首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
K J Garvey  M S Saedi    J Ito 《Nucleic acids research》1986,14(24):10001-10008
The nucleotide sequence of Bacillus phage phi 29 genes 14 (g14) and 15 (g15) have been determined and shown to encode proteins with molecular weights of 15,014 and 28,022, respectively. The g14 open reading frame (ORF) was confirmed by sequencing a sus14(1241) mutant. Gene product 15 (gp15) has considerable homology with Salmonella phage P22 lysozyme and lesser homology with Escherichia coli phage T4 lysozyme. Putative translation signals are identified. In addition, the role of a previously described promoter, B2, is discussed.  相似文献   

3.
4.
Hypothetical lambda protein ORF314 shows significant homology with the carboxyl end of phage T4 tail-fiber protein gp37. Homology can also be demonstrated between hypothetical lambda protein ORF194 and a fragment of bacteriophage T4 protein gp38. This sequence homology is also reflected in the genomic sequences of these two phages.  相似文献   

5.
6.
C J Michel  B Jacq  D G Arquès  T A Bickle 《Gene》1986,44(1):147-150
We have found that the amino acid (aa) sequence of the tip of phage T4 tail fibre (gene 37) shows more than 50% homology with the aa sequence predicted from an open reading frame (ORF314) in the phage lambda genome. ORF314 is near the 3' end of the late morphogenetic operon, beyond gene J coding for the lambda tail fibre. The homologous sequences are for the most part composed of repeated aa, the most remarkable of which is a Gly-X-His-Y-His motif where X and Y are small, uncharged aa, found six times in the T4 protein and seven times in the lambda ORF314 sequence.  相似文献   

7.
SPP1 is a siphophage infecting the gram‐positive bacterium Bacillus subtilis. It is constituted by an icosahedric head and a long non‐contractile tail formed by gene products (gp) 17–21. A group of 5 small genes (gp 22–24.1) follows in the genome those coding for the main tail components. However, the belonging of the corresponding gp to the tail or to other parts of the phage is not documented. Among these, gp22 lacks sequence identity to any known protein. We report here the gp22 structure solved by X‐ray crystallography at 2.35 Å resolution. We found that gp22 is a monomer in solution and possesses a significant structural similarity with lactococcal phage p2 ORF 18 N‐terminal “shoulder” domain.  相似文献   

8.
About 130 kb of sequence information was obtained from the coliphage JS98 isolated from the stool of a pediatric diarrhea patient in Bangladesh. The DNA shared up to 81% base pair identity with phage T4. The most conserved regions between JS98 and T4 were the structural genes, but their degree of conservation was not uniform. The head genes showed the highest sequence conservation, followed by the tail, baseplate, and tail fiber genes. Many tail fiber genes shared only protein sequence identity. Except for the insertion of endonuclease genes in T4 and gene 24 duplication in JS98, the structural gene maps of the two phages were colinear. The receptor-recognizing tail fiber proteins gp37 and gp38 were only distantly related to T4, but shared up to 83% amino acid identity to other T6-like phages, suggesting lateral gene transfer. A greater degree of variability was seen between JS98 and T4 over DNA replication and DNA transaction genes. While most of these genes came in the same order and shared up to 76% protein sequence identity, a few rearrangements, insertions, and replacements of genes were observed. Many putative gene insertions in the DNA replication module of T4 were flanked by intron-related endonuclease genes, suggesting mobile DNA elements. A hotspot of genome diversification was located downstream of the DNA polymerase gene 43 and the DNA binding gene 32. Comparative genomics of 100-kb genome sequence revealed that T4-like phages diversify more by the accumulation of point mutations and occasional gene duplication events than by modular exchanges.  相似文献   

9.
Numerous T4-like Escherichia coli phages were isolated from human stool and environmental wastewater samples in Bangladesh and Switzerland. The sequences of the major head gene (g23) revealed that these coliphages could be placed into four subgroups, represented by the phages T4, RB69, RB49, and JS98. Thus, JS98 defines a new major subgroup of E. coli T4-like phages. We conducted an analysis of the 169-kb JS98 genome sequence. Overall, 198 of the 266 JS98 open reading frames (ORFs) shared amino acid sequence identity with the reference T4 phage, 41 shared identity with other T4-like phages, and 27 ORFs lacked any database matches. Genes on the plus strand encoded virion proteins, which showed moderate to high sequence identity with T4 proteins. The right genome half of JS98 showed a higher degree of sequence conservation with T4 and RB69, even for the nonstructural genes, than did the left genome half, containing exclusively nonstructural genes. Most of the JS98-specific genes were found in the left genome half. Two came as a hypervariability cluster, but most represented isolated genes, suggesting that they were acquired separately in multiple acquisition events. No evidence for DNA exchange between JS98 phage and the E. coli host genome or coliphages other than T4 was observed. No undesired genes which could compromise its medical use were detected in the JS98 genome sequence.  相似文献   

10.
The DNA entrance vertex of the phage head is critical for prohead assembly and DNA packaging. A single structural protein comprises this dodecameric ring substructure of the prohead. Assembly of the phage T4 prohead occurs on the cytoplasmic membrane through a specific attachment at or near the gp20 DNA entrance vertex. An auxiliary head assembly gene product, gp40, was hypothesized to be involved in assembling the gp20 substructure. T4 genes 20, 40 and 20 + 40 were cloned into expression vectors under lambda pL promoter control. The corresponding T4 gene products were synthesized in high yield and were active as judged by their ability to complement the corresponding infecting T4 mutants in vivo. The cloned T4 gene 20 and gene 40 products were inserted into the cytoplasmic membrane as integral membrane proteins; however, gp20 was inserted into the membrane only when gp40 was also synthesized, whereas gp40 was inserted in the presence or absence of gp20. The gp20 insertion required a membrane potential, was not dependent upon the Escherichia coli groE gene, and assumed a defined membrane-spanning conformation, as judged by specific protease fragments protected by the membrane. The inserted gp20 structure could be probed by antibody binding and protein A-gold immunoelectron microscopy. The data suggest that a specific gp20-gp40-membrane insertion structure constitutes the T4 prohead assembly initiation complex.  相似文献   

11.
The complete genome of phiEcoM-GJ1, a lytic phage that attacks porcine enterotoxigenic Escherichia coli of serotype O149:H10:F4, was sequenced and analyzed. The morphology of the phage and the identity of the structural proteins were also determined. The genome consisted of 52,975 bp with a G+C content of 44% and was terminally redundant and circularly permuted. Seventy-five potential open reading frames (ORFs) were identified and annotated, but only 29 possessed homologs. The proteins of five ORFs showed homology with proteins of phages of the family Myoviridae, nine with proteins of phages of the family Podoviridae, and six with proteins of phages of the family Siphoviridae. ORF 1 encoded a T7-like single-subunit RNA polymerase and was preceded by a putative E. coli sigma(70)-like promoter. Nine putative phage promoters were detected throughout the genome. The genome included a tRNA gene of 95 bp that had a putative 18-bp intron. The phage morphology was typical of phages of the family Myoviridae, with an icosahedral head, a neck, and a long contractile tail with tail fibers. The analysis shows that phiEcoM-GJ1 is unique, having the morphology of the Myoviridae, a gene for RNA polymerase, which is characteristic of phages of the T7 group of the Podoviridae, and several genes that encode proteins with homology to proteins of phages of the family Siphoviridae.  相似文献   

12.
Stenotrophomonas maltophilia (Sm), with most of the isolates being resistant to multidrugs, is an opportunistic bacterium causing nosocomial infections. In this study, a novel virulent Sm phage, Smp14, was characterized. Electron microscopy showed that Smp14 resembled members of Myoviridae and adsorbed to poles of the host cells during infection. It lysed 37 of 87 clinical Sm isolates in spot test, displayed a latent period of ca. 20 min, and had a burst size of ca. 150. Its genome (estimated to be 160 kb by PFGE), containing m4C and two unknown modified bases other than m5C and m6A as identified by HPLC, resisted to digestion with many restriction endonucleases except MseI. These properties indicate that it is a novel Sm phage distinct from the previously reported phiSMA5 which has a genome of 250 kb digestible with various restriction enzymes. Sequencing of a 16 kb region revealed 12 ORFs encoding structural proteins sharing 15-45% identities with the homologues from T4-type phages. SDS-PAGE displayed 20 virion proteins, with the most abundant one being the 39 kDa major capsid protein (gp23), which had the N-terminal 52 amino acids removed. Phylogenetic analysis based on gp23 classified Smp14 into a novel single-membered T4-type subgroup.  相似文献   

13.
Acinetobacter baumannii is an important Gram-negative opportunistic pathogen causing nosocomial infections. The emergence of multiple-drug-resistant A. baumannii isolates has increased in recent years. Directed toward phage therapy, a lytic phage of A. baumannii, designated Abp53, was isolated from a sputum sample in this study. Abp53 has an isometric head and a contractile tail with tail fibers (belonging to Myoviridae), a latent period of about 10 min, and a burst size of approximately 150 PFU per infected cell. Abp53 could completely lyse 27% of the A. baumannii isolates tested, which were all multiple drug resistant, but not other bacteria. Mg(2+) enhanced the adsorption and productivity of, and host lysis by, Abp53. Twenty Abp53 virion proteins were visualized in SDS-polyacrylamide gel electrophoresis, with a 47-kDa protein being the predicted major capsid protein. Abp53 has a double-stranded DNA genome of 95 kb. Sequence analyses of a 10-kb region revealed 8 open reading frames. Five of the encoded proteins, including 3 tail components and 2 hypothetical proteins, were similar to proteins encoded by A. baumannii strain ACICU. ORF1176 (one of the tail components, 1,176 amino acids [aa]), which is also similar to tail protein gp21 of Klebsiella phage phiKO2, contained repeated domains similar to those within the ACICU_02717 protein of A. baumannii ACICU and gp21. These findings suggest a common ancestry and horizontal gene transfer during evolution. As phages can expand the host range by domain duplication in tail fiber proteins, repeated domains in ORF1176 might have a similar significance in Abp53.  相似文献   

14.
F K Chu  G F Maley  A M Wang  F Maley 《Gene》1987,57(1):143-148
The nucleotide (nt) sequence in a 757-bp [corrected] segment downstream from the intron-containing T4 phage thymidylate synthase gene (td) has been determined. This region was found to contain two open reading frames (ORFs). The first ORF(ORF2) [corrected] 261 bp [corrected] in length, is 24 [corrected] nt downstream from the td gene. The second ORF(ORF3) [corrected]) is 200 bp long at 558 [corrected] nt from the td gene and extends to the end of the Eco RI fragment. The amino acid (aa) sequence (66 aa residues) deduced from the second truncated ORF shows 59% homology to the sequence of the N-terminal portion of the ribonucleotide reductase large subunit of either Escherichia coli (B1 subunit) or mouse (M1 subunit). This tentatively identifies the truncated gene to be the 5' end of the T4 phage ribonucleotide reductase subunit B1 (nrdA) gene and pinpoints its exact location on the T4 phage genomic map. Southern hybridization analysis suggests good sequence homology among the nrdA genes of various T-even phages.  相似文献   

15.
CP81 is a virulent Campylobacter group III phage whose linear genome comprises 132,454 bp. At the nucleotide level, CP81 differs from other phages. However, a number of its structural and replication/recombination proteins revealed a relationship to the group II Campylobacter phages CP220/CPt10 and to T4-type phages. Unlike the T4-related phages, the CP81 genome does not contain conserved replication and virion modules. Instead, the respective genes are scattered throughout the phage genome. Moreover, most genes for metabolic enzymes of CP220/CPt10 are lacking in CP81. On the other hand, the CP81 genome contains nine similar genes for homing endonucleases which may be involved in the attrition of the conserved gene order for the virion core genes of T4-type phages. The phage apparently possesses an unusual modification of C or G bases. Efficient cleavage of its DNA was only achieved with restriction enzymes recognizing pure A/T sites. Uncommonly, phenol extraction leads to a significant loss of CP81 DNA from the aqueous layer, a property not yet described for other phages belonging to the T4 superfamily.  相似文献   

16.
Integration of Plasmids into the Bacteriophage T4 Genome   总被引:2,自引:0,他引:2       下载免费PDF全文
HWE. Kreuzer  K. N. Kreuzer 《Genetics》1994,138(4):983-992
We have analyzed the integration of plasmids into the bacteriophage T4 genome via homologous recombination. As judged by genetic selection for a plasmid-borne marker, a mutation in phage gene uvsX or uvsY essentially blocked the integration of a plasmid with homology to the T4 genome but no phage replication origin (non-origin plasmid). The strict requirement for these two proteins suggests that plasmid integration can proceed via a strand-invasion reaction similar to that catalyzed in vitro by the T4-encoded strand-exchange protein (UvsX) in concert with UvsY and gp32. In contrast to the results with the non-origin plasmid, a mutation in uvsX or uvsY reduced the integration of a T4 replication origin-containing plasmid by only 3-10-fold. These results suggest that the origin-containing plasmid integrates by both the UvsXY-dependent pathway used by the non-origin plasmid and by a UvsXY-independent pathway. The origin-containing plasmid integrated into the phage genome during a uvsX-or uvsY-mutant infection of a recA-mutant host, and therefore origin-dependent integration can occur in the absence of both phage- and host-encoded strand-exchange proteins (UvsX and RecA, respectively).  相似文献   

17.
PY100 is a lytic bacteriophage with a broad host range within the genus Yersinia. The phage forms plaques on strains of the three human pathogenic species Yersinia enterocolitica, Y. pseudotuberculosis, and Y. pestis at 37°C. PY100 was isolated from farm manure and intended to be used in phage therapy trials. PY100 has an icosahedral capsid containing double-stranded DNA and a contractile tail. The genome consists of 50,291 bp and is predicted to contain 93 open reading frames (ORFs). PY100 gene products were found to be homologous to the capsid proteins and proteins involved in DNA metabolism of the enterobacterial phage T1; PY100 tail proteins possess homologies to putative tail proteins of phage AaΦ23 of Actinobacillus actinomycetemcomitans. In a proteome analysis of virion particles, 15 proteins of the head and tail structures were identified by mass spectrometry. The putative gene product of ORF2 of PY100 shows significant homology to the gene 3 product (small terminase subunit) of Salmonella phage P22 that is involved in packaging of the concatemeric phage DNA. The packaging mechanism of PY100 was analyzed by hybridization and sequence analysis of DNA isolated from virion particles. Newly replicated PY100 DNA is cut initially at a pac recognition site, which is located in the coding region of ORF2.  相似文献   

18.
Bacteriophage Mu is a double-stranded DNA phage that consists of an icosahedral head, a contractile tail with baseplate and six tail fibers, similar to the well-studied T-even phages. The baseplate of bacteriophage Mu, which recognizes and attaches to a host cell during infection, consists of at least eight different proteins. The baseplate protein, gp44, is essential for bacteriophage Mu assembly and the generation of viable phages. To investigate the role of gp44 in baseplate assembly and infection, the crystal structure of gp44 was determined at 2.1A resolution by the multiple isomorphous replacement method. The overall structure of the gp44 trimer is similar to that of the T4 phage gp27 trimer, which forms the central hub of the T4 baseplate, although these proteins share very little primary sequence homology. Based on these data, we confirm that gp44 exists as a trimer exhibiting a hub-like structure with an inner diameter of 25A through which DNA can presumably pass during infection. The molecular surface of the gp44 trimer that abuts the host cell membrane is positively charged, and it is likely that Mu phage interacts with the membrane through electrostatic interactions mediated by gp44.  相似文献   

19.
The distal part of the long tail fiber of Escherichia coli bacteriophage T4 consists of a dimer of protein 37. Dimerization requires the catalytic action of protein 38, which is encoded by T4 and is not present in the virion. It had previously been shown that gene tfa of the otherwise entirely unrelated phage lambda can functionally replace gene 38. Open reading frame (ORF) 314, which encodes a protein that exhibits homology to a COOH-terminal area of protein 37, is located immediately upstream of tfa. The gene was cloned and expressed in E. coli. An antiserum against the corresponding polypeptide showed that it was present in phage lambda. The serum also reacted with the long tail fibers of phage T4 near their free ends. An area of the gene encoding a COOH-terminal region of ORF 314 was recombined, together with tfa, into the genome of T4, thus replacing gene 38 and a part of gene 37 that codes for a COOH-terminal part of protein 37. Such T4-lambda hybrids, unlike T4, required the presence of outer membrane protein OmpC for infection of E. coli B. An ompC missense mutant of E. coli K-12, which was still sensitive to T4, was resistant to these hybrids. We conclude that the ORF 314 protein represents a subunit of the side tail fibers of phage lambda which probably recognize the OmpC protein. ORF 314 was designated stf (side tail fiber). The results also offer an explanation for the very unusual fact that, despite identical genomic organizations, T4 and T2 produce totally different proteins 38. An ancestor of T4 from the T2 lineage may have picked up tfa and stf from a lambdoid phase, thus possibly demonstrating horizontal gene transfer between unrelated phage species.  相似文献   

20.
We have determined the DNA sequence of the control region of phage D108 up to position 1419 at the left end of the phage genome. Open reading frames for the repressor gene, ner gene, and the 5' part of the A gene (which codes for transposase) are found in the sequence. The genetic organization of this region of phage D108 is quite similar to that of phage Mu in spite of considerable divergence, both in the nucleotide sequence and in the amino acid sequences of the regulatory proteins of the two phages. The N-terminal amino acid sequences of the transposases of the two phages also share only limited homology. On the other hand, a significant amino acid sequence homology was found within each phage between the N-terminal parts of the repressor and transposase. We propose that the N-terminal domains of the repressor and transposase of each phage interact functionally in the process of making the decision between the lytic and the lysogenic mode of growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号