首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FACTS AND MECHANISMS: A COMPARATIVE SURVEY   总被引:8,自引:0,他引:8  
1. This review aims to survey the process of translocation of solutes in the phloem, including the experimental observations of the process, hypothetical mechanisms with their consequences, and the compatibility of these mechanisms with the experimental information. 2. Some properties of the sieve elements are summarized. The characteristic constituent of the sieve elements is a fibrillar protein, P-protein, of 60–120 A. filaments, whose function and distribution in intact sieve elements are still the subject of debate. 3. Apart from the very high levels of sucrose (0.3–0.9 m) and of specific amino acids and amides (10–100 mm), the contents of the sieve elements are characterized by close regulation of the ionic content; thus K (20–85 mM) and Mg (2.3–23 mM) are very high relative to Na (0.06–0.3 mM) and Ca (0.25–0.5 mM) respectively; the pH is also very high. 4. Convective movement (mass flow) is demanded by the very high rates of mass transfer. The longitudinal sucrose flux is about 2.5 times 106 pmoles cm.-2 sec.-1 in petioles, and several times higher in fruits or trees; this is about 105 times any reasonable transmembrane flux, and demands very large loading areas for each file of sieve elements. It also renders unlikely any mechanism demanding an associated trans-membrane flux of any solute which approaches within several orders of magnitude of the sucrose flow. 5. The evidence from tracer measurements (of 14C or of heat) favour a mass flow of some kind in the sieve tube, with only restricted exchange between the flowing stream and other sucrose pools in the phloem (or out of it). It is not consistent with ready equilibration with a large stationary reservoir of sucrose, or with reverse flows. There is close correspondence between the input and output kinetics of a length of the trans-location path, or of build-up curves at different distances; hence lateral exchange from the moving stream is relatively minor. 6. Tracer measurements show that loading into the translocation stream is relatively slow, and is the main determining factor in the time course of appearance of tracer down the stem, or in the profile of radioactivity against distance in the stem. This applies not only to the initial steep front of radioactivity in the stem, but also to the error function profiles found at longer times in some plants; those do not arise as has been suggested, by exchange in a two-way system of transcellular strands, but are a reflexion of the loading kinetics. 7. The evidence for or against bidirectional movement is equivocal. In conditions in which there is a strong source/sink gradient imposed, the movement of both labelled carbon and heat is consistent with a one-way system, and is difficult to reconcile with two-way movement. However, in the absence of any strong gradient there is evidence for bidirectional movement. It is suggested that the pattern of flow, as well as the direction and rate of flow, may be controlled by the source/sink relations along the path. 8. Electro-osmosis as a mechanism for translocation seems to be ruled out by a number of theoretical difficulties. The most basic of these is the fact that an electro-osmotic mechanism is inherently incapable of the transport of both anions and cations, whereas the phloem can do both. There are further quantitative difficulties. The ratio of sucrose to potassium in the sieve elements is about 10, and if potassium provides the current a longitudinal potassium flux of about 2.5 times 106 pmoles cm.-2 sec.-l would therefore be required in petioles, and considerably more in fruits or trees. This raises very great difficulties of potassium circulation to provide a complete current loop, in the path of recirculation, the size of the transmembrane fluxes required, and the energetics of pumping enough potassium to maintain the driving force for electro-osmosis. 9. Possibilities of activated mass flow, by a mechanism similar to that involved in protoplasmic streaming are discussed. Experimental work on streaming in Nitella and in the slime mould Physarum is reviewed, including the evidence that in both these systems, fibrils, made up of 50–70 Å. filaments, are responsible for the production of the motive force, and that these fibrils are akin to actomyosin. 10. Possible ways in which fibrillar P-protein might be organized in the sieve elements to produce translocation are discussed. The force generated by Nitella-type filaments at the density of P-protein in phloem exudate would be more than adequate for the observed rates of flow. Alternatively the fibrillar arrangement in the slime mould is capable of producing volume flows as large as those in phloem. This hypothesis provides a function for P-protein, and is also consistent with the curious ionic concentrations characteristic of sieve elements. 11. It is suggested that the control by the source/sink relations of the pattern, rate and direction of flow in the phloem might be achieved by the orientation of force-generating microfilaments by a Münch-type flow. Such a flow is inevitable if sucrose is pumped in at one end of the path and removed at the other; it seems to be inadequate to explain the rates of mass transfer, but it might be responsible for inducing the correct orientation and polarity in the motive force.  相似文献   

2.
Antibodies were raised against lectin purified from the sieve-tube exudate of Cucurbita maxima. Immunocytochemistry, using peroxidase-labelled antibodies and Protein A-colloidal gold, was employed to determine the location of the lectin within the tissues and cells of C. maxima and other cucurbit species. The anti-lectin antibodies bound to P-protein aggregates in sieve elements and companion cells, predominantly in the extrafascicular phloem of C. maxima. This may reflect the low rate of translocation in these cells. Under the electron microscope, the lectin was shown to be a component of P-protein filaments and was also found in association with the sieve-tube reticulum which lines the plasmalemma. The anti-lectin antibodies reacted with sieve-tube proteins from other species of the genus Cucurbita but showed only limited reaction with other genera. We suggest that the lectin serves to anchor P-protein filaments and associated proteins to the parietal layer of sieve elements.Abbreviation SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis  相似文献   

3.
Summary Cotyledons of Cucurbita maxima Duch. seedlings were provided with 14C-labeled amino acids for 12 h. Besides the bulk of labeled amino acids the sieve-tube exudate also carried labeled proteins. 80% of the incorporated radioactivity was found in the P-protein, 20% in a neutral protein, and traces were found in acidic proteins after fractionation on diethyl-aminoethyl cellulose columns. The radioactive elutes were characterized by autoradiographs of both disc- and sodium dodecyl sulfate-gelelectropherograms, and by isoelectric focusing. The P-protein fraction appeared with the void volume from the diethylaminoethyl-cellulose column. Obviously, this is the protein that gels when oxidized and that is reversibly precipitable giving rise to filaments when processed for electron microscopy. Its main component has a molecular weight of 115,000 Dalton. By isoelectric focusing this fraction separated into 3 proteins with isoelectric points of 9.8, 9.4, and 9.2. The isoelectric point 9.2-protein probably is identical with an oligomer of a 30,000 Dalton protein with neutral isoelectric point, which keeps 20% of the incorporated label. Microautoradiographs suggest that the labeled proteins were synthesized in companion cells. The results indicate that P-protein of Cucurbita maxima is synthesized continuously in mature phloem. It can be assumed that P-protein has a relatively high turn-over rate. Therefore it seems unlikely that P-protein is a structural protein.Abbreviations DEAE diethylaminoethyl - SDS sodium dodecyl sulfate - pI isoelectric point Supported by Deutsche Forschungsgemeinschaft.  相似文献   

4.
Most research involving phloem proteins is done with phloem exudates, which are not easily obtained from many plants. We report here on the use of tissue cultures to study phloem proteins. Monoclonal antibodies against the filamentous phloem protein, P-protein, were made by injecting mice with a phloem-enriched fraction isolated from Streptanthus tortuosus callus grown on a medium that stimulates the differentiation of xylem and phloem (phloem[+] cultures). Monoclonal antibodies specific for P-protein were identified by incubating free-hand stem sections of S. tortuosus in hybridoma supernatants, then in a goat anti-mouse antibody conjugated to fluorescein isothiocyanate (FITC), and observing the FITC under an epifluorescence microscope. Antibodies specific for P-protein in stem sections were used to probe nitrocellulose blots of polyacrylamide gels separating proteins isolated from both phloem(+) and phloem(-) tissue cultures. Immunoblots were incubated overnight in hybridoma supernatants followed by a secondary antibody conjugated to alkaline phosphatase. Three monoclonal antibodies—RS21, RS22, and RS23—bound to an 89-kD band in the phloem(+) lanes but failed to bind to any proteins in the phloem(—) lanes. In leaf sections of Arabidopsis thaliana processed by freeze-substitution, a mixture of RS21 and RS22 bound to the P-protein filaments in sieve elements, but not to any proteins in adjacent cells. A control antibody specific for tubulin did not bind to the P-protein filaments.  相似文献   

5.
Summary Stem sections of Vicia faba L. were incubated with rabbit-muscle heavy meromyosin (HMM) and HMM complexes with phloem filaments (P-protein) were observed with the electron microscope. Treatment of sections of Vicia faba and of Xylosma congestum (Lour.) Merr. with fluorescent HMM resulted in a weak fluorescence of the phloem region. Inasmuch as HMM-binding is believed to be specific for actin-like proteins, it is proposed to classify P-protein as such.  相似文献   

6.
The myonemes in the marine pelagic protozoa Acantharia are contractile organelles involved in buoyancy regulation. It was previously shown that they can perform three kinds of movement: rapid contraction, slow undulation and slow relaxation. They consist of a periodically striated bundle of 2–4 nm nonactin filaments that are twisted in pairs and shortened by a coiling mechanism. After permeabilization or demembranation, contraction and relaxation can still be performed by varying Ca2+ concentration and ATP is not needed. In the present paper, we have studied the role of Ca2+ and inhibitors of energy production in intact cells. Our data suggest that; (i) the in vivo rapid contraction subsequent to mechanical or electrical stimulation is triggered by Ca2+ influx across the cell membrane; (ii) the slow contraction that takes place during the undulating movement depends on Ca2+ release provided by internal calcium stores; (iii) the rapid contraction as well as the progressive shortening that occurs during the slow undulating movement are caused by Ca2+ binding to the myoneme filaments; (iv) ATP is not directly involved in the saturation by Ca2+ of Ca2+ sensitive sites located along the myoneme microstrands; (v) regulation of the movements of Ca2+ within the cytoplasm depends mainly upon the alternative pathway of ATP production; (vi) calmodulin is presumably involved in this regulation. A tentative cytophysiologic interpretation of the mechanism of contractility is proposed.  相似文献   

7.
P-protein, a filamentous protein found in the sieve elements of most angiosperms, is believed to function in the sealing of phloem wound sites. We report here on the use of a highly sensitive immunomicroscopy assay to study the ability of P-protein specific monoclonal antibodies RS21, RS22, and RS23, made against the P-protein from Streptanthus tortuosus (Brassicaceae), to recognize the native P-protein in a number of different plant genera. RS21, RS22, and RS23 all recognized the P-protein in other genera within the Brassicaceae including Arabidopsis and in the closely related family, Capparaceae. RS21 and RS22 also were able to bind to the P-protein in plants more distantly related to S. tortuosus. The labeling of P-protein was also observed in the monocots Iris and Narcissus probed with RS21. No label was seen with members of the Poaceae that are reported to lack P-protein. None of the monoclonal antibodies was able to bind to the P-protein in members of the Cucurbitaceae.  相似文献   

8.
Role of Contractile Microfilaments in Macrophage Movement and Endocytosis   总被引:54,自引:0,他引:54  
PHAGOCYTOSIS of bacteria and other large particles and pinocytosis of colloids—two processes collectively termed endocytosis—are among the characteristic properties of macrophages. When mouse peritoneal macrophages in culture are observed by phase contrast microscopy, most small endocytotic vesicles (pinosomes) are seen to be formed in the region of ruffled membrane activity, usually in a pseudopod1. The phase-lucent pinosomes move rapidly towards the Golgi region where they unite with phase-dense granules to form secondary lysosomes. Although there is evidence that both phagocytosis and pinocytosis in macrophages have a high temperature coefficient and require metabolic energy1, the mechanism of endocytosis is unknown. Clearly, movement of the plasma membrane and directional movement of pinosomes is involved. During the past few years attention has been drawn to the apparent association in many cells between movement and the presence of contractile microfilaments of about 50 Â diameter2,3. Some of these are actin-like and can bind heavy meromyosin to give distinctive “arrowhead” structures in electron micrographs4. One of us (S. de P., in preparation) has found that the peripheral or cortical cytoplasm of macrophages contains a network of microfilaments, some of which may be inserted into the plasma membrane. These filaments bind heavy meromyosin (Figs. 1 and 2) and details of their structure and disposition will be published later.  相似文献   

9.
SEVERAL investigators have speculated that the basis for all cellular contractile activity resides in a common molecular mechanism involving an interaction between actin and myosin1–4. Thin filaments resembling the actin filaments of muscle have indeed been widely observed3–5 and the recent demonstrations of heavy meromyosin binding to thin filaments4–6 suggest that these ubiquitous filaments are, in fact, actin. Although muscle-like thick filaments have not been observed in non-muscle cells, myosin thick filaments have been reconstituted from blood platelet preparations1. To our knowledge, however, no one has presented evidence for the natural occurrence of ordered arrays of thick and thin filaments in non-muscle cells.  相似文献   

10.
The effect of increasing level of nickel (Ni) in soil was studied on biomass production, antioxidants, and Ni bioaccumulation and its translocation in castor bean (Ricinus communis) as well as Indian mustard (Brassica juncea) in similar agroclimatic conditions. The plants were exposed to 25, 50, 75, 100, and 150 mg Ni kg?1 soil for up to 60 days. It was found that R. communis produced higher biomass during the same period at all the contamination levels than B. juncea, and reduction in fresh and dry weights due to the metal contamination in soil was significantly lower in R. communis than in B. juncea. Proline and malondialdehyde in the leaves increased with increase in Ni level in both the species, whereas soluble protein content was found decreased. A correlation between the protein and MDA contents in the leaves and Ni contamination levels revealed that higher r2 values for protein and MDA were found in case of B. juncea, which indicates more toxic effects of the metal in this species. R. communis was found to have enhanced proline accumulation (higher correlation value, r2) at different Ni contamination levels. The bioaccumulation of Ni was higher in B. juncea on the basis of the per unit biomass; however, the total metal accumulation per plant was much higher in R. communis than in B. juncea during the same growing periods. The translocation of Ni from roots to shoots was higher in B. juncea at all Ni concentrations. R. communis appeared more tolerant and capable to clean more Ni from the contaminated soil in a given time and also in one crop cycle.  相似文献   

11.
Cell locomotion, nerve elongation, and microfilaments   总被引:16,自引:0,他引:16  
A basic difference in locomotion between migratory cells and nerves correlates with a difference in distribution of certain microfilament systems. Lattice filaments are present where extension and movement of cell surface occur in both cell types. Bundles of sheath filaments which bind heavy meromyosin, are present in migratory cells, where displacement of the cell soma over the substratum occurs, but absent from nerves, where the cell body and axon remain fixed upon the substratum and “locomotion” is restricted to the axonal tip. It is proposed that the microfilament lattice is involved in the extension phase of locomotion, and the microfilament sheath in the contractile phase.  相似文献   

12.
Light enhanced the penetration of naphthaleneacetic-1-14C acid (NAA) into the stomatous lower surface of pear (Pyrus communis L. cv. Bartlett) leaf discs. The light effect was rapidly lost on transfer to the dark and was diminished by pretreatment of leaf discs with a Hill reaction inhibitor (2-chloro-4-ethylamino-6-isopropyl-amino-s-triazine). The effect of light on NAA penetration was isolated from its effect on stomatal opening. A similar stimulation of NAA penetration was obtained with stomata opened and closed, providing evidence that penetration did not take place by mass movement into the substomatal chamber.  相似文献   

13.
The [Ca2+] regulation of contractile ATPase flux, J p, in skeletal muscle was analysed by computation of the Response R Jp Ca2+ for a 10 Hz range of electrical stimulation frequencies. Results of our analysis of the kinetic controls in ATP free energy metabolism in a network model of contracting muscle (J.A.L. Jeneson, H.V. Westerhoff and M.J. Kushmerick (2000) Am. J. Physiol. 279, C813–C832) formed the basis for the computations of R Jp Ca2+. We found that neural regulation of sustained force generation via simple [Ca2+]cyto frequency encoding in the network was robust for frequencies up to 2 Hz. Above 2 Hz, however, this regulation design broke down because of a shift in contractile ATPase flux control from the Ca2+-sensitive contractile filaments to mitochondria with low Ca2+ sensitivity. The role of glyco(geno)lytic ATP production at high contraction workloads is discussed in the context of this result  相似文献   

14.
Histochemical localization of ATPase was carried out on phloemtissues from vegetative and reproductive sinks of Ricinus communis,using lead precipitation procedures. Reaction products werelocalized mainly at the plasma membrane of the sieve elements,companion cells and phloem parenchyma cells. Activity was alsopresent in plasmodesmata, the tonoplast of companion cells anddispersed P-protein within the sieve element lumen. The resultsare discussed in relation to the possible involvement of a plasmamembrane ATPase in apoplastic and symplastic unloading fromthe phloem conducting tissues. ATPase, sink tissues, unloading, Ricinus communis  相似文献   

15.
We used a glutaraldehyde-tannic acid-saponin fixative to improve the preservation of actin filaments in dividing HeLa cells during preparation for thin sectioning. The contractile ring in the cleavage furrow is composed of a parallel array of actin filaments that circle the equator. We show that many of these actin filaments are arranged in small bundles. These bundles consist of about 25 filaments throughout cytokinesis. For comparison, filopodia on these cells have about 23 actin filaments packed at a higher density than the filaments in the contractile ring bundles. Some of the contractile ring actin filaments appear to radiate out from electron-dense sites on the plasma membrane. The contractile ring also has a large number of short filaments 13 nm in diameter that closely resemble filaments formed from purified human cytoplasmic myosin. These thick filaments are aligned circumferentially and interdigitate with the actin filaments, as expected for a sliding filament mechanism of tension generation. There are no long actin filaments in the mitotic spindle, but there are a large number (400 to 1000 per μm 3) of very short filaments identical in appearance to actin filaments in other parts of these cells. These short filaments may account for the reported staining of the mitotic spindle with fluorescent antibodies to actin and with fluorescent myosin fragments.  相似文献   

16.
Summary Proteins in sieve tube exudate from Ricinus communis L., Acer pseudoplatanus L., Aesculus hippocastanum L., Cucumis melo L., and two cultivars each of Cucumis sativus L., Cucurbita pepo L. and Cucurbita maxima Duchesne were fractionated and compared using polyacrylamide gel electrophoresis. Striking differences in major exudate proteins were displayed among the genera and species examined. Even cultivars within a single species, although showing general similarities, differed in some prominent proteins. Estimated molecular weights of the major exudate proteins from each plant are presented. The effects of reducing and chaotropic agents on the aggregation and subunit composition of exudate proteins from Cucumis sativus have been investigated. The problems involved in relating structure, function and biochemistry of P-protein are discussed.  相似文献   

17.
A blue light– (peak at 470 nm) induced photomovement was observed in the filamentous eukaryotic algae, Spirogyra spp. When Spirogyra filaments were scattered in a water chamber under a unilateral light source, they rapidly aligned toward the light source in 1 h and bound with neighboring filaments to form thicker parallel bundles of filaments. The filaments in the anterior of the bundles curved toward the light first and then those in the posterior began to roll up toward the light, forming an open‐hoop shape. The bundle of filaments then moved toward the light source by repeated rolling and stretching of filaments. When the moving bundle met other filaments, they joined and formed a bigger mat. The coordination of filaments was essential for the photomovement. The average speed of movement ranged between 7.8 and 13.2 μm·s?1. The movement was induced in irradiance level from 1 to 50 μmol photons·m?2·s?1. The filaments of Spirogyra showed random bending and stretching movement under red or far‐red light, but the bundles did not move toward the light source. There was no distinct diurnal rhythm in the photomovement of Spirogyra spp.  相似文献   

18.
Eun SO  Bae SH  Lee Y 《Planta》2001,212(3):466-469
Cortical actin filaments in guard cells of Commelina communis L. show signal-specific organization during stomatal movements [S.-O. Eun and Y. Lee (1997) Plant Physiol 115: 1491–1498; S.-O. Eun and Y. Lee (2000) Planta 210: 1014–1017]. To study the roles of actin in signal transduction, it is advantageous to use Arabidopsis thaliana (L.) Heynh., an excellent model plant with numerous well-characterized mutants. Using an immunolocalization technique, we found that actin deployments in guard cells of A. thaliana were basically identical to those in C. communis: actin proteins were assembled into radial filaments under illumination, and were disassembled by ABA. In addition, we examined actin organization in an ABA-insensitive mutant (abi1-1) to test the involvement of protein phosphatase 2C (PP2C) in the control of actin structure. A clear difference was observed after ABA treatment, namely, neither stomatal closing nor depolymerization of actin filaments was observed in guard cells of the mutant. Our results indicate that PP2C participates in ABA-induced actin changes in guard cells. Received: 23 June 2000 / Accepted: 20 October 2000  相似文献   

19.
In a recent publication using an actin-visualized line of Arabidopsis (Ichikawa et al. 2011, ref. 11), we reported a detailed analysis with higher time resolution on the dynamics of chloroplast actin filaments (cp-actin filaments) during chloroplast avoidance movement and demonstrated a good correlation between the biased configuration of cp-actin filaments and chloroplast movement. However, we could not conclusively determine whether the reorganization of cp-actin filaments into a biased configuration preceded actual chloroplast movement (and, thus, whether it could be a cause of the movement). In this report, we present clear evidence that the reorganization of cp-actin filaments into a biased distribution is induced even in the absence of the actual movement of chloroplasts. When the cells were treated with 2,3-butanedione monoxime (BDM), a potent inhibitor of myosin ATPase, chloroplast motility was completely suppressed. Nevertheless, the disappearance and biased relocalization of cp-actin filaments toward the side of the prospective movement direction were induced by irradiation with a strong blue light microbeam. The results definitively indicate that the reorganization of cp-actin filaments is not an effect of chloroplast movement; however, it is feasible that the biased localization of cp-actin filaments is an event leading to chloroplast movement.  相似文献   

20.
P. Dittrich  K. Raschke 《Planta》1977,134(1):83-90
Isolated epidermis of Commelina communis L. and Tulipa gesneriana L. assimilated 14CO2 into malic acid and its metabolites but not into sugars or their phosphates; epidermis could not reduce CO2 by photosynthesis and therefore must be heterotrophic (Raschke and Dittrich, 1977). If, however, isolated epidermis of Commelina communis was placed on prelabelled mesophyll (obtained by an exposure to 14CO2 for 10 min), radioactive sugars appeared in the epidermis, most likely by transfer from the mesophyll. Of the radioactivity in the epidermis, 60% was in sucrose, glucose, fructose, 3-phosphoglyceric acid and sugar phosphates. During a 10-min exposure to 14CO2, epidermis in situ incorporated 16 times more radioactivity than isolated epidermal strips. Isolated epidermis of Commelina communis and Tulipa gesneriana took up 14C-labelled glucose-1-phosphate (without dephosphorylation), glucose, sucrose and maltose. These substances were transformed into other sugars and, simultaneously, into malic acid. Carbons-1 through-3 of malic acid in guard cells can thus be derived from sugars. Radioactivity appeared also in the hydrolysate of the ethanol-insoluble residue and in compounds of the tricarboxylic-acid cycle, including their transamination products. The hydrolysate contained glucose as the only radioactive compound. Radioactivity in the hydrolysate was therefore considered an indication of starch. Starch formation in the epidermis began within 5 min of exposure to glucose-1-phosphate. Autoradiograms of epidermal sections were blackened above the guard cells. Formation of starch from radioactive sugars therefore occurred predominantly in these cells. Epidermis of tulip consistently incorporated more 14C into malic and aspartic acids than that of Commelina communis (e.g. after a 4-h exposure to [14C]glucose in the dark, epidermis, with open stomata, of tulip contained 31% of its radioactivity in malate and aspartate, that of Commelina communis only 2%). The results of our experiments allow a merger of the old observations on the involvement of starch metabolism in stomatal movement with the more recent recognition of ion transfer and acid metabolism as causes of stomatal opening and closing.Abbreviation G-1-P glucose-1-phosphate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号