首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
2.
The failure of hydrodynamic analysis to define pore size in cell membranes   总被引:2,自引:0,他引:2  
The equivalent pore theory predicts that the size of water transporting pores can be calculated from the ratio of osmotic (Pf, cm . s-1) to diffusive (Pd, cm . s-1) water permeability. Determinations of Pf and Pd in human red cells within the last thirty years have increased the ratio of Pf to Pd. According to the equivalent pore theory the pore diameter has increased from 9 A to 25 A. A pore diameter of 25 A is not compatible with the permeability characteristics of the red cell membrane. We conclude that the equivalent pore theory fails to determine pore size in red blood cells. We suggest that water transporting pores in human red cells transport water molecules in a single file fashion.  相似文献   

3.
Transport of water between the capillary and airspace compartments in lung encounters serial barriers: the alveolar epithelium, interstitium, and capillary endothelium. We previously reported a pleural surface fluorescence method to measure net capillary-to-airspace water transport. To measure the osmotic water permeability across the microvascular endothelial barrier in intact lung, the airspace was filled with a water-immiscible fluorocarbon. The capillaries were perfused via the pulmonary artery with solutions of specified osmolalites containing a high-molecular-weight fluorescent dextran. An increase in perfusate osmolality produced a prompt decrease in surface fluorescence due to dye dilution in the capillaries, followed by a slower return to initial fluorescence as capillary and lung interstitial osmolality equilibrate. A mathematical model was developed to determine the osmotic water permeability coefficient (Pf) of lung microvessels from the time course of pleural surface fluorescence. As predicted, the magnitude of the prompt change in surface fluorescence increased with decreased pulmonary artery perfusion rate and increased osmotic gradient size. With raffinose used to induce the osmotic gradient, Pf was 0.03 cm/s at 23 degrees C and was reduced 54% by 0.5 mM HgCl2. Temperature dependence measurements gave an Arrhenius activation energy (Ea) of 5.4 kcal/mol (12-37 degrees C). The apparent Pf induced by the smaller osmolytes mannitol and glycine was 0.021 and 0.011 cm/s (23 degrees C). Immunoblot analysis showed approximately 1.4 x 10(12) aquaporin-1 water channels/cm2 of capillary surface, which accounted quantitatively for the high Pf. These results establish a novel method for measuring osmotically driven water permeability across microvessels in intact lung. The high Pf, low Ea, and mercurial inhibition indicate the involvement of molecular water channels in water transport across the lung endothelium.  相似文献   

4.
A surface fluorescence method was developed to measure transalveolar transport of water, protons, and solutes in intact perfused lungs. Lungs from c57 mice were removed and perfused via the pulmonary artery (approximately 2 ml/min). The airspace was filled via the trachea with physiological saline containing a membrane-impermeant fluorescent indicator (FITC-dextran or aminonapthalene trisulfonic acid, ANTS). Because fluorescence is detected only near the lung surface due to light absorption by lung tissue, the surface fluorescence signal is directly proportional to indicator concentration. Confocal microscopy confirmed that the fluorescence signal arises from fluorophores in alveoli just beneath the pleural surface. Osmotic water permeability (Pf) was measured from the time course of intraalveolar FITC-dextran fluorescence in response to changes in perfusate osmolality. Transalveolar Pf was 0.017 +/- 0.001 cm/s at 23 degrees C, independent of the solute used to induce osmosis (sucrose, NaCl, urea), independent of osmotic gradient size and direction, weakly temperature dependent (Arrhenius activation energy 5.3 kcal/mol) and inhibited by HgCl2. Pf was not affected by cAMP activation but was decreased by 43% in lung exposed to hyperoxia for 5 d. Diffusional water permeability (Pd) and Pf were measured in the same lung from intraalveolar ANTS fluorescence, which increased by 1.8-fold upon addition of 50% D2O to the perfusate, Pd was 1.3 x 10(-5) cm/s at 23 degrees C. Transalveolar proton transport was measured from FITC-dextran fluorescence upon switching perfusate pH between 7.4 and 5.6; alveolar pH half-equilibrated in 1.9 and 1.0 min without and with HCO3-, respectively. These results indicate high transalveolar water permeability in mouse lung, implicating the involvement of molecular water channels, and establish a quantitative surface fluorescence method to measure water and solute permeabilities in intact lung.  相似文献   

5.
6.
Targeting of water channels in renal epithelia may involve trafficking of clathrin-coated vesicles. We have isolated and measured the osmotic water permeability (Pf) of purified clathrin-coated vesicles from bovine kidney cortex and inner medulla, and bovine brain, a tissue not expected to contain "water channels." Brain-coated vesicles had a diameter of 80 nm in negatively stained preparations. Pf was measured by a stopped-flow light scattering technique. In brain-coated vesicles, water transport was functionally homogeneous with a low Pf of 0.0016 +/- 0.0001 cm/s (seven preparations, 23 degrees C). Pf was independent of osmotic gradient size (25-300 mOsm), not inhibited by mercurials, and not altered by removal of the clathrin coat. The activation energy (Ea) for Pf was high (11 +/- 1 kcal/mol less than 34 degrees C, 17 +/- 2 kcal/mol greater than 34 degrees C). Therefore, water channels are absent from brain-coated vesicles. In contrast, there were two functional populations of vesicles in coated vesicle preparations from both kidney cortex and medulla. One population of vesicles had low water permeability and no water channels, whereas a second population had high Pf (0.02 cm/s, 21 degrees C) that was inhibited by HgCl2, and low Ea (2-3 kcal/mol). The fraction of vesicles with high Pf was 52 +/- 3% (S.D., n = 3, cortical vesicles) and 26 +/- 3% (medullary vesicles). These results provide evidence that functional water channels are not present in clathrin-coated vesicles from the brain, whereas they are found in a population of coated vesicles from kidney cortex and medulla, tissues in which water channels are recycled between the plasma membrane, and an intracellular compartment.  相似文献   

7.
The apical membrane of mammalian proximal tubule undergoes rapid membrane cycling by exocytosis and endocytosis. Osmotic water and ATP- driven proton transport were measured in endocytic vesicles from rabbit and rat proximal tubule apical membrane labeled in vivo with the fluid phase marker fluorescein-dextran. Osmotic water permeability (Pf) was determined from the time course of fluorescein-dextran fluorescence after exposure of endosomes to an inward osmotic gradient in a stopped- flow apparatus. Pf was 0.009 (rabbit) and 0.029 cm/s (rat) (23 degrees C) and independent of osmotic gradient size. Pf in rabbit endosomes was inhibited reversibly by HgCl2 (KI = 0.2 mM) and had an activation energy of 6.4 +/- 0.5 kcal/mol (15-35 degrees C). Endosomal proton ATPase activity was measured from the time course of internal pH, measured by fluorescein-dextran fluorescence, after the addition of external ATP. Endosomes contained an ATP-driven proton pump that was sensitive to N-ethylmaleimide and insensitive to vanadate and oligomycin. In response to saturating [ATP] the pump acidified the endosomal compartment at a rate of 0.17 (rat) and 0.029 pH unit/s (rabbit); at an external pH of 7.4, the steady-state pH was 6.4 (rat) and 6.5 (rabbit). To examine whether water channels and the proton ATPase were present in the same endosome, the time course of fluorescein-dextran fluorescence was measured in response to an osmotic gradient in the presence and absence of ATP. ATP did not alter endosome Pf, but decreased the amplitude of the fluorescence signal by 43 +/- 3% (rabbit) and 47 +/- 4% (rat).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Vasopressin (VP) increases the water permeability of the toad urinary bladder epithelium by inducing the cycling of vesicles containing water channels to and from the apical membrane of granular cells. In this study, we have measured several functional characteristics of the endosomal vesicles that participate in this biological response to hormonal stimulation. The water, proton, and urea permeabilities of endosomes labeled in the intact bladder with fluorescent fluid-phase markers were measured. The diameter of isolated endosomes labeled with horse-radish peroxidase was 90-120 nm. Osmotic water permeability (Pf) was measured by a stopped-flow fluorescence quenching assay (Shi, L.-B., and A. S. Verkman. 1989. J. Gen. Physiol. 94:1101-1115). The number of endosomes formed when bladders were labeled in the absence of a transepithelial osmotic gradient increased with serosal [VP] (0-50 mU/ml), and endosome Pf was very high and constant (0.08-0.10 cm/s, 18 degrees C). When bladders were labeled in the presence of serosal-to-mucosal osmotic gradient, the number of functional water channels per endosome decreased (at [VP] = 0.5 mU/ml, Pf = 0.09 cm/s, 0 osmotic gradient; Pf = 0.02 cm/s, 180 mosmol gradient). Passive proton permeability was measured from the rate of pH decrease in voltage-clamped endosomes in response to a 1 pH unit gradient (pHin = 7.5, pHout = 6.5). The proton permeability coefficient (PH) was 0.051 cm/s at 18 degrees C in endosomes containing the VP-sensitive water channel; PH was not different from that measured in vesicles not containing water channels. Measurement of urea transport by the fluorescence quenching assay gave a urea reflection coefficient of 0.97 and a permeability coefficient of less than 10(-6) cm/s. These results demonstrate: (a) VP-induced endosomes from toad urinary bladder have extremely high Pf. (b) In states of submaximal bladder Pf, the density of functional water channels in endosomes in constant in the absence of an osmotic gradient, but decreases in the presence of a serosal-to-mucosal gradient, suggesting that the gradient has a direct effect on the efficiency of packaging of water channels into endosomes. (c) The VP-sensitive water channel does not have a high proton permeability. (d) Endosomes that cycle the water channel do not contain urea transporters. These results establish a labeling procedure in which greater than 85% of labeled vesicles from toad urinary bladder are endosomes that contain the VP-sensitive water channel in a functional form.  相似文献   

9.
The regulation of transepithelial water permeability in toad urinary bladder is believed to involve a cycling of endocytic vesicles containing water transporters between an intracellular compartment and the cell luminal membrane. Endocytic vesicles arising from luminal membrane were labeled selectively in the intact toad bladder with the impermeant fluid-phase markers 6-carboxyfluorescein (6CF) or fluorescein-dextran. A microsomal preparation containing labeled endocytic vesicles was prepared by cell scraping, homogenization, and differential centrifugation. Osmotic water permeability was measured by a stopped-flow fluorescence technique in which microsomes containing 50 mM mannitol, 5 mM K phosphate, pH 8.5 were subject to a 60-mM inwardly directed gradient of sucrose; the time course of endosome volume, representing osmotic water transport, was inferred from the time course of fluorescence self-quenching. Endocytic vesicles were prepared from toad bladders with hypoosmotic lumen solution treated with (group A) or without (group B) serosal vasopressin at 23 degrees C, and bladders in which endocytosis was inhibited by treatment with vasopressin at 0-2 degrees C (group C), or with vasopressin plus sodium azide at 23 degrees C (group D). Stopped-flow results in all four groups showed a slow rate of 6CF fluorescence decrease (time constants 1.0-1.7 s for exponential fit) indicating a component of nonendocytic 6CF entrapment into sealed vesicles. However, in vesicles from group A only, there was a very rapid 6CF fluorescence decrease (time constant 9.6 +/- 0.2 ms, SEM, 18 separate preparations) with an osmotic water permeability coefficient (Pf) of greater than 0.1 cm/s (18 degrees C) and activation energy of 3.9 +/- 0.8 kcal/mol (16 kJ/mol). Pf was inhibited reversibly by greater than 60% by 1 mM HgCl2. The rapid fluorescence decrease was absent in vesicles in groups B, C, and D. These results demonstrate the presence of functional water transporters in vasopressin-induced endocytic vesicles from toad bladder, supporting the hypothesis that water channels are cycled to and from the luminal membrane and providing a functional marker for the vasopressin-sensitive water channel. The calculated Pf in the vasopressin-induced endocytic vesicles is the highest Pf reported for any biological or artificial membrane.  相似文献   

10.
P Y Chen  D Pearce  A S Verkman 《Biochemistry》1988,27(15):5713-5718
Quantitative determination of rapid water and solute transport and solute reflection coefficients by light-scattering methods is complicated by dependence of vesicle or cell light scattering on nonvolume factors including solution refractive index, cell motion, and membrane aggregation. To overcome these difficulties, a fluorescence technique has been developed to measure accurately (1) osmotic water permeability (Pf), (2) solute permeability (Ps), and (3) solute reflection coefficient (sigma). The time course of vesicle volume is determined by the self-quenching of entrapped fluorescein sulfonate (FS), the best of a series of dyes screened for self-quenching, brightness, and vesicle loading/trapping. To validate the method, rabbit renal brush border vesicles (BBV) were loaded with 1-10 mM FS for 12 h at 4 degrees C and washed to remove extravesicular FS. FS leakage occurred over greater than 6 h at 4 degrees C and greater than 30 min at 23 degrees C. FS fluorescence vs vesicle volume was calibrated from the time course of fluorescence decrease (excitation 470 nm, emission greater than 515 nm) in response to a series of inward osmotic gradients in a stopped-flow apparatus. At 23 degrees C Pf was 0.005 +/- 0.001 cm/s, independent of osmotic gradient size, and inhibited 67% by 0.5 mM HgCl2. Urea Ps was 2 x 10(-6) cm/s with sigma 0.95-1.00 on the basis of the fluorescence time course analysis and the extravesicular [urea] required to obtain zero initial volume flow (null method) when vesicles were loaded with sucrose.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Total internal reflection (TIR) microfluorimetry was established as a method to measure continuously the volume of adherent cells and applied to measure membrane permeabilities in cells transfected with water channel homologs. Cytosol was labeled with the membrane-impermeant fluorophore calcein. Fluorescence was excited by the TIR evanescent field in a thin section of cytosol (approximately 150 nm) adjacent to the cell-substrate interface. Because cytosolic fluorophore number per cell remains constant, the TIR fluorescence signal should be inversely related to cell volume. For small volume changes in Sf-9 and LLC-PK1 cells, relative TIR fluorescence was nearly equal to inverse relative cell volume; deviations from the ideal were modeled theoretically. To measure plasma membrane osmotic water permeability, Pf, the time course of osmotically induced cell volume change was inferred from the TIR fluorescence signal. LLC-PK1 cells expressing the CHIP28 water channel had an HgCl2-sensitive, threefold increase in Pf compared to nontransfected cells (Pf = 0.0043 cm/s at 10 degrees C). Solute permeability was measured from the TIR fluorescence time course in response to solute gradients. Glycerol permeability in Sf-9 cells expressing the water channel homolog GLIP was (1.3 +/- 0.2) x 10(-5) cm/s (22 degrees C), greater than that of (0.36 +/- 0.04) x 10(-5) cm/s (n = 4, p < 0.05) for control cells, indicating functional expression of GLIP. Water and urea permeabilities were similar in GLIP-expressing and control cells. The TIR method should be applicable to the study of water and solute permeabilities and cell volume regulation in cells of arbitrary shape and size.  相似文献   

12.
The development of strategies to measure plasma membrane osmotic water permeability (Pf) in epithelial cells has been motivated by the identification of a family of molecular water channels. A general approach utilizing interferometry to measure cell shape and volume was developed and applied to measure Pf in cell layers. The method is based on the cell volume dependence of optical path length (OPL) for a light beam passing through the cell. The small changes in OPL were measured by interferometry. A mathematical model was developed to relate the interference signal to cell volume changes for cells of arbitrary shape and size. To validate the model, a Mach-Zehnder interference microscope was used to image OPL in an Madin Darby Canine Kidney (MDCK) cell layer and to reconstruct the three-dimensional cell shape (OPL resolution < lambda/25). As predicted by the model, a doubling of cell volume resulted in a change in OPL that was proportional to the difference in refractive indices between water and the extracellular medium. The time course of relative cell volume in response to an osmotic gradient was computed from serial interference images. To measure cell volume without microscopy and image analysis, a Mach-Zehnder interferometer was constructed in which one of two interfering laser beams passed through a flow chamber containing the cell layer. The interference signal in response to an osmotic gradient was analyzed to quantify the time course of relative cell volume. The calculated MDCK cell plasma membrane Pf of 6.1 x 10(-4) cm/s at 24 degrees C agreed with that obtained by interference microscopy and by a total internal reflection fluorescence method. Interferometry was also applied to measure the apical plasma membrane water permeability of intact toad urinary bladder; Pf increased fivefold after forskolin stimulation to 0.04 cm/s at 23 degrees C. These results establish and validate the application of interferometry to quantify cell volume and osmotic water permeability in cell layers.  相似文献   

13.
S T Tsai  R B Zhang  A S Verkman 《Biochemistry》1991,30(8):2087-2092
Erythrocytes from several mammalian species contain mercurial-sensitive water transporters. By a stopped-flow light scattering technique, osmotic water permeability (Pf) was exceptionally high in rabbit erythrocytes (0.053 +/- 0.002 cm/s) and reversibly inhibited by 98% by p-(chloromercuri)benzenesulfonate (pCMBS). The activation energy (Ea) was 4.6 kcal/mol (15-37 degrees C). pCMBS inhibition was half-maximal at 0.1 mM (60-min incubation); at 1 mM pCMBS, half-maximal inhibition occurred in 8 min. Pf was also inhibited by HgCl2 and pCMB with greater than 90% inhibition in 5 min. There was no inhibition by high concentrations of phloretin, DNDS, cytochalasin B, amiloride, ouabain, furosemide, and several proteases. In defolliculated Xenopus oocytes microinjected with 50 nL of water or unfractionated mRNA (1 mg/mL) from rabbit reticulocytes, oocyte Pf assayed at 10 degrees C after 72-h incubation increased from (4 +/- 1) X 10(-4) cm/s (water injected) to (18 +/- 2) X 10(-4) cm/s (mRNA injected). Pf increased linearly with [mRNA] (0-75 ng/oocyte) and was inhibited slowly and reversibly by pCMBS and immediately by HgCl2 but not by cytochalasin B, phloretin, or DNDS. Ea was 9.6 kcal/mol (water injected) and 2.6 kcal/mol (mRNA injected). These results demonstrate that rabbit erythrocytes have the highest Pf and the greatest percentage inhibition of Pf by mercurials of any mammalian erythrocyte studied. The characteristics of the expressed and native water channels were similar, suggesting that the erythrocyte water channel is a membrane protein suitable for expression cloning.  相似文献   

14.
Y X Wang  L B Shi  A S Verkman 《Biochemistry》1991,30(11):2888-2894
Functional water channels are retrieved by endocytosis from the apical membrane of toad bladder granular cells in response to vasopressin [Shi, L.-B., & Verkman, A.S. (1989) J. Gen. Physiol. 94, 1101-1115]. To examine whether endocytic vesicles which contain the vasopressin-sensitive water channel fuse with acidic vesicles for entry into a lysosomal pathway, ATP-dependent acidification and osmotic water permeability were measured in endosomes from control bladders and bladders treated with vasopressin (VP) and/or phorbol myristate acetate (PMA). Endosomes were labeled with the fluid-phase markers 6-carboxyfluorescein or fluorescein-dextran. Osmotic water permeability (Pf) was measured by stopped-flow fluorescence quenching and proton ATPase activity by ATP-dependent, N-ethylmaleimide-inhibitable acidification. In a microsomal pellet, Pf was low (less than 0.002 cm/s, 20 degrees C) in labeled endocytic vesicles from control bladders but high (0.05-0.1 cm/s) in a subpopulation (50-70%) of vesicles from VP- and PMA-treated bladders. Following ATP addition, the average drop in pH was 0.1 (control), 0.3 (VP), and 0.2 (PMA) unit. Measurement of pH in individual endocytic vesicles by quantitative image analysis showed that less than 20% of vesicles from VP-treated bladders acidified by greater than 0.5 pH unit. To examine whether water channels and proton pumps were present in the same endocytic vesicles, the pH of endosomes with high and low water permeability was measured from the effect of ATP on the amplitude of the fluorescence quenching signal in response to an osmotic gradient.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
As part of a programme of comparative measurements of diffusional water permeability (Pd) the red blood cells (RBC) from Little Penguin (Eudyptula minor) were studied. The cell dimensions were measured with light and electron microscopy, and by a newly described non-invasive technique, NMR q-space analysis. In view of its relative novelty for cell biologists, an overview of this technique is presented. The RBC revealed an ellipsoidal shape that is characteristic of avian RBC, with axis lengths ("diameters") estimated to be: a=16.0 microm; b=9.6 microm; c=5.0 microm. The values of P(d)were: 2.0 x 10(-3)cm s(-1)at 5 degrees C, 3.3 x 10(-3)cm s(-1)at 10 degrees C, 4.6 x 10(-3)cm s(-1)at 15 degrees C and approximately 5.4 x 10(-3)cm s(-1)at 20, 25, 30, 37 and 42 degrees C.There was a lack of inhibition of water permeability by p-chloromercuribenzensulfonate (PCMBS), the well-known inhibitor of RBC aquaporin. It was notable that in the temperature range 5-20 degrees C the NMR parameters, and hence the permeability, varied linearly as is found for other species, but at temperatures higher than 20 degrees C there was no temperature-dependence of Pd. Consequently, there was an obvious break at approximately 20 degrees C in the Arrhenius plot, of the mean residence life time of water inside the cells, 1/Te, versus temperature. For temperatures less than 20 degrees C the activation energy E(a,d) was 45.6 +/- 6.6 kJ/mol. For temperatures higher than 25 degrees C E(a,d) was zero. The lack of inhibition of water permeability by PCMBS and the very high value of E(a,d) for diffusive water exchange suggests that the water permeation occurs primarily via the membrane bilayer per se, i.e., there is no aquaporin in Little Penguin RBC. The discontinuity at approximately 20 degrees C in the Arrhenius plot is an interesting finding, not seen before in other species, and we suggest that it reflects a phase transition in the membrane lipids.  相似文献   

16.
Methodology was developed to measure osmotic water permeability in monolayer cultured cells and applied to examine the proposed role of glucose transporters in the water pathway (1989. Proc. Natl. Acad. Sci. USA. 86:8397-8401). J774 macrophages were grown on glass coverslips and mounted in a channel-type perfusion chamber for rapid fluid exchange without cell detachment. Relative cell volume was measured by 45 degrees light scattering using an inverted microscope; measurement accuracy was validated by confocal imaging microscopy. The time required for greater than 90% fluid exchange was less than 1 s. In response to a decrease in perfusate osmolality from 300 to 210 mosM, cells swelled without lag at an initial rate of 4.5%/s, corresponding to a water permeability coefficient of (6.3 +/- 0.4) x 10(-3) cm/s (SE, n = 20, 23 degrees C), assuming a cell surface-to-volume ratio of 4,400 cm-1. The initial rate of cell swelling was proportional to osmotic gradient size, independent of perfusate viscosity, and increased by amphotericin B (25 micrograms/ml), and had an activation energy of 10.0 +/- 1 kcal/mol (12-39 degrees C). The compounds phloretin (20 microM) and cytochalasin B (2.5 micrograms/ml) inhibited glucose transport by greater than 85% but did not influence Pf in paired experiments in which Pf was measured before and after inhibitor addition. The mercurials HgCl2 (0.1 mM) and p-chloromercuribenzoate (1 mM) did not inhibit Pf. A stopped-flow light scattering technique was used to measure Pf independently in J774 macrophages grown in suspension culture. Pf in suspended cells was (4.4 +/- 0.3) x 10(-3) cm/s (assuming a surface-to-volume ratio of 8,800 cm-1), increased more than threefold by amphotericin B, and not inhibited by phloretin and cytochalasin B under conditions of strong inhibition of glucose transport. The glucose reflection coefficient was 0.98 +/- 0.03 as measured by induced osmosis, assuming a unity reflection coefficient for sucrose. These results establish a quantitative method for measurement of osmotic water transport in adherent cultured cells and provide evidence that glucose transporters are not involved in the water transporting pathway.  相似文献   

17.
Diffusional water permeability was measured in renal proximal tubule cell membranes by pulsed nuclear magnetic resonance using proton spin-lattice relaxation times (T1). A suspension of viable proximal tubules was prepared from rabbit renal cortex by Dounce homogenization and differential sieving. T1 measured in a tubule suspension (22% of exchangeable water in the intracellular compartment) containing 20 mM extracellular MnCl2 was biexponential with time constants 1.8 +/- 0.1 ms and 8.3 +/- 0.2 ms (mean +/- SD, n = 8, 37 degrees C, 10 MHz). The slower time constant, representing diffusional exchange of water between intracellular and extracellular compartments, increased to 11.6 +/- 0.6 ms (n = 6) after incubation of tubules with 5 mM parachloromercuribenzene sulfonate (pCMBS) for 60 min at 4 degrees C and was temperature dependent with activation energy Ea = 2.9 +/- 0.4 kcal/mol. To relate T1 data to cell membrane diffusional water permeabilities (Pd), a three-compartment exchange model was developed that included intrinsic decay of proton magnetization in each compartment and apical and basolateral membrane water transport. The model predicted that the slow T1 was relatively insensitive to apical membrane Pd because of low luminal/cell volume ratio. Based on this analysis, basolateral Pd (corrected for basolateral membrane surface convolutions) is 2.0 X 10(-3) cm/s, much lower than corresponding values for basolateral Pf (10-30 X 10(-3) cm/s) measured in the intact tubule and in isolated basolateral membrane vesicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The pre-steady-state kinetics of the vasopressin-induced increase in collecting tubule osmotic water permeability (Pf) has been measured by a new fluorescence technique. Isolated cortical collecting tubules (CCT) from rabbit kidney were perfused with physiological buffers containing the impermeant fluorophores fluorescein sulfonate (FS) and pyrenetetrasulfonic acid (PTSA). Tubules were subject to a 120 mOsm bath-to-lumen osmotic gradient in the presence and absence of 250 microU/ml vasopressin. The magnitude of transepithelial volume flow was determined from the self-quenching of FS, or from the ratio of PTSA/FS fluorescence, measured at 380 nm excitation and 420 +/- 10 nm (PTSA) and greater than 530 nm (FS) emission wavelengths. Pf was calculated from the magnitude of transepithelial volume flow, lumen and bath osmolarities, lumen perfusion rate, and tubule geometry. The instrument response time for a change in bath osmolality was less than 3 s. At 37 degrees C, CCT Pf was (in units of cm/s x 10(4] 13 +/- 2 (mean +/- SE, 16 tubules) before, and 227 +/- 10 after addition of vasopressin to the bath. CCT Pf began to increase in 23 +/- 3 s after vasopressin addition and was half-maximal after 186 +/- 20 s. At 23 degrees C, Pf was 9 +/- 1 (seven tubules) before, and 189 +/- 12 after vasopressin addition. Pf began to increase in 40 +/- 4 s and was half-maximal after 195 +/- 35 s. After vasopressin removal from the bath, Pf decreased to its baseline value with a half-time of 14 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The existence and identity of protein water transporters in biological membranes has been uncertain. Osmotic water permeability (Pf) was measured in defolliculated Xenopus oocytes microinjected with water or mRNA from kidney cortex, kidney papilla, reticulocyte, brain, and muscle. Pf was measured by quantitative image analysis from the time course of oocyte swelling in response to an osmotic gradient. When assayed at 10 degrees C, Pf in water-injected oocytes increased from (3.6 +/- 0.9) x 10(-4) cm/s (S.D., n = 16) to 74 x 10(-4) cm/s with addition of amphotericin B, showing absence of unstirred layers. At 48-72 h after injection of 50 ng of unfractionated mRNA, Pf (in cm/s x 10(-4] was: 4.0 +/- 1.5 (rabbit brain, n = 15), 4.2 +/- 1.8 (rabbit muscle, n = 10), 18.4 +/- 6.3 (rabbit reticulocyte, n = 20), 16.1 +/- 5.6 (rat renal papilla, n = 24), 12.9 +/- 6.3 (rat renal cortex, n = 20), 14.4 +/- 6.1 (rabbit renal papilla, n = 15), and 11.8 +/- 3.4 (rabbit renal cortex, n = 8). In oocytes injected with mRNA from rat renal papilla, Pf was inhibited reversibly by 0.3 mM HgCl2 (4.1 +/- 1.6, n = 10); expressed water channels from kidney and red cell had activation energies of less than 4 kcal/mol. These results show functional oocyte expression of water channels from red cell, kidney proximal tubule (cortex), and the vasopressin-sensitive kidney collecting tubule (papilla), indicating that water channels are proteins, and providing an approach for the expression cloning of water channels.  相似文献   

20.
Water rapidly crosses the plasma membranes of red blood cells (RBCs) and renal tubules through highly specialized channels. CHIP28 is an abundant integral membrane protein in RBCs and renal tubules, and Xenopus laevis oocytes injected with CHIP28 RNA exhibit high osmotic water permeability, Pf [Preston et al. (1992) Science 256, 385-387]. Purified CHIP28 from human RBCs was reconstituted into proteoliposomes in order to establish if CHIP28 is itself the functional unit of water channels and to characterize its physiological behavior. CHIP28 proteoliposomes exhibit Pf which is up to 50-fold above that of control liposomes, but permeability to urea and protons is not increased. Like intact RBC, the Pf of CHIP28 proteoliposomes is reversibly inhibited by mercurial sulfhydryl reagents and exhibits a low Arrhenius activation energy. The magnitude of CHIP28-mediated water flux (11.7 x 10(-14) cm3/s per CHIP28) corresponds to the known Pf of intact RBCs. These results demonstrate that CHIP28 protein functions as a molecular water channel and also indicate that CHIP28 is responsible for most transmembrane water movement in RBCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号