and found both a block in the import of phosphate and a strong reduction in the import of preproteins transported to the mitochondrial inner membrane and matrix. Binding of preproteins to the surface of mutant mitochondria and import of outer membrane proteins were not inhibited, indicating that the inhibition of protein import occurred after the recognition step at the outer membrane. The membrane potential across the inner membrane of the mutant mitochondria was strongly reduced. Restoration of the membrane potential restored preprotein import but did not affect the block of phosphate transport of the mutant mitochondria. We conclude that the inhibition of protein import into mitochondria lacking the phosphate carrier/p32 is indirectly caused by a reduction of the mitochondrial membrane potential (delta(gamma)), and we propose a model that the reduction of delta(psi) is due to the defective phosphate import, suggesting that phosphate transport is the primary function of the phosphate carrier/p32.  相似文献   

18.
The Mycobacterium tuberculosis lysA gene encodes the enzyme meso-diaminopimelate decarboxylase (DAPDC), a pyridoxal-5'-phosphate (PLP)-dependent enzyme. The enzyme catalyzes the final step in the lysine biosynthetic pathway converting meso-diaminopimelic acid (DAP) to l-lysine. The lysA gene of M. tuberculosis H37Rv has been established as essential for bacterial survival in immunocompromised mice, demonstrating that de novo biosynthesis of lysine is essential for in vivo viability. Drugs targeted against DAPDC could be efficient anti-tuberculosis drugs, and the three-dimensional structure of DAPDC from M. tuberculosis complexed with reaction product lysine and the ternary complex with PLP and lysine in the active site has been determined. The first structure of a DAPDC confirms its classification as a fold type III PLP-dependent enzyme. The structure shows a stable 2-fold dimer in head-to-tail arrangement of a triose-phosphate isomerase (TIM) barrel-like alpha/beta domain and a C-terminal beta sheet domain, similar to the ornithine decarboxylase (ODC) fold family. PLP is covalently bound via an internal aldimine, and residues from both domains and both subunits contribute to the binding pocket. Comparison of the structure with eukaryotic ODCs, in particular with a di-fluoromethyl ornithine (DMFO)-bound ODC from Trypanosoma bruceii, indicates that corresponding DAP-analogues might be potential inhibitors for mycobacterial DAPDCs.  相似文献   

19.
Screening of the Arabidopsis thaliana genome revealed three potential homologues of mammalian and yeast mitochondrial DICs (dicarboxylate carriers) designated as DIC1, DIC2 and DIC3, each belonging to the mitochondrial carrier protein family. DIC1 and DIC2 are broadly expressed at comparable levels in all the tissues investigated. DIC1-DIC3 have been reported previously as uncoupling proteins, but direct transport assays with recombinant and reconstituted DIC proteins clearly demonstrate that their substrate specificity is unique to plants, showing the combined characteristics of the DIC and oxaloacetate carrier in yeast. Indeed, the Arabidopsis DICs transported a wide range of dicarboxylic acids including malate, oxaloacetate and succinate as well as phosphate, sulfate and thiosulfate at high rates, whereas 2-oxoglutarate was revealed to be a very poor substrate. The role of these plant mitochondrial DICs is discussed with respect to other known mitochondrial carrier family members including uncoupling proteins. It is proposed that plant DICs constitute the membrane component of several metabolic processes including the malate-oxaloacetate shuttle, the most important redox connection between the mitochondria and the cytosol.  相似文献   

20.
A cDNA was cloned encoding ornithine decarboxylase (ODC) of the unicellular green alga Chlamydomonas reinhardtii. The polypeptide consists of 396 amino acid residues with 35–37% sequence identity to other eukaryotic ODCs. As indicated by the phylogenetic tree calculated by neighbour joining analysis, the Chlamydomonas ODC has the same evolutionary distances to the ODCs of higher plants and mammalians. The Chlamydomonas ODC gene contains three introns of 222, 133, and 129 bp, respectively. As revealed by Northern-blot analyses, expression of the Chlamydomonas ODC gene is neither altered throughout the vegetative cell cycle nor modulated by exogenous polyamines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号