共查询到20条相似文献,搜索用时 0 毫秒
1.
Fatty acid biosynthesis in Pseudomonas aeruginosa: cloning and characterization of the fabAB operon encoding beta-hydroxyacyl-acyl carrier protein dehydratase (FabA) and beta-ketoacyl-acyl carrier protein synthase I (FabB).
下载免费PDF全文

The Pseudomonas aeruginosa fabA and fabB genes, encoding beta-hydroxyacyl-acyl carrier protein dehydratase and beta-ketoacyl-acyl carrier protein synthase I, respectively, were cloned, sequenced, and expressed in Escherichia coli. Northern analysis demonstrated that fabA and fabB are cotranscribed and most probably form a fabAB operon. The FabA and FabB proteins were similar in size and amino acid composition to their counterparts from Escherichia coli and to the putative homologs from Haemophilus influenzae. Chromosomal fabA and fabB mutants were isolated; the mutants were auxotrophic for unsaturated fatty acids. A temperature-sensitive fabA mutant was obtained by site-directed mutagenesis of a single base that induced a G101D change; this mutant grew normally at 30 degrees C but not at 42 degrees C, unless the growth medium was supplemented with oleate. By physical and genetic mapping, the fabAB genes were localized between 3.45 and 3.6 Mbp on the 5.9-Mbp chromosome, which corresponds to the 58- to 59.5-min region of the genetic map. 相似文献
2.
Meyer-Hoffert U Zimmermann A Czapp M Bartels J Koblyakova Y Gläser R Schröder JM Gerstel U 《PloS one》2011,6(1):e16433
The opportunistic pathogen Pseudomonas aeruginosa can cause severe infections in patients suffering from disruption or disorder of the skin barrier as in burns, chronic wounds, and after surgery. On healthy skin P. aeruginosa causes rarely infections. To gain insight into the interaction of the ubiquitous bacterium P. aeruginosa and healthy human skin, the induction of the antimicrobial protein psoriasin by P. aeruginosa grown on an ex vivo skin model was analyzed. We show that presence of the P. aeruginosa derived biosurfactant rhamnolipid was indispensable for flagellin-induced psoriasin expression in human skin, contrary to in vitro conditions. The importance of the bacterial virulence factor flagellin as the major inducing factor of psoriasin expression in skin was demonstrated by use of a flagellin-deficient mutant. Rhamnolipid mediated shuttle across the outer skin barrier was not restricted to flagellin since rhamnolipids enable psoriasin expression by the cytokines IL-17 and IL-22 after topical application on human skin. Rhamnolipid production was detected for several clinical strains and the formation of vesicles was observed under skin physiological conditions. In conclusion we demonstrate herein that rhamnolipids enable the induction of the antimicrobial protein psoriasin by flagellin in human skin without direct contact of bacteria and responding cells. Hereby, human skin might control the microflora to prevent colonization of unwanted microbes in the earliest steps before potential pathogens can develop strategies to subvert the immune response. 相似文献
3.
Mi Chung Suh David J. Schultz John B. Ohlrogge 《The Plant journal : for cell and molecular biology》1999,17(6):679-688
Seeds of coriandrum sativum (coriander) and Thunbergia alata (black-eyed Susan vine) produce unusual monoenoic fatty acids which constitute over 80% of the total fatty acids of the seed oil. The initial step in the formation of these fatty acids is the desaturation of palmitoyl-ACP (acyl carrier protein) at the delta(4) or delta(6) positions to produce delta(4)-hexadecenoic acid (16:1(delta(4)) or delta(6)-hexadecenoic acid (16:1(delta(6)), respectively. The involvement of specific forms of ACP in the production of these novel monoenoic fatty acids was studied. ACPs were partially purified from endosperm of coriander and T. alata and used to generate 3H- and 14C-labelled palmitoyl-ACP substrates. In competition assays with labelled palmitoyl-ACP prepared from spinach (Spinacia oleracea), delta(4)-acyl-ACP desaturase activity was two- to threefold higher with coriander ACP than with spinach ACP. Similarly, the T. alata delta(6) desaturase favoured T. alata ACP over spinach ACP. A cDNA clone, Cs-ACP-1, encoding ACP was isolated from a coriander endosperm cDNA library. Cs-ACP-1 mRNA was predominantly expressed in endosperm rather than leaves. The Cs-ACP-1 mature protein was expressed in E. coli and comigrated on SDS-PAGE with the most abundant ACP expressed in endosperm tissues. In in vitro delta(4)-palmitoyl-ACP desaturase assays, the Cs-ACP-1 expressed from E. coli was four- and 10-fold more active than spinach ACP or E. coli ACP, respectively, in the synthesis of delta(4)-hexadecenoic acid from palmitoyl-ACP. In contrast, delta(9)-stearoyl-ACP desaturase activity from coriander endosperm did not discriminate strongly between different ACP species. These results indicate that individual ACP isoforms are specifically involved in the biosynthesis of unusual seed fatty acids and further suggest that expression of multiple ACP isoforms may participate in determining the products of fatty acid biosynthesis. 相似文献
4.
5.
6.
Santosh Kumar Upadhyay Ashish Misra Namita Surolia Avadhesha Surolia Monica Sundd 《Biomolecular NMR assignments》2010,4(1):83-85
We report the backbone chemical shift assignments of the acyl-acyl carrier protein (ACP) intermediates of the fatty acid biosynthesis pathway of Plasmodium falciparum. The acyl-ACP intermediates butyryl (C4), -octanoyl (C8), -decanoyl (C10), -dodecanoyl (C12) and -tetradecanoyl (C14)-ACPs display marked changes in backbone HN, Cα and Cβ chemical shifts as a result of acyl chain insertion into the hydrophobic core. Chemical shift changes cast light on the mechanism of expansion of the acyl carrier protein core. 相似文献
7.
Characterization of a new type of phosphopantetheinyl transferase for fatty acid and siderophore synthesis in Pseudomonas aeruginosa 总被引:2,自引:0,他引:2
Finking R Solsbacher J Konz D Schobert M Schafer A Jahn D Marahiel MA 《The Journal of biological chemistry》2002,277(52):50293-50302
Phosphopantetheinyl-dependent carrier proteins are part of fatty-acid synthases (primary metabolism), polyketide synthases, and non-ribosomal peptide synthetases (secondary metabolism). For these proteins to become functionally active, they need to be primed with the 4'-phosphopantetheine moiety of coenzyme A by a dedicated phosphopantetheine transferase (PPTase). Most organisms that employ more than one phosphopantetheinyl-dependent pathway also have more than one PPTase. Typically, one of these PPTases is optimized for the modification of carrier proteins of primary metabolism and rejects those of secondary metabolism (AcpS-type PPTases), whereas the other, Sfp-type PPTase, efficiently modifies carrier proteins involved in secondary metabolism. We present here a new type of PPTase, the carrier protein synthase of Pseudomonas aeruginosa, an organism that harbors merely one PPTase, namely PcpS. Gene deletion experiments clearly show that PcpS is essential for growth of P. aeruginosa, and biochemical data indicate its association with both fatty acid synthesis and siderophore metabolism. At first sight, PcpS is a PPTase of the monomeric Sfp-type and was consequently expected to have catalytic properties typical for this type of enzyme. However, in vitro characterization of PcpS with natural protein partners and non-cognate substrates revealed that its catalytic properties differ significantly from those of Sfp. Thus, the situation in P. aeruginosa is not simply the result of the loss of an AcpS-type PPTase. PcpS exhibits high catalytic efficiency with the carrier protein of fatty acid synthesis and shows a reduced although significant conversion rate of the carrier proteins of non-ribosomal peptide synthetases from their apo to holo form. This association with enzymes of primary and secondary metabolism indicates that PcpS belongs to a new sub-class of PPTases. 相似文献
8.
9.
10.
11.
Phospholipids stabilize the secondary structure of the sodium-coupled branched-chain amino acid carrier of Pseudomonas aeruginosa 总被引:5,自引:0,他引:5
Uratani Y Kobayashi M Yokoyama Y Maeda T Mitaku S Hoshino T 《Biochimica et biophysica acta》1999,1435(1-2):71-83
For functional reconstitution of bacterial cotransporters (carriers or permeases) including the sodium-coupled branched-chain amino acid carrier (LIV-II carrier) of Pseudomonas aeruginosa, the presence of phospholipid is required through the process of solubilization and purification of the transporters from the bacterial membranes, suggesting the possibility that phospholipid may stabilize the structure of the cotransporter proteins to be in a functional form. In this study, this possibility was examined by studying the effect of denaturant on the secondary structure of the LIV-II carrier purified in the absence and presence of phospholipid using circular dichroism (CD) spectroscopy. CD spectra of the purified LIV-II carrier solubilized in n-octyl-beta-D-glucopyranoside (OG), OG/dioleoylphosphatidylethanolamine (DOPE)/dioleoylphosphatidylglycerol (DOPG) mixture, and dispersed into DOPE/DOPG small unilamellar vesicles were measured in the absence of denaturant. The three spectra were very similar and had a trough at 222 nm with mean residue molar ellipticity of -23000 deg.cm(2)/dmol and a shoulder at 208 nm. CD spectral analyses with three different methods (S.W. Provencher, J. Gl?ckner, Estimation of globular protein secondary structure from circular dichroism, Biochemistry 20 (1981) 33-37; J.Y. Yang, C.-S.C. Wu, H.Z. Martinez, Calculation of protein conformation from circular dichroism, Methods Enzymol. 130 (1986) 208-269; N. Sreerama, R.W. Woody, A self-consistent method for the analysis of protein secondary structure from circular dichroism, Anal. Biochem. 209 (1993) 32-44) revealed that the LIV-II carrier solubilized in OG/DOPE/DOPG mixture contained 69-75% alpha-helix and 0-9% beta-sheet. Addition of 6 M guanidine hydrochloride decreased 48% of the amplitude at 222 nm of the CD spectrum of the carrier solubilized in OG alone and 9-14% of the CD amplitude of the carrier solubilized in OG/DOPE/DOPG or OG/dioleoylphosphatidylcholine mixture and dispersed in liposomes composed of DOPE/DOPG. These results show that the ordered secondary structure of the LIV-II carrier is partially unfolded in OG without phospholipid by denaturant but is greatly stabilized with phospholipids with oleoyl chains independently of their polar head group composition and suggest that the alpha-helical structure of the carrier is mainly embedded in the lipid environment. 相似文献
12.
13.
The fatty acid composition of Pseudomonas aeruginosa PAO1 was compared between biofilm and batch planktonic cultures. Strain PAO1 biofilms were able to maintain a consistent fatty acid profile for up to 6 days, whereas strain PAO1 batch planktonic cultures showed a gradual loss of cis-monounsaturated fatty acids over 4 days. Biofilms exhibited a greater proportion of hydroxy fatty acids but a lower proportion of both cyclopropane fatty acids and saturated fatty acids (SAFAs). SAFAs with >=16 carbons, in particular, decreased in biofilms when compared with that in batch planktonic cultures. A reduced proportion of SAFAs and a decline in overall fatty acid chain length indicate more fluidic biophysical properties for cell membranes of P. aeruginosa in biofilms. Separating the biofilms into 2 partitions and comparing their fatty acid compositions revealed additional trends that were not observed in the whole biofilm: the shear-nonremovable layer consistently showed greater proportions of hydroxy fatty acid than the bulk liquid + shear-removable portion of the biofilm. The shear-nonremovable portion demonstrated a relatively immediate decline in the proportion of monounsaturated fatty acids between days 2 and 4; which was offset by an increase in the proportion of cyclopropane fatty acids, specifically 19:0cyc(11,12). Simultaneously, the shear-removable portion of the biofilm showed an increase in the proportion of trans-monounsaturated fatty acids and cyclopropane fatty acids. 相似文献
14.
beta-Ketoacyl-acyl carrier protein (ACP) synthase III (KAS III, also called acetoacetyl-ACP synthase) encoded by the fabH gene is thought to catalyze the first elongation reaction (Claisen condensation) of type II fatty acid synthesis in bacteria and plant plastids. However, direct in vivo evidence that KAS III catalyzes an essential reaction is lacking, because no mutant organism deficient in this activity has been isolated. We report the first bacterial strain lacking KAS III, a fabH mutant constructed in the Gram-positive bacterium Lactococcus lactis subspecies lactis IL1403. The mutant strain carries an in-frame deletion of the KAS III active site region and was isolated by gene replacement using a medium supplemented with a source of saturated and unsaturated long-chain fatty acids. The mutant strain is devoid of KAS III activity and fails to grow in the absence of supplementation with exogenous long-chain fatty acids demonstrating that KAS III plays an essential role in cellular metabolism. However, the L. lactis fabH deletion mutant requires only long-chain unsaturated fatty acids for growth, a source of long-chain saturated fatty acids is not required. Because both saturated and unsaturated fatty acids are required for growth when fatty acid synthesis is blocked by biotin starvation (which prevents the synthesis of malonyl-CoA), another pathway for saturated fatty acid synthesis must remain in the fabH deletion strain. Indeed, incorporation of [1-14C]acetate into fatty acids in vivo showed that the fabH mutant retained about 10% of the fatty acid synthetic ability of the wild-type strain and that this residual synthetic capacity was preferentially diverted to the saturated branch of the pathway. Moreover, mass spectrometry showed that the fabH mutant retained low levels of palmitic acid upon fatty acid starvation. Derivatives of the fabH deletion mutant strain were isolated that were octanoic acid auxotrophs consistent with biochemical studies indicating that the major role of FabH is production of short-chain fatty acid primers. We also confirmed the essentiality of FabH in Escherichia coli by use of a plasmid-based gene insertion/deletion system. Together these results provide the first genetic evidence demonstrating that FabH conducts the major condensation reaction in the initiation of type II fatty acid biosynthesis in both Gram-positive and Gram-negative bacteria. 相似文献
15.
Alginic acid synthesis in Pseudomonas aeruginosa mutants defective in carbohydrate metabolism. 总被引:5,自引:11,他引:5
下载免费PDF全文

Mutant cells of mucoid Pseudomonas aeruginosa isolated from cystic fibrosis patients were examined for their ability to synthesize alginic acid in resting cell suspensions. Unlike the wild-type strain which synthesizes alginic acid from glycerol, fructose, mannitol, glucose, gluconate, glutamate, or succinate, mutants lacking specific enzymes of carbohydrate metabolism are uniquely impaired. A phosphoglucose isomerase mutant did not synthesize the polysaccharide from mannitol, nor did a glucose 6-phosphate dehydrogenase mutant synthesize the polysaccharide from mannitol or glucose. Mutants lacking the Entner-Doudoroff pathway dehydrase or aldolase failed to produce alginate from mannitol, glucose, or gluconate, as a 3-phosphoglycerate kinase or glyceraldehyde 3-phosphate dehydrogenase mutant failed to produce from glutamate or succinate. These results demonstrate the primary role of the Entner-Doudoroff pathway enzymes in the synthesis of alginate from glucose, mannitol, or gluconate and the role of glyceraldehyde 3-phosphate dehydrogenase reaction for the synthesis from gluconeogenic precursors such as glutamate. The virtual absence of any activity of phosphomannose isomerase in cell extracts of several independent mucoid bacteria and the impairment of alginate synthesis from mannitol in mutants lacking phosphoglucose isomerase or glucose 6-phosphate dehydrogenase rule out free mannose 6-phosphate as an intermediate in alginate biosynthesis. 相似文献
16.
Y Uratani 《The Journal of biological chemistry》1992,267(8):5177-5183
The gene product of braB encoding the Na+(Li+)-coupled carrier protein for L-leucine, L-isoleucine, and L-valine (LIV-II carrier) of Pseudomonas aeruginosa PML strain was identified and overexpressed using a T7 RNA polymerase/promoter plasmid system. The gene product was pulse-labeled with [35S]methionine as a protein of an apparent Mr of 34,000 on a sodium dodecyl sulfate-polyacrylamide gel. Cell membranes overproducing the LIV-II carrier were solubilized with n-dodecyl beta-D-maltopyranoside. The carrier protein was purified from the detergent extract by two purification steps: (i) immunoaffinity column chromatography using purified polyclonal antibody directed against synthetic 13-mer peptide corresponding to the carboxyl terminus region of the carrier and (ii) subsequent DEAE-cellulose column chromatography. The detergent was replaced by n-octyl beta-D-glucopyranoside prior to the first elution and phospholipid was present during purification. Proteoliposomes reconstituted with the purified LIV-II carrier exhibited Na+ or Li+ concentration gradient-driven transport of leucine, isoleucine, and valine. These results show that the LIV-II carrier was purified to be in a functional form. 相似文献
17.
Cheng J Ma J Lin J Fan ZC Cronan JE Wang H 《Applied and environmental microbiology》2012,78(5):1563-1573
Ralstonia solanacearum, a major phytopathogenic bacterium, causes a bacterial wilt disease in diverse plants. Although fatty acid analyses of total membranes of R. solanacearum showed that they contain primarily palmitic (C(16:0)), palmitoleic (C(16:1)) and cis-vaccenic (C(18:1)) acids, little is known regarding R. solanacearum fatty acid synthesis. The R. solanacearum GMI1000 genome is unusual in that it contains four genes (fabF1, fabF2, fabF3, and fabF4) annotated as encoding 3-ketoacyl-acyl carrier protein synthase II homologues and one gene (fabB) annotated as encoding 3-ketoacyl-acyl carrier protein synthase I. We have analyzed this puzzling apparent redundancy and found that only one of these genes, fabF1, encoded a long-chain 3-ketoacyl-acyl carrier protein synthase, whereas the other homologues did not play roles in R. solanacearum fatty acid synthesis. Mutant strains lacking fabF1 are nonviable, and thus, FabF1 is essential for R. solanacearum fatty acid biosynthesis. Moreover, R. solanacearum FabF1 has the activities of both 3-ketoacyl-acyl carrier protein synthase II and 3-ketoacyl-acyl carrier protein synthase I. 相似文献
18.
Wadekar SD Kale SB Lali AM Bhowmick DN Pratap AP 《Preparative biochemistry & biotechnology》2012,42(3):249-266
Vegetable edible oils and fats are mainly used for frying purposes in households and the food industry. The oil undergoes degradation during frying and hence has to be replaced from time to time. Rhamnolipids are produced by microbial cultivation using refined vegetable oils as a carbon source and Pseudomonas aeruginosa (ATCC 10145). The raw material cost accounts for 10-30% of the overall cost of biosurfactant production and can be reduced by using low-cost substrates. In this research, attention was focused on the preparation of rhamnolipids, which are biosurfactants, using potential frying edible oils as a carbon source via a microbial fermentation technique. The use of low-cost substrates as a carbon source was emphasized to tilt the cost of production for rhamnolipids. The yield was 2.8 g/L and 7.5 g/L from waste frying oil before and after activated earth treatment, respectively. The crude product contained mainly dirhamnolipids, confirmed by thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), liquid chromatography-mass spectroscopy (LC-MS), and (1)H-nuclear magnetic resonance (NMR). Hence, the treatment can be used to convert waste frying oil as a low-cost substrate into a cost-effective carbon source. 相似文献
19.
Wu Jianrong Zhang Jingbo Zhang Hongtao Gao Minjie Liu Liming Zhan Xiaobei 《Bioprocess and biosystems engineering》2019,42(5):777-784
Bioprocess and Biosystems Engineering - Rhamnolipids (RLs) are anionic biosurfactants with great application potential. This study explored the possibility of producing RLs from cooking oil fume... 相似文献